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An ANN-Based Short-Term Temperature Forecast Model
for Mass Concrete Cooling Control

Ming Li, Peng Lin�, Daoxiang Chen, Zichang Li, Ke Liu, and Yaosheng Tan

Abstract: Concrete temperature control during dam construction (e.g., concrete placement and curing) is important

for cracking prevention. In this study, a short-term temperature forecast model for mass concrete cooling control is

developed using artificial neural networks (ANN). The development workflow for the forecast model consists of data

integration, data preprocessing, model construction, and model application. More than 80 000 monitoring samples

are collected by the developed intelligent cooling control system in the Baihetan Arch Dam, which is the largest

hydropower project in the world under construction. Machine learning algorithms, including ANN, support vector

machines, long short-term memory networks, and decision tree structures, are compared in temperature prediction,

and the ANN is determined to be the best for the forecast model. Furthermore, an ANN framework with two hidden

layers is determined to forecast concrete temperature at intervals of one day. The root mean square error of the

forecast precision is 0.15 ıC on average. The application on concrete blocks verifies that the developed ANN-based

forecast model can be used for intelligent cooling control during mass concrete construction.

Key words: artificial neural networks (ANN); predictive modeling; temperature forecast; mass concrete; cooling

control

1 Introduction

Since the 1990s, several 300-meter-level high arch dams,
such as Xiaowan, JinPing I, Xiluodu, Wudongde, and
Baihetan dams have been or are being constructed
in China[1–3]. New features associated with these
mass structures, such as large block sizes, limited
placement space, and tight construction schedules,
increase the difficulty of concrete temperature control
during placement and curing stages. This increases the
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risk of thermal cracking on the dams, resulting in safety
concerns. With the aim to prevent thermal cracking in
mass concrete, control measures have been implemented
in dam design and construction[4, 5], including concrete
design optimization, block slitting design, concrete
skip placing, fresh concrete insulation, pipe cooling,
and hydration moisture retention. For pipe cooling,
operation and cooling parameters are adjusted manually
based on past experiences but now can be remotely and
automatically operated via recent proportional-integral-
derivative control algorithms[6]. However, temperature
control is still lagging. If concrete temperatures can be
forecast precisely and timely, cooling control strategies
can be developed and implemented simultaneously,
which leads to further improvements.

Numerical simulation, statistical analysis, and data
mining are typical methods adopted for concrete
temperature forecasts. In numerical simulations,
thermodynamic equations require complex calculations
and complex analytical procedures. Statistical analysis
provides best-fit results but lacks precision. The coupling
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of numerical simulation and statistical analysis are
costly and time-consuming. With the recent boom of
artificial intelligence applied in dam construction[7–9],
multiple-source data related to cooling control practices
have been accumulated. Mining of these massive data
helps develop quick and accurate concrete temperature
forecasts. Machine learning algorithms (e.g., support
vector machines (SVM), artificial neural networks
(ANN), long short-term memory networks (LSTM), and
decision tree structures (DT)), and Gray System theory
have been applied in forecasting dam construction
parameters for deformation analysis[10, 11], concrete
performance[12], and leakage flow[13]. However, few
studies focus on mass concrete temperature forecasting
due to poor cooling monitoring and temperature control
technology. Available studies[14–16] simplify the problem
and forecast only characteristic concrete temperature
parameters, such as the maximum temperature during
the early cement hydration age. Recently, rapid
intelligent construction of hydropower projects in China
has collected multi-source concrete cooling data, which
allows for the development of concrete temperature
forecasts[9, 16–19].

In the present study, an ANN-based model with
two hidden layers is developed for real-time, accurate
concrete temperature forecast for mass concrete cooling
control. This framework for real-time prediction of
concrete temperature at intervals of one day is proposed
after reviewing monitoring data collected in the Baihetan
Dam. A total of fourteen parameters related to mass
concrete design, construction, and cooling are used.
Time series data—such as air temperature, cooling water
flow, inlet flow temperature, and concrete temperature—
are resampled at intervals of one day. The ANN-based
forecast model is evaluated with accuracy measures of
root mean squared error (RMSE) using a dataset of
87 876 samples. To improve the prediction accuracy, we
optimized the quantities of hidden layers, neurons, and
algorithms of the ANN-based model. Finally, the trained
ANN-based forecast model is compared with models
based on other algorithms (e.g., SVM, LSTM, and DT).
The remainder of this paper is organized as follows:
Section 2 introduces work related to the prediction
of mass concrete temperature. Section 3 explains the
workflow of the ANN-based model and implementation.
Section 4 presents an experiment on a real dam site using
data from intelligent cooling control system (ICCS) and
compares the error distribution of ANN with that of other
machine learning algorithms. Conclusions are presented
in Section 5.

2 Literature Review

2.1 Temperature control for mass concrete

Mass concrete is widely used in hydraulics,
transportation, construction, and other engineering
industries. Thermal cracking in concrete occurs in the
early hydration stage due to uneven distribution of
stresses resulting from hydration heat and boundary
constraints, endangering structural durability and even
stability. Thermal cracks may initiate in the outlet,
gallery, heel[20], surface, and interior of dam concrete
blocks[1, 21], tunnel spillway[22], and overtopping
of placed blocks from seasonal low-temperature
flooding[23]. Temperature control of mass concrete
in the construction period (e.g., concrete placement
and curing) has received extensive attention in related
academics and industries. The temperature distribution
in concrete can be affected by concrete mix design
proportions, cement hydration heat, casting block
sizes[24], casting, cooling measures[25, 26], ambient
temperature[27], wind speed[28], surface insulation, and
other factors.

Pipe cooling is one of the most widely used measures
for exchanging internal hydration heat, controlling
temperature rise (or drop), and avoiding cracking during
mass concrete construction. Cooling flow rates and water
temperatures affect how concrete temperature changes.
In 1931, the United States Bureau of Reclamation
carried out the first experiment of concrete cooling at the
Owyhee Arch Dam in Oregon. Two years later, the water
cooling method was fully applied in the construction
of the Hoover Dam, achieving satisfactory temperature
control. Since then, water cooling has been widely used
in the construction of concrete dams and other mass
structures[22].

In the past ten years, concrete cooling operations
have shifted from manual to digital and further
to intelligent control. Lin et al.[29] developed a
comprehensive Intelligent Cooling Control System
Version 1.0 (ICCS 1.0) to monitor the cooling operation
in the construction of the Xiluodu Dam in China.
Temperature field reconstruction methods and intelligent
control algorithms were later integrated into the
ICCS 2.0[30, 31], which was successfully applied in
the Wudongde Dam and the Baihetan Dam in China.
The ICCS 2.0 can conduct real-time monitoring and
control of various parameters, including inner concrete
temperature, ambient temperature, cooling flow rate,
and inlet water temperature. In the present study, an
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ANN-based short-term temperature forecast model for
mass concrete cooling control was developed using
the monitoring data collected by the ICCS 2.0 in the
Baihetan Dam. The ICCS 2.0 continuously collected
time-based parameter series of the temperature, cooling
flow, inlet temperature, and air temperature of each
concrete block at a frequency of 2.5 min (150 s). By
combining the cooling dataset with the design- and
construction-related parameters of each concrete block,
the dataset was obtained for developing the short-term
temperature forecast model.

2.2 Prediction methods

Current methods for concrete temperature prediction can
be divided into three categories: Numerical simulation,
statistical analysis, and data mining. Table 1 summarizes
the features of these methods.

In numerical simulations, concrete temperature
prediction is based on the Fourier’s Law of thermal
conduction and associated heat conduction differential
equation system with internal heat sources. By modeling
the layered concrete placement and cement hydration
heat, the time history of the concrete temperature field
was recreated. As commercial software, such as ANSYS,
MIDAS, and SapTis, becomes available, temperature
field modeling continues to be improved. Numerical
simulation is widely applied in designing various mass
concrete structures, such as concrete dams[32] and bridge
anchor blocks[33], owing to its high accuracy. In recent
years, more factors are incorporated into the numerical
simulation, such as concrete microstructure[32], climate
data[33], concrete maturity[34], concrete cooling[35], and
crack propagation[36]. These additions have further
improved the accuracy of temperature field prediction.
However, numerical simulation also has disadvantages,
such as complex model setups, huge calculation efforts,
and long computation running times. These issues lead to
difficulties in meeting the needs for real-time prediction
for concrete temperature control.

Statistical analyses—such as data regression[37–40] and
autoregressive integrated moving average (ARIMA)[41]—

of historical monitoring data can be used to develop best-
fit models (i.e., equations or formulas) for predicting
concrete temperature changes in similar scenarios. This
simple and rapid method is widely used in dams[37],
bridges[38, 40], and other concrete structures. For periodic
temperature prediction, the ARIMA can also be
used to develop prediction models[41]. Nevertheless,
for problems with big data, numerous influencing
factors, or complex mapping relationships, statistics-
based predictive modeling can only be used to obtain
proximation or inaccurate results due to problem
simplifications.

Data mining was developed in the late 1980s. Also
known as knowledge extraction, knowledge discovery
in databases, data fishing, data archaeology, information
harvesting, or business intelligence, data mining is
an interdisciplinary subject that integrates database
technology, artificial intelligence, machine learning,
statistics, and data visualization. Analysis of large
amounts of data can reveal meaningful relationships,
trends, or patterns between different parameters. One
of the core functions of data mining technology
is prediction, including regression and classification.
Concrete temperature prediction is a typical regression
task. Prediction models based on machine learning
algorithms can be divided into three types. (1) Prediction
models based on a single algorithm. Machine learning
algorithms such as logistic regression (LR), support
vector regression (SVR), ANN, DT, convolutional
neural network (CNN), gradient boosting machine, and
LSTM[42] are widely applied predictions of temperature,
prices, and other factors. For example, CNN-based
models were proposed to forecast long-term strains in
concrete structures[12]. Comparing dam deformation
prediction, Li[43] found that the effect of ANN is better
than multiple linear regression for complex and highly-
nonlinear problems. (2) Prediction models based on
the composition of several machine learning algorithm
layers. CNN performs well on spatial data, and LSTM is
good at dealing with time-series data. To take advantage
of the feasures of different algorithms, researchers

Table 1 Comparison of concrete temperature prediction methods.
Method Fundamental theory Accuracy Complexity Reliability Efficiency

Numerical
simulation

Fourier’s Law High Complex modeling High Time-consuming

Statistical
analysis

Multiple regression,
ARIMA, . . .

Low Easy to implement Low Timely

Data mining
Machine learning

algorithms
High, affected
by data quality

Relatively complex in
data preprocessing

Medium,
nondeterministic

Timely when
predicting
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have widely explored the approach of sequential and
parallel layers. CNN-LSTM models are proposed for
forecasting tasks, such as for gold price time series[44]

and horizontal irradiance[45]. Models containing three
parallel LSTM layers[46] are applied in taxi demand
prediction and showed better accuracy. (3) Ensemble
learning prediction models have gained comprehensive
attention in recent years, combining several prediction
models with preferences to generate predictions with
better overall performance. To construct a hybrid
ensemble model with higher accuracy in concrete
compressive strength prediction, Asteris et al.[47]

combined four conventional machine learning models,
namely, ANN, Multivariate Adaptive Regression Splines,
Gaussian Process Regression, and Minimax Probability
Machine Regression. However, few studies focused
on real-time temperature forecasting during concrete
construction.

Existing methods for concrete temperature prediction
can be divided into three categories. (1) Prediction of
characteristic temperature values during construction.
Cai[48] developed a concrete maximum temperature
prediction method based on SVM and ANN algorithms
and trained the model with monitoring data collected
with 461 thermometers. (2) Prediction of Semi-
quantitative concrete temperature. Xie et al.[15] used DT
algorithms to predict the change of concrete maximum
temperature (e.g., at the center or mid-depth). Song
et al.[14] proposed a concrete temperature interval
prediction method based on a hybrid-kernel relevance
vector machine (HK-RVM) for grouting. (3) Prediction
of temperature history. Li[43] established a history
prediction model for concrete temperature evolution
based on SVM. The input was an 18-dimensional vector,
and the output was the concrete temperature at a given
time.

As discussed above, current research mainly focuses
on the temperature at specific time points or its
long-term evolution. Meanwhile, accurate short-term
temperature prediction methods to supervise the real-
time adjustment operation of concrete temperature
control during concrete construction remains lacking.

3 ANN-Based Short-Term Temperature
Forecast Model

3.1 Workflow

In this study, ANN is used to develop the proposed short-
term forecast model. ANN algorithm is good for fitting

problems of high nonlinearity, complex relationships,
and/or multiple hidden layers and neurons. Before
obtaining a satisfying trained forecast model, data
integration, data preprocessing, and model construction
must be executed (Fig. 1).

(1) Data integration. Short-term concrete temperature
changes are affected by different factors, both non-time-
series (e.g., material properties, dimension tolerances,
and concrete placing plans) and time-series (e.g., water
flow, ambient temperature, and inlet flow temperature).
The data are typically collected from different sources
and in varying formats. In this step, raw data are
reviewed by selecting critical parameters and deleting
duplicates and are then resampled at the same time
interval (e.g., one day) and into the same format.

(2) Data preprocessing. Noises such as errors,
duplicates, and missing values are filtered out through
data preprocessing. The other two sub-steps, namely,
normalization and principal component analysis (PCA),
further improve the data quality. Samples are formed
as an n C 1 dimensional vector Œx1; x2; : : : ; xn; y� for
concrete temperature prediction. The first n values
are used as the model input. The last value y, which
represents the average concrete temperature on the next
day, is used for model training and testing.

Fig. 1 Workflow of temperature prediction module.
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(3) Model construction. The ANN framework is
developed by iterative adjustment of model parameters
until the loss function values reach the predefined
tolerances. Quantities of ANN layers and neurons,
optimization algorithms, and active functions are
determined via sensitivity analysis. Samples are then
divided into a training set and a test set. The forecast
model is then trained and iteratively optimized until the
loss function values are within the predefined tolerances,
which are evaluated with RMSE.

With the trained forecast model, the concrete
temperature at Day tC1 can be predicted using historical
concrete cooling data from Day 1 to Day t. The predicted
concrete temperature at Day t C 1 can be compared with
the relevant control requirements, and then feedback can
be used to adjust the operation plan parameters at Day t:
This process continues until the predicted temperature
history of the concrete during placement and curing is
within control requirements.

3.2 Data integration

In this study, concrete cooling-related data are collected
through the ICCS. Input selection and forecast interval
need to be determined before data collection. In
developing this prediction model, 15 parameters related
to concrete mix design, construction procedures, and
cooling control operation are selected. For example,
the parameter of concrete age (tage/ is selected to
characterize the effect of hydration stage on concrete
temperature. Features related to concrete block design
are included to reflect different temperature evolution
laws between varying concrete blocks. These features

are block areas at the base (Sblock/, block thickness
(hblock/, placing time (tpour/, placing interval (Ipour/,
placing concrete volume (Vconc pour/, interval period
(tinter/, design concrete volume (Vconc des/, concrete
strength (�conc/, concrete gradation (ngrad /, and block
elevation (Hbot tom/. Time series parameters of air
temperature (Tair/, average concrete temperature of
a block (Tconc/, inlet temperature (Twater in/, flow
(Qwater/, and other time series factors are also selected
as input parameters.

A small prediction interval may not accurately reflect
the impact of environmental changes, but a large
prediction interval may result in ineffective temperature
control. Considering hysteresis in the change of
concrete temperature field, the forecast interval of one
day is selected for the follow-up experiments in this
study.

The raw monitoring data are distributed in Databases
A through G, which require integration to form a
standardized sample (Fig. 2). For non-time series data,
the block number is used as the primary key (PK) in
Databases A to D for connection. Time series data
in Databases E and F are resampled by average at the
interval of one day. Then time is used as PK, and block
number is used as the foreign key for data integration to
form a standardized dataset.

3.3 Data preprocessing

Data preprocessing aims to remove noises in the raw
data and to meet the input requirements of completeness,
consistency, and accuracy. The main tasks include data
cleaning, normalization, and PCA.

Fig. 2 Data integration from multiple sources.
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(1) Data cleaning for temperature and flow series
Collected raw data are often mixed with various

noises due to magnetic interference, power outages, long
signal cables, sensor failure, and extreme construction
environments. Data cleaning is carried out to deal with
missing information or errors. Generally, time-series
data, including Tair , Tconc , Twater in, and Qwater ,
include more noise for large amounts and complex
formats. Take data cleaning of Tconc as an example.
Figure 3 shows the Tconc series of a block. This
temperature data series has four typical types of noise as
follows:

Noise 1: data collected before concrete placing. The
sensor readings collect ambient temperature and not
concrete temperature. In this study, Noise 1 is identified
by checking the concrete temperature increases of the
previous two days, �t0. Considering exothermic heat in
early cement hydration stages, starting points may need
adjustments when �t0 < 2 ıC.

Noise 2: missing temperature data. Missing values
can be generated with linear interpretation.

Noise 3: excessively volatile temperature. This type
of noise is within typical ranges and can be identified
by abnormal fluctuations. Temperature change rates
in adjacent days are adopted for screening Noise 3.
Data are considered abnormal if the temperature change
trends of consecutive two days are opposite (positive
vs. negative) or if absolute values exceed the predefined
limits. Excessive small range boundaries cause loss of
correct data, though a smaller range boundary results in
greater noise reduction. After reviewing the reduction
effects of different ranges, the threshold is set at 0.3 ıC
for screening error values.

Noise 4: extreme temperature. Abnormal concrete
temperature values (e.g., greater than 50 ıC or less than
0 ıC) are removed and replaced as stated in Noise 2.
By comparing concrete temperature series data between
different blocks before and after cleaning, most of the

Fig. 3 Example of temperature data cleaning.

noises are screened out successfully.
(2) Normalization
This process reduces the influence of the magnitude

difference between varying parameters, improving
convergence speed and model accuracy. Tair is typically
less than 40 ıC, while Vconc pour varies between 300
to 10 000 m3. Normalization aims to map reading
data to the same order of magnitude. Commonly-used
normalization methods include min-max, z-score, and
Sigmoid function. In this study, the min-max method is
used to normalize the reading data:

x0 D
x �MIN

MAX �MIN
(1)

All input parameters are mapped into the range from
zero to one (0, 1) after the min-max normalization.

(3) Principal component analysis
To deal with redundancy in model input parameters,

we applied PCA to the normalized data. The
development of the prediction model is simplified by
removing redundant and irrelevant parameters in the
input. The PCA transforms each column of data linearly
and obtains multiple principal components sorted by
the magnitudes of explained variances. The first n
features are the primary contributors to the variances
and are selected for model training, and the remaining
dimensions are negligible and discarded. This process
balances the model complexity and effective features.

3.4 Model construction

(1) Model framework
The proposed ANN-based forecast model is developed

with two hidden layers. Figure 4 shows the framework.
Design, construction, and cooling datasets are shaped
as n-dimensional input vectors after data preprocessing.
ANN then completes the information transfer from an
n-dimensional input vector to a 1-dimensional output.
The model contains a set of n-dimensional input vectors,

Fig. 4 Schematic framework of the ANN-based short-term
temperature forecast model.
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X D .x1; x2; : : : ; xn/
T; Hidden Layer 1 of p neurons,

a1; a2; : : : ; ap; activation function, f1; deviation of each
neuron, j̨ ; Hidden Layer 2 of q neurons, b1; b2; : : : ; bq;
activation function, f2; deviation of each neuron, ǰ ;
output layer of 1 neuron with no activation function, y;
and the neuron deviation,  . In addition, the connection
weights between Hidden Layer 1 and each node of the
input layer are Uij ; between Hidden Layers 1 and 2 is
Vjk; and between Hidden Layer 2 and each node of the
output layer is Wk . Then, the output of Hidden Layer 1
neuron, aj , is

aj D f1

nX
iD1

.xiUij C j̨ /; j D 1; 2; : : : ; p (2)

Similarly, the output of the Hidden Layer 2 neuron,
bk , is

bk D f2

pX
jD1

.ajWk C ˇk/; k D 1; 2; : : : ; q (3)

The model output value is

y D

qX
kD1

bkWk C  (4)

The mapping of an n-dimensional input vector to a 1-
dimensional output vector is completed via Eqs. (2)–(4),
which is the forward propagation of neural information.
The ANN model is trained via backward propagation,
processing training samples for multiple iterations, and
comparing the predicted and actual values of each
sample. The loss function value in the current state
of the neural network is assigned to each layer, and
the connection weight of each neuron is adjusted
accordingly. In general, when the model structure is
appropriate, multiple training iterations can obtain a
prediction model that meets the accuracy requirements.

(2) Regularization
To solve the over-fitting problem of the neural network

model, we used the L1 regularization method. The L1
regularization norm is added to the objective functions to

ensure that the values of the neural network parameters
to be learned do not exceed the reasonable ranges. The
L1 regularization is

L0 .�/ D L .�/C �

nX
i

j�i j (5)

where � represents the network parameters to be
learned, L0 represents the loss function after introducing
the regularization term, L represents the original
loss function, and � represents the L1 regularization
coefficient.

(3) Activation function
The activation function enhances the nonlinear

relationship between the input and output. For the hidden
layers, rectified Linear Unit neurons (ReLU) are adopted.
ReLU is the most widely used activation function in
machine learning, expressed as

ReLU D max .0; x/ (6)
(4) Evaluation
Better neural network predictive modeling can be

achieved by evaluating the obtained prediction model,
adjusting the training parameters, and repeating this
process until satisfactory results are obtained. In this
study, the RMSE is used as the loss function for
evaluation. By comparing the loss function values on the
entire sample set, the most suitable network structure is
constructed accordingly.

4 Case Study

The Baihetan Hydropower Station is being constructed
and is to be completed in 2022. It is the world’s second-
largest hydropower station in electricity generation
capacity, located on the mainstream of the Jinsha River
in China. The Baihetan Dam is a concrete double-
curved arch type, with a maximum height of 289 m and
low-heat concrete usage of 8.03�106 m3. Intelligent
construction technologies such as the ICCS 2.0 are
applied (Fig. 5). Thousands of sensors, including 6782

(a) Top view (b) Intelligent technologies used during dam construction

Fig. 5 Intelligent construction technologies of Baihetan high arch dam.
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digital thermometers, are embedded in the dam to
comprehensively monitor the construction.

4.1 Data for model training
Raw datasets used in data mining are collected by the
ICCS 2.0. The types of data used after screening are
summarized in Table 2.

Distribution characteristics of the dataset after
data cleaning are explored. For temperature
control of concrete blocks, the data include Tair ,
Twater in, Qwater , tage, and Tconc , represented
by .x1; x2; : : : ; x4; x5/. Time-invariant data that
characterize the differences between blocks include
tinter , �conc , ngrad , Sblock , hblock , Vconc place,
tplace, Iplace, Icable, and Hbot tom, represented by
.x6; x7; : : : ; x15/. Single block data are regenerated
as the average values of each block per day, yielding
non-empty data of 92 184 samples. Data on multiple
blocks are counted per block, yielding 349 samples with
non-empty data.

Figure 6 shows the boxplot distributions of model
input parameters. The median is represented by green
lines, the upper and lower quartiles by blue lines, and
the upper and lower bounds by gray lines. Boxplots of

Table 2 Cooling-related parameters.
Source Parameter considered

Design
Block number; Sblock ; hblock ; Vconc des ;

�conc ; ngrad

Construction Vconc place; tplace; Iplace; tinter ; Icable

Cooling Tair ; Tconc ; Twater in;Qwater ; tage

the sample data show that, in general, most parameters
fall in the range 0–100. For example, Tair is 3.9–
32.0 ıC and Tconc is 7.5–28.0 ıC. Several parameters
have small ranges, such as ngrad at 2.6–3.8, while others
have greater variations, such as Vconc place from 378.0–
8848.5 m3.

4.2 Sample setting cutoff pair

The data require normalization to deal with wide
magnitudes of parameters before its subsequent use as
model input. Based on the selected 15 input parameters
in Section 4.1, training samples are extracted from
the integrated dataset. A total of 87 876 data samples
from 346 concrete blocks are obtained after removing
null values. The samples from the first 300 blocks
are selected as the training set, while the remaining
samples from 46 blocks are used for testing. Furthermore,
10% of the training set is selected for validation. The
min-max normalization method is used to normalize
the sample data. Table 3 shows Samples 1–5 after
normalization.

Figure 7 shows the proportion of the explained
variance of the 15 principal components after PCA
transformation. The first 13 principal components
account for 99.5% of the explained variance, while
the 14th and 15th show relatively small explained
variances. Further analysis of the principal component
matrix shows that Icable nearly only accounts for
the 14th principal component. As a result, Icable is
considered as an irrelevant parameter and dropped from

Fig. 6 Boxplot distribution of model input paramenters. The median is represented by green lines, the upper and lower
quartiles by blue lines, and the upper and lower bounds by gray lines.
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Table 3 Typical normalized samples of model input parameters.
Tair

(ıC)
Twater in

(ıC)
Qwater

(L�m–1/

tage

(d)
Tconc

( ıC)
tinter

(d)
�conc

(MPa)
ngrad

Sblock

(m3/

hblock

(m)
Vconc place

(m3/

tplace

(h)
Iplace

(m3�h–1/

Icable

(m3�h–1/

Hbottom

(m)
0.466 0.317 0.279 0.000 0.270 0.265 0.541 0.844 0.586 0.244 0.510 0.505 0.422 0.109 0.663
0.477 0.311 0.189 0.002 0.518 0.265 0.541 0.844 0.586 0.244 0.510 0.505 0.422 0.109 0.663
0.498 0.332 0.266 0.003 0.710 0.265 0.541 0.844 0.586 0.244 0.510 0.505 0.422 0.109 0.663
0.484 0.327 0.268 0.005 0.777 0.265 0.541 0.844 0.586 0.244 0.510 0.505 0.422 0.109 0.663
0.502 0.330 0.259 0.007 0.807 0.265 0.541 0.844 0.586 0.244 0.510 0.505 0.422 0.109 0.663

Fig. 7 PCA and explained variance of 15 parameters.

the input vector.

4.3 Model construction

The framework of the ANN model is explored for its
activation function, quantities of hidden layers and
neurons, and optimization algorithm. Given its good
nonlinear function approximation, the ReLU function is
adopted as the activation function of the ANN model.
The RMSE in the test set is adopted as the index of
accuracy evaluation for the framework optimization
(Fig. 8). When the ANN framework has only one hidden
layer, the RMSE of different neurons in the first layer
is 0.35 ıC (Fig. 8a). When the framework is set with
two hidden layers, the RMSE of different neurons in
the first and second layers generally concentrates at
approximately 0.12 ıC and can be divided into four
regions (Fig. 8b). In Regions i, iii, and iv, the first
and second layers have few neurons, resulting in poor
learning ability. In Region ii, the neurons in the first
layer are greater than 25, and the neurons in the second
layer are greater than 10. Thus, the framework can
obtain satisfying accuracy. The model containing two
hidden layers with 28 and 15 neurons, respectively, is
selected as the final framework.

As for optimization of the ANN-based forecast
model training, six algorithms are introduced, including
Adadelta, Adagrad, Adam, Nadam, RMSprop, and
stochastic gradient descent (SGD) (Fig. 8c). Except for
the SGD, the RMSEs of the training, validation, and
test sets are similar, showing good generalization ability.
Adam is a first-order optimization algorithm that can

(a) With one hidden layer

(b) With two hidden layers

(c) Different optimization algorithms

Fig. 8 RMSE for concrete temperature forecast of ANN-based
model with different framework structures.

replace the traditional SGD. Adam can update the weight
of neural networks iteratively based on the training data
and is found as the optimal algorithm with a minimum
error of 0.14 ıC.

4.4 Forecast and discussion

Figure 9 shows the loss function of the ANN-based
forecast model as measured with RMSE and mean
absolute error (MAE). The loss function value reaches
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Fig. 9 Accuracy evaluation for concrete temperature
forecast in ANN-based model training.

numerical convergence after 20 training iterations. To
further improve the accuracy, we trained the final model
with 100 iterations. The RMSE of the training set is
0.16 ıC, and that for the validation set is 0.14 ıC. The
MAE of the training set is 0.08 ıC, and that for the
validation set is 0.06 ıC. The results indicate that the
ANN-based forecast model has high precision and does
not fall into over-fitting.

To compare the effect of other machine learning
algorithms on concrete temperature prediction, we also
developed short-term forecast models based on SVM,
LSTM, and DT. Figure 10 shows the prediction error
distributions of these models. All models show stability
on the training and test sets, although the ANN-based
forecast model has higher precision than SVM, LSTM,
and DT. For the ANN-based forecast model, 90% of
prediction errors are within �0:13 to 0:12 ıC, and 98%
of prediction errors are within �0:33 to 0.35 ıC.

The ANN-based forecast model is further evaluated
by grouping the original cooling data by block and used
in static one-step-ahead predictions. Figure 11 shows
the prediction values and errors of eight typical blocks.
Blocks a, b, c, and d are in the training set, whereas
Blocks e, f, g, and h are in the test set. In general, the
prediction error of the training set is significantly close

to that of the test set, supporting the performance of the
ANN-based short-term temperature forecast model.

Concrete age and cooling strategies are key
influencing factors of the prediction error. (1) Concrete
age. As for the cooling process, the prediction error
shows different distributions before and after the
maximum temperature, which is usually reached during
7–30 d after placement. During the temperature rise,
the prediction error can be beyond ˙1 ıC (Blocks g
and h), which is mainly less than ˙0.2 ıC during the
cooling period. This error is reasonable and acceptable,
considering the large temperature rises in the initial stage
of placing. (2) Cooling strategy. Two kinds of mass
concrete cooling strategies are used in the Baihetan Dam,
namely, phased cooling (Blocks a and e) and continuous
cooling (Blocks b and f). The prediction error of Blocks
b and f is significantly less than that of Blocks a and
e, indicating the advantages of the continuous cooling
strategy with the development and application of an
intelligent cooling control algorithm.

5 Conclusion

This study presents the development of an ANN-based
short-term temperature forecast model for mass concrete
cooling control. This model processes data on concrete
design, construction, and cooling and then forecasts
concrete temperatures at an interval of one day. The
results can provide managers with accurate and real-
time predictions on concrete temperature changes in a
complex dam construction site. The key contributions of
this study are as follows:

(1) The intelligent cooling control dataset is developed
using multi-sources construction data through ICCS
2.0 in hydropower station projects. The workflow to
develop the forecast model includes data integration,
data preprocessing, model construction, and model

(a) Training set (b) Test set

Fig. 10 Prediction error density distribution of data mining algorithm.
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(a) Training set

(b) Test set

Fig. 11 ANN-based model application on concrete blocks.

application.
(2) Temperature predictions of different machine

learning algorithms are compared. The ANN was

determined to be better than SVM, LSTM, and DT,
showing the best prediction error distribution.

(3) An ANN-based short-term temperature forecast
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model is developed and optimized with an RMSE
of 0.15 ıC on all 87 876 samples. The experimental
application on concrete blocks verifies that the developed
ANN-based forecast model can be used for intelligent
cooling control during similar concrete construction
projects.

The forecast model is implemented in the ICCS for
concrete cooling control at the Baihetan Dam. Post-
construction investigation indicates no thermal cracks in
the concrete blocks.
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