
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 02/14 pp433–451
DOI: 10 .26599 /TST.2022 .9010006
Volume 28, Number 3, June 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Collaborative Offloading Method for Digital Twin Empowered Cloud
Edge Computing on Internet of Vehicles

Linjie Gu, Mengmeng Cui�, Linkun Xu, and Xiaolong Xu

Abstract: Digital twinning and edge computing are attractive solutions to support computing-intensive and service-

sensitive Internet of Vehicles applications. Most of the existing Internet of Vehicles service offloading solutions

only consider edge–cloud collaboration, but the collaboration between small cell eNodeB (SCeNB) should not be

ignored. Service delays far lower than offloading tasks to the cloud can be obtained through reasonable collaborative

computing between nodes. The proposed framework realizes and maintains the simulation of collaboration between

SCeNB nodes by constructing a digital twin that maintains SCeNB nodes in the central controller, thereby realizing

user task offloading positions, sub-channel allocation, and computing resource allocation. Then an algorithm named

AUC-AC is proposed, based on the dominant actor–critic network and the auction mechanism. In order to obtain a

better command of global information, the convolutional block attention mechanism (CBAM) is used in the digital twin

of each SCeNB node to observe its environment and learn strategies. Numerical results show that our experimental

scheme is better than several baseline algorithms in terms of service delay.

Key words: digital twin; cloud-edge computing; reinforcement learning; actor-critic network

1 Introduction

With the rise of the 5G era, various computing-intensive
and delay-sensitive services in the field of internet of
vehicles (IoV) are constantly emerging. Simultaneously,
demands for the data rate and timelines become
substantially stricter than traditional IoV scenes because
the images or videos are transmitted and processed in
the network[1].

However, some vehicles may not even be equipped
with computing devices due to the performance
� Linjie Gu is with Changwang School of Honors, Nanjing

University of Information Science and Technology, Nanjing
210044, China. E-mail: 201983320030@nuist.edu.cn.
�Mengmeng Cui and Xiaolong Xu are with School of

Computer and Software, Nanjing University of Information
Science and Technology, Nanjing 21044, China. E-mail:
cuimengmeng@nuist.edu.cn; xlxu@nuist.edu.cn.
� Linkun Xu is with School of Artificial Intelligence, Nanjing

University of Information and Technology, Nanjing 210044,
China. E-mail: 201983320033@nuist.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2021-10-18; revised: 2022-01-21;
accepted: 2022-03-01

limitations of these devices on vehicles[2], and the usual
scheme chooses to offload the service request from the
IoV users to the cloud service layer for execution[3].
Nevertheless, the process of offloading the service
request to the cloud server and then returning constantly
causes serious delays considering the long distance
between the cloud and users, which will lead to the
reduction in quality of service (QoS). Time delays
may also cause serious consequences, such as traffic
accidents[4].

As a paradigm between the rapid growth of computing
tasks and the limitation of computing power, mobile edge
computing (MEC) uses MEC servers to sink information
services from the cloud to the edge of the wireless
network access point to create high-quality service
environments with high bandwidth and low latency
for users[5]. Consequently, the explosive growth of
application data and the limitations of the channel and
computing resources of most MEC servers may lead
to problems, such as channel interference and server
overload, when faced with intensive service requests.
This phenomenon may lead to a reduction in QoS and

434 Tsinghua Science and Technology, June 2023, 28(3): 433–451

failure to meet constraints of service requests from
multiple users simultaneously.

This paper assumes that our edge server deployment
scheme is based on small cell eNodeB (SCeNB), small
edge servers are directly connected to base stations.
Computing tasks can be further offloaded from the
current edge computing node to other nodes during peak
hours based on the connectivity between SCeNB nodes,
thereby easing the burden on the current edge node.
The result of the service request is executed by other
nodes and then returned to the current node; this result
is finally sent back to the IoV user side[6]. The idle
computing resources in the system can be effectively
utilized through the cooperation between SCeNB nodes,
and a load of edge computing nodes can be effectively
balanced. Meanwhile, the overall service quality of the
system will be improved. However, the cooperation
between SCeNB nodes can be affected by many factors,
such as communication topology and network status
between nodes. Therefore, designing a scheme under
the constraints of edge computing resources for decision
making considering the task offloading destination and
server computing resource allocation is challenging.

The emergence of digital twin technology can
simultaneously solve the problem of MEC selection and
task offloading[7]. In addition, the digital twin utilizes
machine learning and Internet of Things technology
to bring the data-driven representation of the physical
world into the mirrored virtual space. The state mapping
between the real and virtual dimensions provides a global
perspective for system scheduling, thereby guiding
the scheduling and optimization for overall systems[8].
Using the feature of digital twin can help effectively
explore collaboration methods between SCeNB nodes
and assist IoV users in task offloading. The state of the
entire edge computing network can also be monitored in
real-time through the combination of MEC and digital
twin, and perception data can be directly provided for
the decision-making module[9].

In addition, network environments, computing
resources, channel conditions, and service requests of
users are dynamic under the IoV environment, and the
process of offloading decision making can be abstracted
as a Markov decision process[10]. As part of artificial
intelligence, reinforcement learning has achieved
remarkable success in the fields of game confrontation,
robot control, and human–machine games[11]. Deep
reinforcement learning is the combination of deep and
reinforcement learning. It integrates the powerful

comprehension of perception problems of deep learning
and the decision-making capability of reinforcement
learning to achieve end-to-end learning. The emergence
of deep reinforcement learning contributes to the
practicality of reinforcement learning technology and
helps solve complex problems in real-world scenarios.

Thus far, some research works have applied deep
reinforcement learning to the edge computing scenarios
of the IoV; however, two main problems are found in
these works. On the one hand, some studies, such as
Ref. [12], only consider offloading of computing tasks
to edge or cloud servers and disregard the allocation of
channels and computing resources. On the other hand,
some studies, such as Ref. [13], consider the channel
and computing resource allocation issues. However, the
designed computational offloading method is only for
a single server and disregards the collaboration issue
between edge servers. As the deployment of edge servers
becomes increasingly intensive and the demand for
user service offloading rises, cooperation between edge
servers is necessary. Some studies[14, 15] used multi-
agent reinforcement learning methods, such as multi-
agent deep deterministic policy gradient (MADDPG), to
investigate the cooperative offloading problem between
edge servers. However, the application of multi-
agent reinforcement learning to cooperative computing
offloading will inevitably encounter problems regarding
dimensional disaster and reliability distribution[16].
Simultaneously, the dynamics and non-stationarity of
the IoV environment will also affect the convergence of
multi-agent strategy.

Maximizing the cooperation between edge servers
to achieve a reasonable allocation of channels
and computing resources while considering limited
computing resources at the edge servers to provide
long-term and stable low latency services to users
is generally a major challenge for edge computing
in the current IoV. We propose a task offloading
decision and resource allocation scheme for cloud-edge
collaboration computing in this paper. SCeNB nodes
can allocate base station sub-channels and edge server
computing resources, realizing edge–cloud and edge–
edge collaborations. The main contributions of this
question include the following three aspects.
� A cloud-edge collaborative IoV edge computing

task offloading model is proposed. A digital twin of
the SCeNB node group is constructed in this model to
simulate the process of task forwarding and collaborative
computing between SCeNB nodes.

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 435

� A convolutional attention mechanism-based
environmental state representation method that can
identify the states of global nodes in the system is
proposed. The digital twins of the SCeNB nodes
independently observe the global environment and
follow the same rules to extract features from the
environment through the proposed method.
� The synchronous advantage actor–critic network is

used to solve the distributed decision-making problem,
and a method combined with auction mechanism, which
can realize the collaboration between SCeNB nodes to
complete the decision of the offloading destination of the
forwarded tasks and the resource allocation, is proposed.

The remaining chapters of this article are arranged
as follows. Section 2 introduces the related work and
presents a certain analysis of the results of these studies
and existing problems. Section 3 establishes a detailed
system model for the task offloading collaboration in
IoV edge computing environments. Section 4 discusses
the algorithm AUC–AC based on A2C and auction
mechanism. Section 5 introduces the experimental
parameter settings and results. Finally, the full text is
summarized, and the future research work direction is
indicated in Section 6.

2 Related Work

2.1 Digital twin empowered edge computing issues

Thus far, many studies have focused on the combination
of digital twins and edge computing. Reference
[13] proposed a deep learning architecture for
user association, which trains algorithms offline by
establishing a digital twin of the MEC network
environment on a central server. Reference [7] studied
the establishment of a digital twin network in the 6G
scenario to predict the mobility of users and changes
in the MEC environment, minimizing service delays
under the constraints of the cumulative service migration
costs during the user’s movement. A new vehicle
edge computing network based on digital twins and
multi-agents is proposed in Ref. [17] to improve the
collaboration of agents and optimize the efficiency of
task offloading. A DT-enabled multiuser offloading
system, which uses deep Q network (DQN) networks
to improve service quality, is proposed in Ref. [12].
Reference [18] studied the problem of mobile users
regarding offloading intelligent tasks to collaborative
mobile edge servers using digital twins. Specifically,
blockchain technology is used to realize the selection

of MES. However, none of these mentioned studies
considers the scene including edge–edge and edge–cloud
collaborations, which may be the task offloading trend
in 5G communication architecture.

2.2 Multi-resource allocation problem via
cooperative computing

Many studies have been conducted on the computing
resource allocation of task offloading in MEC,
including single-node and multi-node computing
resource allocations. However, even in multi-node
computing resource allocation, most studies adjust
single-node resource allocation strategies by sensing
the status of other nodes. For example, RSU is used
in Ref. [19] to perceive vehicle status information,
especially speed information. Therefore, a vehicle speed
perception delay constraint model based on different
speeds and task types is established, thus achieving
satisfactory performance considering energy cost and
task computing delay. The potential user service demand
is predicted in Ref. [20] through the deep spatio-
temporal residual network. The cloud server cooperates
with each edge server to obtain the status of traffic flow
and acquires the service offloading strategy through
the distributed asynchronous advantage actor–critic
network. However, these studies have ignored the
potential cooperation between edge servers in the IoV
edge computing scenarios. The computing and storage
resources in the edge computing nodes are modeled in
Ref. [21], and a multi-resource allocation system for IoT
collaborative computing based on deep reinforcement
learning is designed. A noncooperative game was
developed in Ref. [6] to simulate the computing
offloading of different types of tasks and balance the
calculation delay of each task on MEC-BS, and the
existence and convergence of the game were proven.
However, neither of the two aforementioned articles
considered the problem of channel allocation during
data transmission, which will substantially influence the
performance of the system.

2.3 Application of deep reinforcement learning in
edge computing

Deep reinforcement learning has been widely recognized
with the rapid development of large-scale parallel
graphics processing. Reference [22] proposed a parallel
RL paradigm of asynchronous advantage actor–critic
based on DQN by training multiple agents in multiple
environments. The actor–critic method is improved

436 Tsinghua Science and Technology, June 2023, 28(3): 433–451

in Ref. [23], and a multi-agent reinforcement learning
framework with basic strategies is proposed for the
agent to control trajectory planning, data scheduling,
and bandwidth allocation. The federated learning
model is adopted to develop the corresponding edge
federation and online joint collaboration algorithms.
References [15, 24, 25] all studied the energy supply
and computing resource allocation issues. Among these
studies, Refs. [24, 25] used the multi-agent deep
reinforcement learning of the asynchronous advantage
actor–critic algorithm to solve the risk-sensitive energy
analysis problem of the micro grid-enabled MEC
network and determine the best energy dispatch strategy
between MEC nodes. Reference [15] solved the problem
of task offloading for mobile devices in large-scale
heterogeneous MEC clusters through an improved
algorithm based on MADDPG and SAC, focusing on the
selection of target servers and the size of the offloaded
data. The multi-agent actor–critic algorithm is used in
Ref. [26] to solve the problem of load balancing in
IoV network, which can quickly adapt to the fluctuation
of network traffic. In Ref. [27], a distributed double
dueling deep Q-network (D3QN) based algorithm is
proposed, by integrating double DQN and dueling DQN,
to implement an MEC-enabled distributed cooperative
microservice caching scheme. In Ref. [28], a method
is proposed to improve the adaptability of offloading
in various application scales. The experiment result
shows that the proposed method enables the system
to realize improved performance in transmission rate
and computing capability. Deep reinforcement learning
generally has a good prospect in the scenario of edge
computing.

3 System Model and Problem Definition

First, this section proposes an edge–cloud collaborative
task offloading model of IoV. Then, a mathematical
model is established for network communication and
user request delay in the system. Finally, the problem of
service unloading and resource allocation in networked
edge computing is abstracted as an integer programming
problem. The notation and the meanings of some
important variables in the system model are shown in
Table 1.

3.1 System model

The edge–cloud task offloading model in IoV
environments is shown in Fig. 1. The MEC server
deployment in this article is based on the SCC

Table 1 Notations and definitions.
Notation Definition
Nnode Number of the SCeNB nodes
i ID of the SCeNB node

N cha
i

Number of sub-channels that the SCeNB node
can allocate

N cal
i

Number of computing resource that the SCeNB
node can allocate

Ggeo Graph used to represent the length of the optical
fiber between SCeNB nodes

G topo Graph used to represent the topology
relationship between SCeNB nodes

deployment scheme as in Ref. [29]. The core idea of
SCC is to enhance the functionalities of small base
stations by adding computing and storage capabilities
and provide cloud-based SCeNB for realizing edge
computing[30, 31]. The deployment scheme introduces
a small cell manager named SCM to assist in SCeNB
computing and storage resource management to migrate
the concept of SCC into the mobile network architecture.
The system is divided into two layers: the edge layer of
the IoV and the cloud service layer. Most of the base
stations in the current 5G architecture are connected
in a ring mode. Thus, the scheme discussed in this
paper also assumes that the base stations are connected
as a ring. The edge layer in the designed system is
a cluster of SCeNB nodes connected into a ring. The
nodes are connected with others and the cloud service
layer through a wired channel. SCeNB nodes with tight
computing resources can decide to forward computing
tasks to other nodes in the edge computing cluster for
low service delay. Simultaneously, we assume that each
user will only connect to the SCeNB node closest to
it. In each time slot, if an IoV user generates a service
request, then the request will be sent to a nearby SCeNB
node deployed nearby. In particular, we assume that 5G
communication equipment is installed on the 5G edge
computing node and the vehicle of the user. Through
the 5G wireless channel, the vehicle of the user and
the corresponding edge computing node are connected
through high bandwidth communication. In this article,
we assume that each SCeNB node has pre-installed
various vehicle applications in the edge server, which
can meet the service request offloaded to the SCeNB
nodes. Simultaneously, the service requests of users
can also be executed in the cloud service layer. The
cloud server in this layer contains sufficient computing
and storage resources and is directly connected to the
service provider, which can efficiently and quickly meet

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 437

Fig. 1 Architecture of DT-empowered collaborative task offloading system.

the service requests of users.
In addition, we built a digital twin network of edge

server nodes in SCM. The digital twin network records
the task operation status, computes resource allocation,
channel status, and other data of each edge computing
node, and utilizes deep reinforcement learning methods
to provide intelligent solutions to task offloading and
resource allocation for the edge computing cluster.

Time is discretized into different time slots in this
system, and the time interval is sufficiently short.
Therefore, we can assume that one edge server can
only receive at most one service request on each time
slot. Meanwhile, the computing resources of each edge
server can be virtualized into independent computing
resources and allocated to users through virtualization
technology. The base station will receive task requests
from nearby vehicles at the beginning of each time slot
and then send the task information to the SCM. The
SCM will make the offloading decision of all tasks
in the edge computing cluster according to SCeNB
node information recorded by their corresponding digital
twins in SCM. Simultaneously, the digital twins in SCM
will be updated in accordance with previous decisions
and information. Afterward, all decisions are returned
to their corresponding SCeNB nodes, and then each
SCeNB node allocates sub-channels and computing
resources for the service requests of users according

to the strategy given by SCM and collaborates with other
edge nodes.

The decision in SCM can mainly be divided into two
stages. In the first stage, SCM decides on the service
requests directly received by each SCeNB node. This
stage decides on whether to forward the task or send
it to the cloud service layer or execute it in the local
server. In the second stage, all forwarded tasks will be
auctioned among the digital twins of all SCeNB nodes
via the designed auction mechanism. These nodes will
provide the bid of computing resources they are willing
to allocate for the forwarded tasks. Finally, the auctioned
task will be sent to the edge node with the highest bid;
this indicates that this node will generate the lowest
execution and transmission latency for the forwarded
task. If the task is forwarded to any other node, then it
cannot generate higher revenues than directly uploading
the task to the cloud layer. Thus, the auction will be
deemed to have failed, and the forwarded task will be
offloaded to the cloud service layer for execution.

3.2 Network communication model

First, we define the request of IoV users to establish a
communication model for the network in the IoV edge
computing collaborative offloading system accurately.
The service request information of a user received by
the SCeNB node Nodei in the time slot t is a four-

438 Tsinghua Science and Technology, June 2023, 28(3): 433–451

tuple ri .t/ D .vi ; pi ; di ; ci /, where vi represents the
maximum data transmission rate between the user and
the SCeNB node, pi represents the signal transmission
power of the user, di represents the size of application
data contained in the service requirement, and ci
represents the amount of computing resource required
for the service. If in a certain time slot � , then the SCeNB
node Nodei does not receive any service request of the
user. Thus, let ri .�/ D .0; 0; 0; 0/.

Users and SCeNB node Nodei are connected
wirelessly in this system. Assume that users employ
orthogonal frequency division multiplexing multiple
access technology[32] to connect to SCeNB nodes for
two-way data transmission, wherein the bandwidth
of each sub-channel is w. Assuming that the
communication interference between different users and
the SCeNB node is negligible during the communication
between each other, the maximum data transmission
rate vi between the user and the corresponding edge
computing node Nodei is

vi D n
cha
i � w � log.1C pi hi �2/ (1)

where ncha
i represents the number of sub-channels

allocated to the service request ri , and hi is the channel
gain from the user to Nodei , which is subject to a
Gaussian distribution with a mean value of 0 and a unit
variance of �2.

The base stations are connected through wired
channels, and all the base stations are connected in a ring
topology to form a cluster. Therefore, the communication
topology between the base stations can be represented
by the graphs Ggeo and Ggraph, where Ggeo is used to
represent the length of the optical fiber between SCeNB
nodes, and Ggraph is used to represent the distance
between nodes on the topological graph. For example,
two nodes Nodem and Noden are directly adjacent,
and the geographic distance between the two nodes
is 0.9 km; thus, Ggeo

m;n D 0:9, Ggraph
m;n D 1. Another

example is the connection between the nodes Nodep
and Nodeq through the node Noder : the geographic
distance between Nodep and Noder is 0:7 km, and that
the geographic distance between Nodeq and Noder is
0:5 km. Thus, Ggeo

p;q D 1:2 and Ggraph
p;q D 2.

We assume that the communication conditions of
the links between all base stations are the same. The
transmission delay of the wired channel between the
base stations is highly correlated with the transmission
distance[33], and each transition in a base station will
produce additional delay. Let 'wire be the delay required
during the transmission process per unit distance for unit

data. 'BS is the delay generated after each base station
conversion. Then let T sm;ni be the wired transmission
delay T sm;ni between Nodem and Noden, which is
given by

T s
m;n
i D 'wire �G

geo
m;n � di C 'BS �G

graph
m;n (2)

3.3 Service execution delay model

The service request of the user in this system can be
executed locally at the SCeNB node. This node receives
the request or forwards it to other nodes in the cluster
for collaborative computing; the request can also be
offloaded to the cloud service layer for execution. The
task information of the request, taskki , will be added
to a set Taski , which contains the task information
of all tasks running in Nodei , after the destination of
the user’s request ri .t/ has been decided by the SCM.
k indicates that it is the k-th task running in Nodei .
In particular, taskki is a seven-tuple that records the
running information of the task:

taskki D .nchaki ; ncal
k
i ; pos

k
i ; lcha

k
i ;

lcalki ; tcha
k
end; tcal

k
end/ (3)

where nchaki is the number of allocated sub-channels,
ncalki is the number of allocated computing resources,
poski is the location for task calculation, lchaki is the
number of remaining channels, lcalki is the number of
remaining computing resources, tchakend is the end time
of the channel occupied by the task, and tcalkend is the
end time of the computing resource occupied by the task.

3.3.1 Service delay of offloading the task to the
local node for computing

Considering the definition of service requests and task
running information, the following defines the service
delay required to meet user needs in different situations
and finally provides the calculation formula of the total
service delay of the system.

The delay to be considered when the service request
of the user is offloaded to the nearest SCeNB node for
calculation includes the transmission delay of uploading
service request information ri and SCeNB node running
information taskki from the user’s vehicle to the SCeNB
node, uploading time of ri and taskki to SCM, the
time of decision making by digital twins in SCM, the
return time of the decisions in SCM to the SCeNB
node, the time delay for the SCeNB node to receive the
service request data, the calculation delay for processing
the service request on the node, and the return delay
of the service result returned to the user. The seven
processes are represented in Fig. 2. The backhaul delay

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 439

Fig. 2 Illustration of the interactive process, where the
green line represents the transmission of the information of
the request, and orange line represents the transmit of the
data of the request data.

can be neglected considering that the data size of the
service result is generally smaller than that of the
input parameters. Simultaneously, ri and taskki to be
uploaded to the digital twin network as well as that for
SCM to return the decision to the SCeNB node can also
be ignored because of the small data-size. Therefore, the
delay generated in processes 1, 2, 4, and 7 in this system
is negligible. Moreover, the time required for users to
upload their service request ri D .di ; ei / to the SCeNB
node can be calculated by Eqs. (4) and (5):

T su2e
i D

di

vi
(4)

Tclocal
i D

ei

ncal
i � fmec

(5)

where Eq. (4) represents the data transmission delay
from the user’s vehicle to the edge node, and Eq. (5)
represents the calculation delay of processing service
request ri on the local SCeNB node. In addition, ncal

i

is the number of computing resources allocated to the
service request ri , and fmec represents the computing
rate of a single edge server computing resource.
Therefore, the resulting service delay generated in the
local edge server can be calculated by the following:

T loacl
i D T su2e

i C Tc
local
i C T twin

i (6)

where T twin
i represents the time for the digital twin

network in SCM to make task offloading decisions.

3.3.2 Service delay of offloading the service to the
cloud service layer for computing

The interactive delay model in Section 3.3.1 indicates
that if the service request of the user is to be offloaded
to the cloud server for execution, then the data of the
service request must first be uploaded to the SCeNB node
through the wireless channel and then sent to the cloud
layer by the corresponding SCeNB node through the
wired channel. The cloud server has strong computing
power; thus, the calculating delay is slightly negligible
compared with the transmission delay. Simultaneously,
we choose to ignore several extremely small delays.
Therefore, the service delay when deciding on offloading

the service to the cloud for execution mainly includes the
transmission delay of uploading service request data to
the edge computing node and the return delay caused by
the data transmission between the SCeNB node and the
cloud server. The calculation formula can be described
as follows:

T cloud
i D T su2e

i C RTTC T twin
i (7)

The cloud server is geographically far away from the
edge computing node. Thus, the forwarding process of
the input parameter data by the edge computing node to
the cloud and the cloud returning process of the service
processing result generally have a similar delay, and
the delay has no relationship with the input parameter.
Therefore, RTT can be written as

RTT D 2T scloud (8)

where T scloud denotes the delay of sending the data from
the SCeNB node to the cloud server.
3.3.3 Service delay when forwarding tasks to other

SCeNB nodes for execution
The IoV edge computing model in Section 3.1 shows that
if the service requests of the user must be forwarded to
other SCeNB nodes in the cluster for execution, then the
raw service data must be uploaded from the vehicle of
the user to the SCeNB node through the wireless channel,
resulting in delays in local offloading in Section 3.3.1.
The delay caused by the data transmission process with
a small data size is also ignored. Therefore, the resulting
delay when the service request is offloaded to other
SCeNB nodes via the directly connected SCeNB node
mainly includes the transmission delay of uploading the
service request data to the edge computing node, the data
transmission delay between nodes through optical fibers,
and the time consumption of executing computing tasks
on the assisting node. Consequently, the service delay
of the forwarded task to other nodes can be expressed as
T forward
i D T su2e

i C T s
e2e
i C Tc

forward
i C T twin

i (9)

3.3.4 Total delay of the system
The request received by each node in this study has three
choices: local offloading, forwarding to other nodes for
assistance in computing, and offloading to the cloud
server. 0 variables use 0=1 variables, ai and bi , to
indicate the offloading method of a certain service, where
ai represents execution on the local node:

ai D

(
1; if execute ri in local node;

0; if do not execute ri in local node
(10)

Meanwhile, bi represents forwarding of the task to
other SCeNB nodes

440 Tsinghua Science and Technology, June 2023, 28(3): 433–451

bi D

(
1; forward ri to other nodes;

0; upload ri to cloud service layer
(11)

Therefore, the service delay for any service request is
TiDai � T

local
i C .1 � ai /

�
biT

forward
i C .1 � bi /T

cloud
i

�
(12)

Thus, the calculation formula of the global service
delay of the system for all users in the time slot t is as
follows:

Ttotal.i/ D

NnodeX
iD1

Ti (13)

3.4 Problem definition

The purpose of the proposed system is to minimize the
average system delay over a long period. The problem
can then be modeled as follows:

min
a; b; ncal

i
; ncha
i

1

Nnode

NnodeX
iD0

P�
tD0 Ti .t/P�

tD0 Sgn.ri .t//
(14)

s.t.
X

taskk
i
2Taski

ncal
i 6 Ncal; 8i (15)

X
taskk

i
2Taski

ncha
i 6 Ncha; 8i (16)

T forward
i 6 T cloud

i (17)

where Sgn.ri .t// is the symbol of ri .t/. The value
is 1 when ri .t/ is not empty; otherwise, it is 0. The
target of the objective function is to minimize the
average delay of long-term users. a; b; ncal

i ; and ncha
i

represent the decision variable in the optimization
problem. Constraint (15) means that the number of sub-
channels allocated to users cannot exceed the number
of those owned by the connected SCeNB node in any
time slot. Constraint (16) means that the number of
computing resources that can be allocated to users in any
time slot cannot exceed those owned by the connected
SCeNB node. Constraint (17) indicates that the delay
caused by the forwarded task must be less than that of
the directly uploaded task to the cloud service layer.

4 AUC–AC for DT–Empowered Edge–
Cloud Cooperative Offloading System

A deep reinforcement learning method named AUC–AC
is designed in this section by combining the traditional
A2C algorithm with the auction mechanism to solve
the collaborative offloading problem in the IoV edge
computing environment. First, the overall architecture
of the algorithm is given. Then, the detail of each part is

described. Finally, the complete algorithm of AUC–AC
is provided.

4.1 Analysis of the auction mechanism model

Part of the edge server nodes chooses to forward their
tasks after all edge computing decides to offload directly
received tasks, and all the forwarded tasks form a set:

taskforward
D .taskforward

m ; taskforward
n ; : : : / (18)

where m and n represent the ID of the SCeNB
nodes corresponding to the forwarded task. Differences
are observed in the computing and storage resources
available for collaboration in each SCeNB node. Thus,
we assume that all idle computing resources of each
edge server can be used for collaborative computing to
reduce the complexity of the problem. At present, many
existing schemes mostly adopt the scheme of offloading
tasks to their neighboring nodes[7, 18]. However, the
deployment of SCeNB nodes becomes increasingly
intensive, and data transmission between nodes through
optical fibers only generates a small delay. Therefore,
only considering the cooperation between neighboring
nodes may ignore the potential excellent cooperative
offloading scheme.

We believe that any two nodes in the SCeNB node
cluster can implement collaborative computing via data
transmission through direct optical fiber between two
adjacent nodes or forwarding by the medium nodes.
Simultaneously, we aim to help SCeNB nodes prioritize
the tasks within their coverage areas.

For each forwarded task, the communication delay
between the base stations due to forwarding and
the number of computing resources that the other
server is willing to allocate for cooperation must be
comprehensively considered to obtain a corresponding
destination edge server for offloading. Meanwhile, the
node receiving the computing task must also consider
the service requests within its service area that may be
sent later. Therefore, through the reinforcement learning
combined with the auction mechanism, the tasks that
must be forwarded are auctioned among all SCeNB
nodes, and the number of computing resources in the
action given by the buyer node is the price it is willing
to provide. Combined with the data transmission time
in the optical fiber between the buyer and seller nodes,
the price of all buyers relative to the seller node P riceji
can be calculated. This price is expressed as follows:

P ricenm D

(
�.T sm2n

n C Tcforward
n /; m ¤ nI

�2T scloud
m ; m D n

(19)

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 441

Therefore, the bids of all buyers to the seller node
Nodem form a set:
P ricem.t/ D .P rice

1
m; P rice

2
m; : : : ; P rice

i
m/

(20)
The ID of the node to which taskforward

m will eventually
be offloaded is

kw D argmaxP ricem.t/ (21)

4.2 Framework of reinforcement learning in
AUC–AC

4.2.1 State space
The state space of an SCeNB node includes not only the
operating status of the node but also its observation of the
running status of other nodes. However, if the running
state of all nodes is directly used as a state, then the
state space dimension will be excessively high, which
will lead to the convergence difficulty problem in the
reinforcement learning algorithm. We propose a global
state representation method based on the convolutional
block attention mechanism to solve this problem.

First, we created an environment for each SCeNB
node, in which only the information of the corresponding
SCeNB node is directly contained. Second, we
aggregated the task running status of all edge
computing nodes into a three-dimensional graph
F 3D
i .t/ 2 RC�H�W . Then at time slot t , the state
sti .t/ of the SCeNB node Nodei at time slot t can be
expressed as
sti .t/ D .F

3D
i .t/; ri .t/; L

cha
i .t/; L

cal
i .t/; Pi .t// (22)

where Lcha
i .t/ and Lcal

i .t/ respectively represent the
remaining number of sub-channels and computing
resources in the SCeNB node, and Pi .t/ represents the
statistical probability of the node’s recent task arrival of
the node.

For the task running feature map F 3D
i .t/, we define

taskki as the k-th running task in the SCeNB nodeNodei ,
and tf ki records the running information of the task:

tf ki D .Ncha
k
i ; Ncal

k
i ; pos

k
i ; Lcha

k
i ;

Lcalki ; �tcha
k
i ; �tcal

k
i ; R

k
i ; T

k
i / (23)

whereNchaki is the ratio of the number of allocated sub-
channels to the total number of sub-channels, Ncalki is
the ratio of the number of allocated computing resources
to the total number of resources, and poski is the location
for task calculation, Lchaki is the ratio of the number
of remaining channels to the total number of channels,
Lcalki is the ratio of the number of remaining computing
resources to the number of computing resources of the
total computing resources, �tchaki D tchakend � tsys

is the difference between the end time of the channel
occupied by the task and the current system time, and
�tcalki D tcalkend � tsys is the difference between the
computing resource time occupied by the task and the
current system time. Rki is the reward obtained by the
task, and T ki is the time delay generated by the task.

Later experiments revealed that the tasks running in
the edge server simultaneously will not exceed M . All
the tasks added to the SCeNB node can then form a
two-dimensional graph. If the number of tasks running
in the node does not reach M , then the missing task
features will be filled with 0. The size of the final two-
dimensional task feature map in the edge server is 9�M .
Combining the two-dimensional task feature maps of all
nodes can help obtain a 9 � M � Nnode feature map
F 3D
i .t/, thus containing each task feature in the channel

direction. In particular, considering the difference in
the relative position relationship with other nodes for
the task feature map of each node, the splicing method
should be consistent with all nodes when splicing two-
dimensional feature maps. Thus, we will arrange the
two-dimensional feature maps of the node Nodei in the
center of the graph, and the two-dimensional feature
maps of other nodes are spliced on both sides according
to the geographical distance relationship between the
nodes. Afterward, we extract the features of each task
feature through the convolutional neural network and
stitch them as part of the state with other values in the
system state to form a new system state representation.

Considering the complex relationship between
different features in the feature map, and the entire
feature map is filled with a large number of all-zero
task features, we focus on the notable information when
encoding. Moreover, we intend to provide attention to
the information in the direction of the task feature and
the spatial direction between different SCeNB nodes.
Therefore, we introduce the convolutional attention
mechanism CBAM[34], and the newly generated
environment state representation is st cbam

i .t/ after the
features are extracted by the convolutional block
attention module.

Figure 3 demonstrates that forwarding the channel
and spatial attention modules helps obtain an overall
attention map for a feature map inputted into CBAM.
Specifically, for the three-dimensional task feature map
of a node, its one-dimensional channel attention map is
first multiplied element by element. Then, the feature
map and its two-dimensional spatial attention map are
multiplied element by element to obtain the final overall

442 Tsinghua Science and Technology, June 2023, 28(3): 433–451

Fig. 3 Global state representation based on convolutional attention mechanism.

attention map. Finally, the overall attention and feature
maps are added to obtain the task feature map of the
SCeNB node. A 16-dimensional state representation
st cbam
i .t/, which is spliced with other state values in

the state space sti .t/ to form a new 23-dimensional
state representation sti .t/, is obtained after passing two
convolutional layers.

4.2.2 Action space
The action space of MDP in the current study contains
the following three elements: the position of user task
offloading, the number of sub-channels, and the number
of sub-resources allocated to the service request of the
user. We use one-hot vectors .0=1/pos, .0=1/cha, and
.0=1/cal for representation. Assume that the maximum
number of sub-channels and the maximum number
of computing resources are 4 and 3, and the task is
executed locally, then .0=1/pos D .1; 0; 0/, .0=1/cha D

.0; 0; 1; 0; 0/, and .0=1/cal D .0; 1; 0; 0/. Therefore, the
action space is the Cartesian product of the three, which
is defined as

A D .0=1/pos
� .0=1/cha

� .0=1/cal (24)

where � represents the Cartesian product, and a.t/ 2 A
is used to represent an action performed during the time
slot t in the action space.

4.2.3 Reward function
The purpose of offloading the service in this paper is to
reduce the sum of the long-term average service delay of
all users. We define the instant reward R.t/ obtained by
the action a.t/ in the system state st.t/. Each decision
is divided into two stages: the first stage is the decision

on the service request directly received, and the second
stage is the auction of forwarded tasks. Simultaneously,
we hope that each edge server will pay attention to its
service first. The priority of the directly received service
request is higher than that of the forwarded task. In
addition, we attempt to modify the situation where the
allocated resources exceed the existing resources via the
reward function to meet the Constraints (15) and (16).

We divide the reward into two parts: one part is the
reward of saved time compared with the task execution
on the user side, which is called time reward; and the
other part is the error penalty for the allocated resources
exceeding the allocatable resources, which is called error
reward.

For the time reward in the process of dealing with
taskki generated by the service request ri .t/ sent directly,
the calculation methods Rtdirect

i .t/ corresponding to the
three kinds of offloading decisions are as follows:

Rtdirect
i .t/ D

8̂̂̂̂
<̂
ˆ̂̂:
T user
i � T loc

i ; ai D 1; bi D 0I

T user
i � T cloud

i ; ai D 0; bi D 1I

T user
i � T forward

i � .1C �forward/;

ai D 0; bi D 0

(25)
where T user

i represents the time delay caused by the task
directly executed on the user side. The time saved by
maximizing computational offloading compared with
executing tasks directly on the client-side is essentially
the same as minimizing the average computational
offloading service latency. Thus, the time rewards
obtained from the task running in the local edge node

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 443

or the cloud service layer have difference in service
delay between the IoV user side and the corresponding
offloading SCeNB node.

For the time reward from the forwarded task, the
reward must be multiplied by a coefficient to suppress
the blind forwarding task of the node. Therefore, for
the SCeNB node which sends the task, the time reward
Rt forward

send in the auction stage is

Rt forward
seller D

(
T forward
i � �forward ; ai D 1I

T cloud
i � �cloud ; ai D 0

(26)

Therefore, the total reward of two stages Rforward

through forwarding for the forwarded task taskforward
i

can be indicated as follows:

Rt forward
i D

8̂<̂
:
T user
i � T forward

i ; ai D 1I

T user
i � T forward

i �.1C �forward/C

T cloud
i � �cloud ; ai D 0

(27)

where �cloud represents the discount generated by
offloading the task to the cloud layer if the forwarded
task auction fails. For the SCeNB node which receives
the forwarded task, the time reward Rt forward

receive is

Rt forward
buyer D

(
� �Rt forward; ai D 1; bi D 1I

0; ai D 0 or bi D 0
(28)

where � is also a discount factor for increasing
the priority of the service request received by itself.
Therefore, the edge server can give priority to ensuring
that the service request directly received from its service
area can be offloaded first.

The error reward is then discussed. The error of
allocating resources can be divided into two parts: one
is the error of allocating channels, and the other is the
error of allocating computing resources. We set the error
of allocating channels as ıcha

i and the error of allocating
computing resources as ıcal

i . Then,

ıcha
i D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

KX
kD1

ncha
k �N

cha
i ;

KX
kD1

ncha
k > N

cha
i I

0;

KX
kD1

ncha
k < N cha

i

(29)

ıcal
i D

8̂̂̂̂
<̂
ˆ̂̂:

KX
kD1

ncha
k �N

cal
i ; a D 1; b D 0I

ncal
i ; a D 0I

0; other

(30)

where K indicates the number of the forwarded tasks.
The channel error ıcha

i in all cases only considers the
number of allocated channels exceeding the number of
available channels. The error of computing resources

ıcali is considered to be the allocated resources that
exceed the number of the available computing resources
when the task is directly executed on the local node.
However, the error does not consume computing
resources when it is uploaded to the cloud service layer
or forwarded to other nodes. In the two cases, the error
is equal to the number of computing resources allocated
in the action, Therefore, the error reward of action a.t/ is

ıi D �� � Œ.1 � "/ � ı
cha
i C " � ı

cal
i � (31)

where � is the coefficient for the error reward, which is
used to indicate the importance of the error reward in the
reward; " is used to represent the weight between channel
allocation error and computing resource allocation
errors.

4.2.4 MDP process
The digital twin of each SCeNB node continuously
interacts with the reinforcement learning model in this
paper. The service offloading strategy is the probability
of the action ai .t/ made in the state sti .t/, which
is denoted as �.ai .t/jsti .t//. Let st.D/ denotes the
system termination state, D is the time step of the
termination state, and the cumulative reward with
discount formed by the MDP can be calculated as

R D

D�1X
tD0

D
NnodeX
iD1

.Rti .t/C ıi / (32)

where
 represents the discount rate, which is a constant
between [0,1].

4.2.5 AUC-AC with actor-critic network
Reinforcement learning algorithms can generally be
divided into two categories: value-based and strategy-
based methods. The actor–critic algorithm combines
value function- and strategy-based methods. First, the
actor observes the actions generated in accordance with
the strategy-based method by the environment and then
sends the generated action to the critic network based on
the value function for evaluation, thus guiding the agent
to find the optimal action strategy.

Simultaneously, for the edge computing cooperative
offloading problem in the IoV scene, the synchronization
of decisions made by all nodes should be ensured to meet
the proposed design with the two decision-making stages
and the auction mechanism. We choose A2C to solve the
aforementioned problem considering the synchronous
interaction of all the agents with the corresponding
environment in A2C. The proposed architecture, namely
the A2C-based reinforcement learning collaboration
framework, is shown in Fig. 4. However, problems
caused by sparse rewards may emerge in this process.

444 Tsinghua Science and Technology, June 2023, 28(3): 433–451

Fig. 4 Architecture of the proposed A2C-based
reinforcement learning collaboration framework.

On the one hand, if a node does not receive a service
request directly sent to it in the time slot in the first stage,
then an empty service request will still be generated
and sent to SCM for decision making. If empty service
requests account for most service requirements received,
then the problem of sparse rewards will emerge. On
the other hand, among all the nodes participating in the
auction in the second stage of the auction mechanism,
only the seller and buyer node with a successful bid will
be rewarded. Thus, all other buyer nodes cannot obtain
the reward, which will also lead to the phenomenon of
sparse reward.

N-step bootstrap has been proven to be effective when
faced with such problems[35]. One-step TD can only
learn when the reward information is sampled in one
step when the reward is remarkably sparse, while the
N -step bootstrap can sample N steps. The information
can be learned as long as a rewarding step is available.
We attempt to change the length in the N -step bootstrap
to realize variability in our algorithm, combining the
step of the direct decision in a time slot with that in the
auction process as a bootstrap. The bootstrap set of each
time slot can be presented as follows
ST .t/D.stdirect.t/; st

1
forward.t/; : : : ; st

k
forward.t// (33)

Expanding the calculation method of the target value
in the one-step method to the N-step method, the target
valueGt W .tCK/i .tCk/ can be estimated by the following

G
t W .tCK/
i .tCk/DRdirect

i .t/C
Rforward
i .tC1/C � � �C

kRforward
i .t C k/C
kC1V.sti .t C k C 1// (34)

Therefore, the error of the critic network is expressed
as

L.�v/ D
1

Nnode

NnodeX
nD1

KX
kD0

.Gt WtCKi .t C k/ � V.sti .t///
2

(35)

For a single-action policy network �� .a.t/jst.t//, the
actor’s loss function can be expressed as

L.��/D
1

Nnode

NnodeX
nD1

KX
kD0

logP�� .atCkjsti .tCk//Ai .t/

(36)
where Ai .t/ D G

t W .tCK/
i .t C k/ � Vi .st.t// represents

the error between the target value of the action
performed and the true value function when the
strategy �� with the parameter � is used. In addition,
the action space is the Cartesian product of three
elements, which leads the complexity of the action space
dimension to be O.N pos �N cha �N cal/. The action space
dimension will be excessively large as the number of
available sub-channels in the system and the number
of computing resources increase, resulting in the slow
of the training process and difficulty in convergence.
This article refers to the method in Ref. [20] to
change the traditional single-action output network
to a policy network that can output the probability
distribution of multiple sub-actions simultaneously,
i.e., �� .apos.t/; acha.t/; acal.t/jst.t//, to solve these
problems. Therefore, the dimension complexity of
the action space changes from O.N posN chaN cal/ to
O.N pos CN cha CN cal/. The loss function of the multi-
action output strategy network is then computed as
follows:

L.��/ D
1

Nnode

NnodeX
nD1

KX
�D0

.logP�� .a
pos
tC� jsti .t C k//C

logP�� .a
cha
tC� jsti .t C k//C

logP�� .a
cal
tC� jsti .t C k/// � Ai .t/ (37)

In addition, A2C may converge to a specific action.
We have added entropy loss to allow the network update
to process the generation of additional randomness
to address this issue[36], thereby encouraging further
exploration. The entropy can be expressed as

E D �
X
j

NnodeX
i

P�� .a
j
t / log.P�� .a

j
t //;

j 2 fpos; cal; chag (38)

Thus, the loss function of the total network becomes
Ltotal D L.�

�/C ˛L.�v/C ˇE (39)

where ˛ and ˇ are the weights of the critic network and
entropy, respectively.

Finally, we describe our proposed A2C-based service
offloading method, namely AUC–AC, in Algorithm 1.
Digital twins of all SCeNB nodes are created in SCM
in the IoV edge computing scene, and their respective

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 445

Algorithm 1:� AUC–AC
Input: :�N cha; Ncal; Nnode; tmax

Output: :��� .apos.t/; acha.t/; acal.t/jst.t//

1 Randomly initialize the policy network parameters �� , critic
network parameter �v;

2 Initialize the time slot t D 0;
3 repeat
4 reset gradient d�� 0; d�v 0;
5 generate st.t/ D .st1.t/; st2.t/; : : : ; stNnode .t// by

Eq. (22);
6 input st.t/ into Algorithm 2 to generate offloading

decision;
7 calculate loss function by Eq. (39);
8 backward the loss and update ��; �v;
9 t t C 1;

10 until t > tmax;

reinforcement learning environments are created by the
digital twins to interact with the AUC–AC network. Each
SCeNB node receives user request information from
their respective service area at the beginning of each
time slot and uploads it to the SCM. Simultaneously,
the information regarding tasks running in the SCeNB
node is uploaded to update the digital twin in the SCM.
The network in the SCM first makes decisions for
service requests sent directly from all nodes, and then
all the forwarded tasks in the previous decision will be
auctioned individually through the auction mechanism
in Algorithm 2. The process will be repeated until all
forwarded tasks have been auctioned. Afterward, the
decisions in the SCM are returned to each node, and
each node performs task offloading and calculation
according to the decision delivered by the SCM. The
above process will be repeated in the later time slots.
The critic network calculates the expected value of the
cumulative reward of the process, uses N-step bootstrap
to approximate the value function of each decision, and
calculates the cumulative gradient of the two networks
according to Eq. (39). The gradient is retrograded to
update the network parameter and start the next round of
the training process until the number of training steps is
exceeded. We generate the requests of IoV users through
the simulated environment for algorithm training. The
policy network can be deployed on the SCM after the
training is completed, and collaborative task offloading
is executed in the real environment.

5 Experimental Results and Analysis

This section first describes the experimental platform
and the simulation environment used in the experiment.

Algorithm 2:� Auction mechanism
Input: :�st.t/
Output: :�.GtWtCki

.t/; : : : ; G
tW.tCk/

i
.t CK//

1 for i 2 Nnode do
2 choose actions ai .t/ according to �� .at jst /
3 get ai and bi by Eqs. (10) and (11)
4 obtain rewardRtdirect

i
by Eq. (25);

5 update the state to sti .t C 1/;
6 if apos

i
.t/ DD 2 then

7 Add taskt
i

to taskforward.t/;
8 end
9 end

10 let K represent the number of the element in set
taskforward.t/;

11 for k D 1; 2; : : : ; K do
12 for i 2 Nnode do
13 take action ai .t C k/ according to �� .at jst /;
14 calculate P ricei

k
.t/ by Eq. (19);

15 add P ricei
k
.t/ to the set P ricek.t/;

16 store the value function V.sti .t C k//;
17 end
18 kw D argmax.P ricek.y//;
19 get ai and bi by Eqs. (10) and (11);
20 obtain Rt forward

i
by Eqs. (26)–(28);

21 update the state to sti .t C k C 1/;
22 store Ri .t C k/ and sti .t C k C 1/;
23 end
24 for i 2 Nnode do
25 for k D K;K � 1; : : : ; 1 do
26 if k ==K then
27 G

tW.tCK/

i
.tCk/DRi .tCk/C
V.sti .tCKC1//

28 end
29 G

tW.tCK/

i
.t C k/ D Ri .t C k/C
G

t
i
.t C k C 1/

30 end
31 end

This section then briefly introduces the experimental
parameter settings and then conducts a convergence
experiment on the AUC–AC method, which proves
the feasibility of AUC–AC. Therefore, we conducted a
detailed performance experiment and evaluation of AUC–
AC for different system resources status. Table 2 shows
the occurrence probability and data size for different
tasks and computation sizes based on the comparison
and analysis with the existing service offloading baseline
algorithms.

5.1 Experiment platform and dataset

We collect the data from the real vehicle-mounted RSU
communication in Nanjing, China. The data of the
data set are from September 1st to 29th, 2014. The
data format has four-tuple (t, id, speed, color), where
t represents the time to establish a connection with

446 Tsinghua Science and Technology, June 2023, 28(3): 433–451

the SCeNB node, id denotes the ID of the connected
SCeNB node, speed corresponds to vehicle speed of the
user, and color is the color of the user’s vehicle. An
information record of IoV user data indicates that the
user is connected to the SCeNB node once. We assume
that the duration for each user to connect with each
base station is 2 min. Within 2 min, task requests with a
certain probability will be randomly generated in each
time slot. In addition, the ID of each SCeNB node in
the data set corresponds to a specific SCeNB node and
its geographic latitude and longitude coordinates. The
distribution and communication topology of the SCeNB
nodes specifically selected in the experiment are shown
in Fig. 5.

Intermittent probability of user requests is used
to simulate the user request generation among real
roads to evaluate the offloading performance of the
proposed AUC–AC and other baseline algorithms in
different parameter settings. The user vehicle establishes
a connection with the edge; thus, it obeys a certain
probability to generate tasks every 0.5 s randomly. After
determining the generation of a request, one of six
different tasks is produced in accordance with the set
probability to generate the specific task based on the
parameter setting in Ref. [37]. The parameters for task
generation are shown in Table 2.

Fig. 5 Position of the ten selected SCeNB nodes.

Table 2 Occurrence probability and data size for different
tasks and computation sizes.
Data size Gigacycles Probability Data size Gigacycles Probability

60 1.2 0.10 30 0.7 0.30
45 0.8 0.15 25 0.6 0.20
40 0.7 0.15 15 1.2 0.10

The number of channels and computing resources
and their division can have a considerable impact on the
decision of the SCeNB node. Referring to Refs. [36, 37],
the bandwidth size of different 5G IoV is set to 20,
30, and 40 GHz, and the computational capacity of the
edge server is 2.5, 5, and 7.5 Gigacycles/s, respectively.
The sub-channel bandwidth size is 1 GHz, and the
computational sub-resource is 0.5 Gigacycles/s. The
other parameters in the training are shown in Table 3.

5.2 Experiment results

5.2.1 Convergence analysis
In reality, using SCeNB nodes aims to reduce latency
and improve user experience. Therefore, this section
will use the time difference between the AUC–AC and
local execution in processing the same service request
as the criterion in each experiment.

Every bandwidth of the SCeNB node is set to 20 GHz,
and the capability is calculated to be 10 Gigacycles/s
to estimate the convergence of AUC–AC. The tested
learning rate is 5�10�4, 1�10�4, 5�10�5, 3�10�5,
and 1�10�5. Figure 6 shows that the rewards under
other learning rates have reached convergence after
training for 20 000 epochs, except for the case where
the learning rate is 1�10�5. Considering time saving
tests, time savings compared to local computing under
the five learning rates are shown in Fig. 7. Time savings
converge at different rates. However, they all converged
to around 2.4 s after approximately 15 000 epochs, and

Table 3 Experiment parameters.
Variable Value Variable Value
p 2˙ 0:2W f 0:3˙ 0:03Gigacyle/s
h 144˙ 14:4 dB t cloud

off 1000ms
�2 1:5 � 10�8

Fig. 6 Reward convergence results.

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 447

Fig. 7 Time saving convergence results.

the relatively best results were achieved when the
learning rate is 3�10�5. 3�10�5 is also selected as the
training learning rate in the subsequent experiments.

5.2.2 SCeNB node quantity analysis
In practical application scenarios, the 5G MEC network
is presented differently. Different numbers of 5G SCeNB
nodes can form various edge computing rings. The
number of nodes in the communication ring can
influence the decision of AUC–AC. Hence, this section
will show the decision capability of AUC–AC in
different SCeNB node numbers. Figure 8 shows that
the collaboration effect significantly increases from 1 to
6, then the effect of the increase gradually diminishes,
and the performance decreases sligntly when the number
of nodes is 10. Therefore, increasing the number of
nodes can significantly reduce the response delay of the
system to user requests when the number of nodes in
the SCeNB node cluster is small. However, the effect is
insignificant and even side effects may occur when the

Fig. 8 Impact of different SCeNB node quantities.

number of nodes is large.

5.2.3 Task density and collaboration frequency
The collaboration mainly aims to cope with high task
density. Particularly, when a single SCeNB node receives
a large number of tasks, this node can forward the tasks
received beyond its carrying capacity to other nodes
to reduce the burden on its SCeNB node and improve
the utilization of channel and computational resources
of the entire SCeNB node cluster. In our simulation
experiment, tasks are generated at each node with a
certain probability p in each 0.5 s. We generate random
noise for the task generation interval to further explore
the practical role of the collaboration mechanism. We
then attempted to train the A2C model under different
task generation probabilities, and the result is shown in
Fig. 9. With a low probability of task appearance when
p is 0.4, 0.5, and 0.6, the frequency of task forwarding
decreases significantly until 0 as the epochs of training
progress. The nodes have additional free channels
and computational resources in the case of fewer
task occurrences. Therefore, cooperative offloading is
unnecessary at this time. However, as the probability of
task generation increases, the total amount of forwarding
tasks in the system shows a trend of increasing and
gradually stabilizing. Thus, the collaboration mechanism
plays an active role in the rising number of tasks
and effectively adjusts the task distribution in different
SCeNB nodes.

5.2.4 Comparison with other algorithms
We choose six different algorithms in this section for
comparison with the AUC–AC.
� Random (random offloading): When the user sends

Fig. 9 Number of forwarded tasks with different
probabilities of task generation.

448 Tsinghua Science and Technology, June 2023, 28(3): 433–451

a request, the MEC will offload the task, allocate
channels, and calculate resources randomly.
� GN (greedy algorithm with no collaboration):

When the user sends a request, MEC will allocate all
channels and calculate resources to the task. If no free
calculation resource is available, then the request will be
sent to the cloud layer.
� GC (greedy algorithm with collaboration): When

the user sends a request, the SCeNB node will choose the
offloading position, which saves the most time among
local nodes, other nodes, and cloud layers. If the task is
decided to be forwarded, then it will be sent to the node
with the relatively least service delay. The process of
forwarding the task will also be stimulated to obtain the
instant maximum benefit.
� A2C–NC (A2C without collaboration): We still

use ten environments to stimulate ten SCeNB nodes but
remove the task feature map, and each node would not
cooperate.
� MADDPG: As mentioned in Section 3, that if

one of the representative algorithms in multi-agent
reinforcement learning, MADDPG can utilize global
agent state information to make decisions, and multi-
agents will attempt to achieve global optimality through
cooperation.

The variation of the global average user service latency
generated by different service offloading methods is
shown in Fig. 10. In three experiments, SCeNB nodes
were configured with 40, 20, and 30 sub-channels
and 5, 10, and 15 computing resources, respectively.
The task generation probability is 0.6. The results

Fig. 10 Comparison of saved time from six strategies with
different numbers of channels and computing resources.

indicate that AUC–AC outperforms five other methods
under three kinds of SCeNB node configurations. The
time saving remains stable around 2.4 s when AUC–
AC is applied, while the five other methods were
affected to varying degrees by configuration changes.
Among these methods, another two reinforcement
learning methods demonstrate advantages over the three
remaining methods, and the largest advantage of AUC–
AC emerges when computing resources are insufficient.
This condition can be attributed to the forwarding and
allocation of tasks by AUC–AC due to an improved
cooperation mechanism when computing resources are
scarce. By contrast, the difference is small between
AUC–AC and the two other reinforcement learning
methods when the computing resource is sufficient. The
SCeNB node can effectively execute most of the services
locally; therefore, the advantages of the cooperation
mechanism at this time are not evident.

In addition to the performance comparison between
methods under different edge node configurations, we
also compare the performance of various methods under
different task densities. In this experiment, the edge node
is equipped with 20 sub-channels and 10 computing
resources. The plot of task generation probability
versus time saving in Fig. 11 shows that AUC–AC has
good adaptability to user requests with different task
densities, which has remained stable at approximately
2.4 s. Meanwhile, the performance of MADDPG is
also stable but slightly worse than AUC–AC, which is
around 2.2 s. The performance of A2C is poor when
task density is low. However, the time saving gradually
increases as the task density grows, even surpassing
MADDPG when the task probability is over 0.9. This
phenomenon may be due to a certain side effect of global

Fig. 11 Comparison of saved time from six different
strategies with different task generation probabilities.

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 449

information by multi-agents on its decision making
when the task density is high. Moreover, GC has good
performance when the task density is low, but the
decision making caused by the single greedy strategy is
no longer excellent when the task density is high. The
remaining two algorithms, Random and GN, perform
worse than the others in all task densities.

5.2.5 Ablation studies
We conduct ablation experiments to verify their impact
on the decision making of the model and demonstrate
the effectiveness of the proposed representation method
for global information and attention mechanism. Global
state representation and global state with CBAM are
investigated with different edge node configurations.
The experimental results are shown in Fig. 12.
Compared with not using global state representation,
using global information improves the time saving
by approximately 2.2%. The time saving is further
improved by approximately 1.7% after adding the
attention mechanism. Therefore, the overall system
performance was improved by 4% through the global
state representation and attention mechanism. This
phenomenon is due to the effective discovery of useful
information in the global information by the attention
mechanism and its assignment of high weights to such
information to extract information from the global state
efficiently and convert it into a state vector.

Overall, the AUC–AC method proposed in this paper
is effective in reducing the average service response
delay in MEC networks with different numbers of
computational and channel resources. Compared with
MADDPG, greedy, random, and some non-collaborative

Fig. 12 Comparison of using global state information and
the attention mechanism.

algorithms, AUC–AC has a 9%–70% performance
improvement. Therefore, AUC–AC can effectively
improve user experience in different 5G edge computing
environments.

6 Conclusion

We investigated the DT-empowered SCeNB
collaboration system and proposed a reinforcement
learning framework, namely AUC–AC, for sub-channel
and sub-computing resource allocation and the
collaboration strategy in edge–edge and edge–cloud.
The collaboration process can be simulated in SCM
by adopting the auction mechanism and digital twins,
and the application of the CBAM-empowered global
state representation method helps the digital twin of
each SCeNB node effectively observe their environment.
The results showed that the proposed method has a
lower service delay compared with other baseline task
offloading methods. Moreover, some other advantages
and the relationship between the number of SCeNB
nodes and improvement of delays are discussed in
accordance with the simulation result. Additional
optimization targets, such as the system energy
consumption and loading balancing, will be considered
on the basis of the proposed AUC–AC framework for
future work.

Acknowledgment

This research was supported by the Natural Science
Foundation of Jiangsu Province of China (No.
BK20211284), the Financial and Science Technology
Plan Project of Xinjiang Production and Construction
Corps (No. 2020DB005), the National Natural Science
Foundation of China (No. 61872219), and NUIST
Students’ Platform for Innovation and Entrepreneurship
Training Program (No. 202110300569).

References

[1] M. Patel, D. Sabella, N. Sprecher, and V. Young,
Contributor, Huawei, Vice Chair ETSI MEC ISG, Chair
MEC IEGWorking Group, p. 16, 2015.

[2] H. M. Song, H. R. Kim, and H. K. Kim, Intrusion
detection system based on the analysis of time intervals of
CAN messages for in-vehicle network, in Proc. 2016 Int.
Conf. on Information Networking (ICOIN), Kota Kinabalu,
Malaysia, 2016, pp. 63–68.

[3] W. Y. Zhang, Z. J. Zhang, and H. C. Chao, Cooperative
fog computing for dealing with big data in the internet
of vehicles: Architecture and hierarchical resource
management, IEEE Commun. Mag., vol. 55, no. 12, pp.
60–67, 2017.

450 Tsinghua Science and Technology, June 2023, 28(3): 433–451

[4] X. L. He, Z. Y. Ren, C. H. Shi, and J. Fang, A novel
load balancing strategy of software-defined cloud/fog
networking in the Internet of Vehicles, China Commun.,
vol. 13, no. 2, pp. 140–149, 2016.

[5] J. K. Ren, G. D. Yu, Y. H. He, and G. Y. Li, Collaborative
cloud and edge computing for latency minimization, IEEE
Trans. Veh. Technol., vol. 68, no. 5, pp. 5031–5044, 2019.

[6] W. B. Fan, L. Yao, J. T. Han, F. Wu, and Y. A. Liu,
Game-based multitype task offloading among mobile-
edge-computing-enabled base stations, IEEE Internet
Things J., vol. 8, no. 24, pp. 17691–17704, 2021.

[7] W. Sun, H. B. Zhang, R. Wang, and Y. Zhang, Reducing
offloading latency for digital twin edge networks in 6G,
IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12240–
12251, 2020.

[8] Y. L. Lu, X. H. Huang, K. Zhang, S. Maharjan, and Y.
Zhang, Low-latency federated learning and blockchain for
edge association in digital twin empowered 6G networks,
IEEE Trans. Industr. Inform., vol. 17, no. 7, pp. 5098–
5107, 2021.

[9] C. Gehrmann and M. Gunnarsson, A digital twin
based industrial automation and control system security
architecture, IEEE Trans. Industr. Inform., vol. 16, no. 1,
pp. 669–680, 2020.

[10] K. R. Alasmari, R. C. Green II, and M. Alam, Mobile edge
offloading using Markov decision processes, in Proc. 2nd

Int. Conf. on Edge Computing - EDGE 2018, Seattle, WA,
USA, 2018, pp. 80–90.

[11] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A.
A. Bharath, Deep reinforcement learning: A brief survey,
IEEE Signal Process. Mag., vol. 34, no. 6, pp. 26–38,
2017.

[12] X. L. Xu, B. W. Shen, S. Ding, G. Srivastava, M. Bilal,
M. R. Khosravi, V. G. Menon, M. A. Jan, and M.
L. Wang, Service offloading with deep Q-network for
digital twinning-empowered internet of vehicles in edge
computing, IEEE Trans. Industr. Inform., vol. 18, no. 2,
pp. 1414–1423, 2022.

[13] R. Dong, C. Y. She, W. Hardjawana, Y. H. Li, and B.
Vucetic, Deep learning for hybrid 5G services in mobile
edge computing systems: Learn from a digital twin, IEEE
Trans. Wirel. Commun., vol. 18, no. 10, pp. 4692–4707,
2019.

[14] Z. L. Cao, P. Zhou, R. X. Li, S. Q. Huang, and D. P.
Wu, Multiagent deep reinforcement learning for joint
multichannel access and task offloading of mobile-edge
computing in industry 4.0, IEEE Internet Things J., vol. 7,
no. 7, pp. 6201–6213, 2020.

[15] H. F. Lu, C. H. Gu, F. Luo, W. C. Ding, S. Zheng, and Y. F.
Shen, Optimization of task offloading strategy for mobile
edge computing based on multi-agent deep reinforcement
learning, IEEE Access, vol. 8, pp. 202573–202584, 2020.

[16] S. Gronauer and K. Diepold, Multi-agent deep
reinforcement learning: A survey, Artif. Intell. Rev., vol.
55, no. 2, pp. 895–943, 2022.

[17] K. Zhang, J. Y. Cao, and Y. Zhang, Adaptive digital twin
and multiagent deep reinforcement learning for vehicular
edge computing and networks, IEEE Trans. Ind. Inform.,
vol. 18, no. 2, pp. 1405–1413, 2022.

[18] T. Liu, L. Tang, W. L. Wang, Q. B. Chen, and X. P.
Zeng, Digital-twin-assisted task offloading based on edge
collaboration in the digital twin edge network, IEEE
Internet Things J., vol. 9, no. 2, pp. 1427–1444, 2022.

[19] X. Y. Huang, L. J. He, and W. Y. Zhang, Vehicle speed
aware computing task offloading and resource allocation
based on multi-agent reinforcement learning in a vehicular
edge computing network, in Proc. 2020 IEEE Int. Conf.
on Edge Computing (EDGE), Beijing, China, 2020, pp.
1–8.

[20] X. L. Xu, Z. J. Fang, L. Y. Qi, W. C. Dou, Q. He, and Y.
C. Duan, A deep reinforcement learning-based distributed
service off loading method for edge computing empowered
internet of vehicles, (in Chinese), Chin. J . Comput., vol.
44, no. 12, pp. 2382–2405, 2021.

[21] X. Q. Zhang, H. J. Cheng, Z. Y. Yu, and N. Xiong,
Design and analysis of an efficient multi-resource
allocation system for cooperative computing in internet of
things, IEEE Internet Things J., doi: 10.1109/JIOT.2021.
3094507.

[22] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P.
Lillicrap, D. Silver, and K. Kavukcuoglu, Asynchronous
methods for deep reinforcement learning, in Proc. 33rd

Int. Conf. on Machine Learning, New York City, NY, USA,
2016, pp. 1928–1937.

[23] Z. Q. Zhu, S. Wan, P. Y. Fan, and K. B. Letaief, Federated
multiagent actor-critic learning for age sensitive mobile-
edge computing, IEEE Internet Things J., vol. 9, no. 2, pp.
1053–1067, 2022.

[24] S. Munir, S. F. Abedin, D. H. Kim, N. H. Tran, Z. Han,
and C. S. Hong, A multi-agent system toward the green
edge computing with microgrid, in Proc. 2019 IEEE
Global Communications Conf. (GLOBECOM), Waikoloa,
HI, USA, 2019, pp. 1–7.

[25] S. Munir, S. F. Abedin, N. H. Tran, Z. Han, E. N.
Huh, and C. S. Hong, Risk-aware energy scheduling
for edge computing with microgrid: A multi-agent deep
reinforcement learning approach, IEEE Trans. Netw. Serv.
Manag., vol. 18, no. 3, pp. 3476–3497, 2021.

[26] T. L. Mai, H. P. Yao, Z. H. Xiong, S. Guo, and D. T. Niyato,
Multi-agent actor-critic reinforcement learning based in-
network load balance, in Proc. GLOBECOM 2020 – 2020
IEEE Global Communications Conf., Taipei, China, 2020,
pp. 1–6.

[27] H. Tian, X. L. Xu, T. Y. Lin, Y. Cheng, C. Qian, L. Ren,
and M. Bilal, DIMA: Distributed cooperative microservice
caching for internet of things in edge computing by
deep reinforcement learning, World Wide Web, doi:
10.1007/s11280-021-00939-7.

[28] Q. H. Huang, X. L. Xu, and J. H. Chen, Learning-aided
fine grained offloading for real-time applications in edge-
cloud computing, Wirel. Netw., doi: 10.1007/s11276-021-
02750-8.

[29] R. C. Xie, X. F. Lian, Q. M. Jia, T. Huang, and Y. J.
Liu, Survey on computation offloading in mobile edge
computing, (in Chinese), J . Commun., vol. 39, no. 11, pp.
138–155, 2018.

[30] I. P. Chochliouros, I. Giannoulakis, T. Kourtis, M.

Linjie Gu et al.: Collaborative Offloading Method for Digital Twin Empowered Cloud Computing on Internet of Vehicles 451

Belesioti, E. Sfakianakis, A. S. Spiliopoulou, N.
Bompetsis, E. Kafetzakis, L. Goratti, and A. Dardamanis,
A model for an innovative 5G-oriented architecture,
based on small cells coordination for multi-tenancy and
edge services, in Proc. 12th IFIP WG 12.5 Int. Conf.
and Workshops Artificial Intelligence Applications and
Innovations, Thessaloniki, Greece, 2016, pp. 666–675.

[31] I. Giannoulakis, E. Kafetzakis, I. Trajkovska, P. S.
Khodashenas, I. Chochliouros, C. Costa, I. Neokosmidis,
and P. Bliznakov, The emergence of operator-neutral small
cells as a strong case for cloud computing at the mobile
edge, Trans. Emerg. Telecommun. Technol., vol. 27, no. 9,
pp. 1152–1159, 2016.

[32] M. Morelli, C. C. J. Kuo, and M. O. Pun, Synchronization
techniques for orthogonal frequency division multiple
access (OFDMA): A tutorial review, Proc. IEEE, vol. 95,
no. 7, pp. 1394–1427, 2007.

[33] Y. L. Lu, S. Maharjan, and Y. Zhang, Adaptive edge
association for wireless digital twin networks in 6G, IEEE
Internet Things J., vol. 8, no. 22, pp. 16219–16230, 2021.

[34] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, CBAM:
Convolutional block attention module, in Proc. 15th

European Conf. Computer Vision (ECCV), Munich,
Germany, 2018, pp. 3–19.

[35] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction, IEEE Trans. Neural Netw., vol. 16, no. 1, pp.
285–286, 2005.

[36] N. Zhang, N. Cheng, A. T. Gamage, K. Zhang, J. W.
Mark, and X. M. Shen, Cloud assisted HetNets toward
5G wireless networks, IEEE Commun. Mag., vol. 53, no.
6, pp. 59–65, 2015.

[37] J. Zhang and K. B. Letaief, Mobile edge intelligence and
computing for the internet of vehicles, Proc. IEEE, vol.
108, no. 2, pp. 246–261, 2020.

Linjie Gu is currently pursing the BS
degree, Nanjing University of Information
Science and Technology. His research
interests include edge computing and deep
reinforcement learning.

Mengmeng Cui obtained the BS degree
at Nanjing Normal University, China, in
2002. She received the MS and PhD degrees
from Nanjing University of Information
Science and Technology, China, in 2007
and 2019, respectively. Now, she is an
associate professor in Nanjing University of
Information Science and technology, China.

Her main research interests include high performance computing,
optimization algorithms, and meteorological data mining.

Linkun Xu is currently pursing the BS
degree, Nanjing University of Information
Science and Technology. His research
interests include deep learning and IoT.

Xiaolong Xu received the PhD degree from
Nanjing University, China, in 2016. He
was a research scholar at Michigan State
University, USA, from April 2017 to May
2018. He is currently a professor with
School of Computer and Software, Nanjing
University of Information Science and
Technology. He has published more than 80

peer-review articles in international journals and conferences. He
received the Best Paper Award from the IEEE CBD 2016, IEEE
CPCSCom 2020, and SPDE 2020. His research interests include
edge computing, IoT, cloud computing, and big data.

