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A Case-Finding Clinical Decision Support System to Identify Subjects
with Chronic Obstructive Pulmonary Disease Based on

Public Health Data
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Abstract: Chronic obstructive pulmonary disease (COPD) is a serious chronic respiratory disease. Improving the

ability to identify patients with COPD in primary medical institutions is important to prevent and treat the disease.

With the continuous development of medical digitization, the application of big data informatization in the medical and

health fields has become possible. Recently, applying innovative technologies such as big data analysis, machine

learning, and artificial intelligence-assisted decision-making in the medical field has become an interdisciplinary

research hotspot. Based on the identification and diagnosis of COPD in the high-risk population, this study proposes

a convenient and effective clinical decision support system to help identify patients with COPD in primary health

institutions. The results of the preliminary experiments show that the proposed method is convenient and effective

compared with the existing methods.

Key words: artificial intelligence; machine learning; case finding; chronic obstructive pulmonary disease (COPD);

clinical decision support system (CDSS)

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a
serious chronic respiratory disease[1]. In relation to the
high prevalence, mortality, and disease burden of COPD,

�Xinshan Lin, Ting Yang, and Chen Wang are with the
Department of Pulmonary and Critical Care Medicine,
China-Japan Friendship Hospital, Beijing 100029, China,
and also with Chinese Academy of Medical Sciences and
Peking Union Medical College, Beijing 100005, China.
E-mail: linxinshan@126.com; dryangting@qq.com; cyh-
birm@263.net.
�Yi Lei is with the School of Software Engineering, the Faculty

of Information Technology, Beijing University of Technology,
Beijing 100124, China. E-mail: leiyi9345@163.com.
� Jun Chen and Zhihui Xing are with Intelligent Healthcare

Unit, Baidu Inc, Beijing 100093, China. E-mail: chenjun22@
baidu.com; christianahui@126.com.
�Qing Wang is with the Department of Automation, Tsinghua

University, Beijing 100084, China. E-mail: qing.wang@
tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2022-03-03; accepted: 2022-04-07

low awareness and underdiagnosis in the high-risk
population are disproportionate. COPD is insidious, and
the rate of missed diagnosis is high[2]. Failure to timely
diagnose COPD can lead to increased mortality and
acute aggravation and affect the patients’ health status
and quality of life. Additionally, repeated hospital visits
increase the medical costs and disease burden[3, 4]. The
early diagnosis of chronic diseases is critical at primary
medical institutions. Based on global initiative for
chronic obstructive lung disease (GOLD) and other large-
scale epidemiological studies, in 2010, the estimated
number of COPD cases was 384 million, with a global
prevalence of 11.7%. Globally, approximately 3 million
people die each year. As the habit of smoking increases
in developing countries and populations age in high-
income countries, the prevalence of COPD is expected
to rise over the next 40 years, with more than 5.4
million deaths likely to occur annually by 2060 because
of COPD and related diseases. Additionally, a study
showed that the prevalence rate of COPD Grade 2 and
above was approximately 10.1% : 11.8% in men and
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8.5% in women. According to the latest epidemiological
data collected from China in 2018, the prevalence of
COPD reached 8.6% in people aged older than 20 years
and 13.6% in those older than 40 years[5].

Diagnostic testing for COPD in the entire population
leads to overtesting and wastes medical resources, and
the benefits are controversial[6]. Many studies were
conducted to improve the case-finding capacity in
primary healthcare institutions for COPD. Active case
finding is a necessary screening method[7]. Studies
showed that active case discovery was valuable
for the diagnosis and intervention in populations
at a high COPD risk[8] and was practiced in
various countries, particularly at primary medical
institutions[9, 10]. A primary care study in the United
Kingdom included nonsmokers aged 40 to 79 years
who were screened through a general practitioner
consultation questionnaire or a mail questionnaire,
and the participants reporting related respiratory
symptoms were asked to undergo a spirometer test
after administering a bronchodilator. The active case
discovery approach resulted in a higher percentage of
cases diagnosed with COPD than the opportunistic case
discovery approach using conventional care (5% vs. 2%;
p < 0:0001/ and was more cost-effective (333 vs. 376
pounds per case)[11]. To effectively identify people
with COPD, researchers have developed various COPD
disease screening questionnaires. However, presently,
investigators manually perform such case discovery
work, which requires considerable manpower costs.
Currently, the number of primary care physicians (PCPs)
is insufficient to meet the needs of such complicated
work. With the continuous development of medical
digitalization, the application of big data informatization
in the medical and health fields has become possible.
When artificial intelligence is used to process medical
data, match relevant case screening questionnaires,
develop a population screening and risk assessment
model, and develop a screening clinical decision support
system (CDSS) for case finding, the work intensity and
the cost of screening for COPD will be substantially
reduced and the work efficiency will be improved[12–14].

This study aimed to develop a convenient and effective
CDSS to assist in case finding and provide reliable
inspection data for standardization management of
COPD, improve the ability and efficiency of detecting
COPD cases in primary health institutions, increase
the productivity of respiratory specialists, and handle
shortages of medical resources.

The main contributions of the paper are as follows.
� A CDSS was proposed to identify patients with

COPD based on public health data. Since it can
considerably reduce the burden on respiratory physicians
(a scarce resource) and provide a large-scale COPD
screening, it can be helpful and valuable in other similar
medical diagnostic problems.
� A CDSS based on public health data for COPD risk

assessment was constructed.
� A preliminary study was conducted to apply the

proposed method in practical application scenarios.
CDSS studies are valuable to improve the ability to
identify patients with COPD in primary healthcare
institutions. We believe that our preliminary study can
serve as an important reference to develop similar health
information systems to strengthen healthcare.

The study is organized as follows. Section 2 reports
the related work. Section 3 introduces the framework
of our system for the screening and auxiliary diagnosis
of COPD. Section 4 presents the protocol and results of
a preliminary study on patients with COPD, where our
system was used. Section 5 discusses the results. Finally,
Section 6 presents the conclusion.

2 Related Work

2.1 COPD screening

A questionnaire is the most common method for COPD
screening. Scholars in various countries developed
several screening questionnaires, providing a supporting
tool for COPD screening and diagnosis and relevant
cohort studies.

Currently, the COPD Diagnostic Questionnaire
(COPD-DQ) is the most widely used worldwide. It was
proposed by Price et al.[15] in 2006 and was verified for
use in many populations. The diagnostic questionnaire
mainly includes eight questions concerning age, body
mass index (BMI), smoking status, the influence of
weather on cough, daily sputum production, morning
sputum production, wheezing status, and allergy status.
The accumulated scores of each item provided a critical
diagnostic value of COPD of 16.5 to 19.5 points. For
threshold 16.5, the sensitivity was 58.7%, the specificity
was 77%, and the correct classification rate was 75%.
For threshold 19.5, the sensitivity was 80.4%, the
specificity was 57.5%, and the correct classification rate
was 61.8%.

A multicenter study[16] in Canada recruited adults
with no history of asthma, COPD, or lung disease
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through random telephone calls and asked them if
they had difficulty breathing or experienced coughing,
coughing up phlegm, or wheezing in the past six months.
Participants who answered yes completed COPD-DQ
and COPD-related assessment tests. Patients with a
COPD-DQ score of 20 or less were assessed for lung
function before and after administering a diastolic agent
to diagnose COPD. A total of 12 117 individuals were
contacted at home and assessed for study eligibility. Of
the 1260 selected patients, 910 (72%) were enrolled
and underwent spirometry. Obstructive ventilation
dysfunction was detected in 184 (20%) subjects, and
111 subjects were eventually diagnosed with COPD. The
study confirmed undiagnosed airflow obstruction in 20%
of a randomly selected group of people in Canada who
reported respiratory symptoms. Questionnaires could
exclude subjects at low risk but could not accurately
identify subjects with undiagnosed disease.

Zhou et al.[17] from the Guangzhou Medical University
developed a COPD screening questionnaire (COPD-
SQ) suitable for Chinese people based on several risk
factors related to epidemiological investigations in China.
The questionnaire included seven items: Age, smoking
index, BMI, cough, shortness of breath, family history
of respiratory diseases, and biofuel exposure. Biofuel
exposure is a factor that is more characteristic in China,
particularly in rural areas. The questionnaire threshold
was 16 points, the sensitivity was 60.6%, the specificity
was 85.2%, and the correct classification rate was 82.7%.

The Chinese COPD Tiered Diagnosis and Treatment
Project[18], led by the Chinese National Clinical
Research Center for Respiratory Diseases and China-
Japan Friendship Hospital, focuses on the promotion
of tiered COPD diagnosis and treatment. With the
breakthrough of strengthening the capacity building
of grassroots diagnosis and treatment of COPD, it
explores the mode and path of grassroots diagnosis
and treatment suitable for Chinese national conditions.
The screening mechanism for populations at a high
COPD risk was established, and a tiered diagnosis
and treatment data management system for COPD was
developed. The COPD-SQ was used as a screening
tool for patients with COPD, and pulmonary function
examination was conducted for subjects with COPD-
SQ scores of 16 points or more. Standard COPD
management was conducted after diagnosis and long-
term follow-up. The project is still underway. The
process framework, information acquisition structure,
and data management system designed by this project

explored a new way to standardize the management of
COPD.

2.2 Medical and health informatization

The Chinese Resident Electronic Health Record
Management System is an innovative application of
medical and health informatization. The system
collects information from primary healthcare
institutions, including basic personal information
of archived residents, examination information related
to cardiovascular and cerebrovascular diseases, diabetes,
and other chronic diseases, and also electronic
prescription information[19]. Although the information
related to COPD risk factors such as smoking is
collected, no specific disease record exists for patients
with COPD because COPD was excluded from the
national basic public health service[20].

3 Framework of the Screening and
Diagnostic Support System of Populations
at a High COPD Risk

3.1 Overview

This study aimed to develop a convenient and effective
CDSS to assist in identifying patients with COPD
in primary medical institutions. This should couple
multiple types of healthcare data to provide physicians
with high-quality evidence for COPD diagnosis and
reduce physicians’ workload. The application of this
CDSS will improve the ability of early identification
and diagnosis of COPD in high-risk groups in primary
medical institutions and further reduce related costs. It
also explores how artificial intelligence and big data
technology can be applied in the medical and health
fields.

Therefore, we proposed a case-finding CDSS based
on public health data to identify patients with COPD
(Fig. 1). Our system primarily includes screening
and risk assessment systems for COPD populations.

Screening and disease risk assessment system for high-risk 
chronic obstructive pulmonary disease (COPD) population

Public health 
data

Enjoying
breathing
data

Match

• Electronic health 
management 
records for 
residents

• Basic data
• Other data

• Data normalization 
processing

• Data fusion

Screening of high-risk 
groups for COPD

Risk assessment for 
COPD

Model

System

Fig. 1 Overall framework of the screening and risk
assessment system in the high-risk COPD population.
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The population screening and risk assessment system
processes public health data to generate risk assessments
for residents with COPD. Based on the results, medical
personnel may decide whether to conduct further
pulmonary measurements and other tests related to
diagnosing COPD.

People who are not at a high risk of COPD do not
need to undergo further spirometry examination and
other related tests, and this reduces the workload of
many doctors. This approach allows medical personnel
to identify patients with COPD more accurately,
providing more time for patients who truly require their
attention. In our system, every public health dataset is
preprocessed, feature-extracted, and converted into a set
of features, and then the results are obtained using a
classification algorithm. The findings of this study can
provide a reference for the respiratory department and
PCPs to understand the risks and conditions of patients
with COPD. The CDSS runs on cloud servers and can
be integrated into the existing information systems of
primary healthcare institutions. The existing information
system works with several community clinics, remote
rural health service stations, and other units to share
medical resources through the internet. This mode of
cooperation has substantially improved the quality of
medical services and clinical efficiency (Figs. 1 and 2).

3.2 COPD population screening and risk
assessment system

The screening and disease risk assessment system in the
population at a high COPD risk proposed in this study
is a low-cost, large-scale COPD risk assessment model

based on public health data of Chinese residents and
information from public health archives.

3.2.1 Identifying the extraction entries for public
health data

We divided the COPD-SQ questionnaire entries into the
following characteristics: Age, smoking, BMI, chronic
cough, shortness of breath, biofuel use, and family
history. Age, smoking, BMI, biofuel use, and family
history were considered structured data. Chronic cough
and shortness of breath were considered unstructured
data.

3.2.2 Developing strategies to extract public health
data

We performed a detailed analysis of the databases of the
resident electronic health records and electronic medical
records in the corresponding public health data analysis
document and determined the corresponding entries of
the COPD-SQ decomposition characteristic variables in
the public health database.

The resident electronic health record database is a
structured code database, while the resident outpatient
medical record database is an unstructured electronic
medical record database. According to the category form
of the item data, we finally determined the extraction
item and extraction strategy of the public health data.
The automatic extraction of structured data was based on
the residents’ electronic health records. Natural language
processing was used to extract unstructured data from
the electronic medical record database.

Chronic cough: In the medical history, if the
patient has chronic coughing or cough, wheezing, or
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Fig. 2 Deployment and application of the screening and risk assessment system architecture diagram in high-risk COPD
population. The blue arrow indicates the integration submodule path, and the orange arrow indicates the independent subsystem
path.
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expectoration that is chronic or recurrent or lasts longer
than 6 months and if the patient complained of chronic
bronchitis, COPD, and pulmonary emphysema in the
history of present illness and diagnosis, the cough score
was five points. If the patient did not meet the previously
mentioned criteria, the score was zero point.

Shortness of breath: In the medical history, if the
patients had shortness of breath, wheezing, or other
Chinese expressions for shortness of breath that is
chronic or recurrent or lasted longer than six months,
the shortness of breath score was three points. Those
who did not meet the previously mentioned conditions
received a score of zero point. Because the current
electronic medical record information is insufficient to
meet the more detailed classification of the severity of
shortness of breath, we assigned a unified value of three
points for all patients with shortness of breath and did
not assign a value for the six points corresponding to
severe shortness of breath in COPD-SQ. The details are
shown in Table 1.

3.2.3 Proposed public health screening model
(1) Data preprocessing
Using the previously mentioned data extraction

strategy, 44 input features and a label (according to the
score of COPD-SQ, a score of less than 16 was assigned

to the nonhigh-risk group, and the corresponding label
was zero; a score of 16 or more was assigned to the
high-risk group, and the corresponding label was one)
were extracted from the public health data and data of
Enjoying Breathing Program by unique field association
matching. After analyzing all the features and deleting
the fields with a missing rate greater than 90% and
those highly correlated with the scoring (the scoring
characteristics in Table 1), 28 input features and a label
were selected, and a detailed description can be found in
Table S11 in the electronic supplementary material.

Through the manual review, 1875 of 1885 patients
met the inclusion criteria, and the remaining 10 patients
were excluded based on the exclusion criteria. The high-
risk group (238 patients) and the nonhigh-risk group
(1637 patients) were screened according to COPD-SQ.
To obtain the best performance model, the dataset was
divided by setting the random division seed (random
state) to 786, and the details of the division are shown in
Table 2.

First, we divided all the data into internal and external
datasets at a ratio of 9.5 : 0.5. The internal dataset was
divided into training and test sets at a ratio of 7 : 3, which
was mainly used for model training, model optimization,
and model verification. The external dataset was mainly

Table 1 COPD-SQ scoring and data extraction strategy.
Score item Group Score Data extraction method

Age (years)

40–49 0

Automatic extraction based on
residents’ electronic health records

50–59 4
60–69 8
> 70 11

Smoking exposure
(pack-years)

Never 0

Automatic extraction based on
residents’ electronic health records

1–14 2
15–30 4
> 30 5

BMI (kg/m2 /

< 18:5 7

Automatic extraction based on
residents’ electronic health records

18.5–23.9 4
24–27.9 1
> 28 0

Chronic cough
Yes 0 Natural language processing of electronic

medical record informationNo 2

Shortness of breath

None 0

Automatic extraction based on
residents’ electronic health records

Shortness of breath when walking fast on
flat ground or climbing a small hill

3

Shortness of breath when walking
normally on the ground

6

Biofuel use
Yes 1 Automatic extraction based on residents’

electronic health recordsNo 0

Family history of chronic
bronchitis/emphysema/COPD

Yes 3 Natural language processing of
electronic medical record informationNo 0
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Table 2 Samples used in this study.
Sample group Group Subgroup Number Total

Internal dataset
Training

Testing

High-risk
Nonhigh-risk

150
1246

1096
High-risk

Nonhigh-risk
77
458

535

External dataset Training
High-risk

Nonhigh-risk
11

94
83

used for external verification of the model and did
not participate in the construction of the final model.
Before model construction and training, according to
the data situation and preprocessing algorithm, a series
of preprocessing operations were performed to obtain
the best recognition performance. Missing values in
categorical features were imputed with a constant “not
available” value of the feature in the training dataset.

Categorical features were converted using the one-hot
encoding method. Notably, in the categorical features,
some features included multiple options. For example,
family history characteristics included 12 options, which
correspond to one type of disease history. If someone
had more than one disease history at the same time,
multiple choices were available, such as “2, 3”, “2, 4”,
and “2, 4, 7”. For this type of data, we do not split
or reencode and consider that the combination is also
a category. For continuous features, we used the Z-
score and Yeo Johnson methods to transform the data.
First, we normalized each feature with a mean value
of 0 and a standard deviation of 1 and then mapped
the data from a nondistribution to a more Gaussian-
like distribution. The transformed data can balance the
influence of different feature scales to the greatest extent
and make the algorithm achieve the best optimization
effect and convergence speed to avoid falling into the
local solution to a certain extent.

Finally, these methods were used to screen the features
after coding and transformation.

(a) Removal of outliers. This step was performed at
the beginning of data preprocessing, using singular value
decomposition to remove outliers in the training data.

(b) Ignoring the low variance. All the categorical
features with insignificant variances were removed from
the data.

(c) Removal of multicollinearity features. Features
with intercorrelations higher than the defined threshold
were removed. When two features were highly correlated
with each other, the featureless correlated with the target
variable was removed.

(d) Removal of completely collinear features. Perfect
collinearity (features with correlation = 1) was removed
from the dataset; when two features were 100%
correlated, one was randomly removed from the dataset.

(2) Modeling methods and steps
The dataset in this study is structured data. For

structured data, traditional machine learning models
are usually used for modeling instead of deep learning
models. We used Python-related libraries to select
18 machine learning models in a targeted manner
and tried to identify the best performance model
that meets the expectations of this study through
optimization and comparison. The models mainly
included support vector machine (SVM) models—linear
kernel classifier; radial basis function (RBF) kernel
classifier, simple tree models—decision tree (DT)
classifier; random forest (RF) classifier; extreme trees
(ET) classifier, regression classification models—logistic
regression (LR) classifier; Ridge classifier, discriminant
analysis classification models—linear discriminant
analysis (LDA); quadratic discriminant analysis (QDA),
gradient boosting decision tree (GBDT) models—
AdaBoost classifier; gradient boosting classifier
(GBC); extreme gradient boosting (XGBoost); light
gradient boosting machine (LightGBM); CatBoost
classifier, and other models—multi-layer perceptron
(MLP) classifier; K-nearest neighbor (KNN) classifier;
Gaussian process classifier (GPC); naive Bayes classifier
(NB). Simultaneously, based on a single model and the
top five models of comprehensive performance, four
types of ensemble learning methods (bagging, boosting,
blending, and stacking) were used for modeling. After
the models were selected, a strictly planned process was
used to train and optimize the model to obtain the best
performance model. The specific process is as follows.

(a) For model preexperimentation, all 18 models
were included for model training using training samples
from the internal dataset. Considering that the size
of the dataset was small and to avoid modeling bias
caused by randomness, 10-fold cross-validation was
used to evaluate the performance of each model[21]. The
final performance of the model is the average of each
evaluation metric of the 10-fold cross-validation. The
models were trained using the default hyperparameters
and finally output the results ranked according to
accuracy from the highest to the lowest.

(b) To avoid wasted resources and time, the top five
models evaluated in (1) for individual optimization
were selected. The random grid search method was
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used to optimize the hyperparameters, and the optimal
parameter optimization model was selected through
cross-validation. The hyperparameters were tuned with
the goal of accuracy, and the optimized model was tested
using the test samples in the internal dataset to check the
generalization ability of the model.

(c) Because of the small scale of the dataset in this
study and in order to avoid data waste and improve the
generalization ability of the model, the hyperparameters
optimized by the top five models were used to train all
the data in the internal dataset to obtain the final model.
Next, the external dataset was used for the final test to
obtain the test result. This result largely represented the
final generalization ability of the model.

(d) Ensemble learning modeling was divided into
two parts. First, the final model with the best test
performance was modeled using bagging and boosting
methods. The default hyperparameters, including the
maximum number of features, were set to one,
the maximum number of samples was set to one,
and the number of base models was set to 10. In
boosting, stagewise additive modeling with a multi-
class exponential cost function (SAMME.R, R stands for
real)[22] was used as the optimization algorithm. Unlike
the SAMME algorithm, the algorithm uses weighted
probability estimates to update the model and output
classification probability values. In the second step, the
blending and stacking integrated learning methods were
used for modeling. The first two integrated learning
methods used a single base model for the integrated
modeling, while the blending and stacking methods
used different final models in (c) as the base model for
integration. The training process of the four types of
ensemble learning methods was the same as that for (a)
and (c). To prevent overfitting, no parameter tuning was
performed. The integrated learning model was finally
tested using the external datasets to compare different
evaluation indicators.

Baseline model testing is a common method for new
data modeling in machine learning. At the initial stage
of the model, experimenting with a baseline model often
reduces time by 90% and provides 90% accurate results.
In our modeling process, using LR as a baseline model
for rapid training and optimization helped us understand
the task and the data[23].

We also explored feature selection, feature importance
analysis, and model interpretability analysis. Regarding
feature selection, we did not reselect the 28 features

but selected the 104 features after coding using the
four methods mentioned in (1) and finally retained
49 important features. The GBDT algorithm was used
to analyze the feature importance and could directly
provide the importance score of each attribute. We
used the weight instead of gain or cover to calculate
the feature importance score. In the GBDT feature
importance score algorithm, the larger the improved
performance of a feature to the splitting point (the closer
to the root node), the larger the weight. The more the
ascension trees were selected, the more important the
attribute was. The performance measure could be the
Gini purity of the split node selected or other metric
functions. Finally, the weighted sum of the results of an
attribute in all the boosting trees was averaged to obtain
the importance score. Model interpretability analysis
using Lundberg and Lee in 2016 displayed the SHAP
(Shapley Additive exPlanations, SHAP) method[24],
which can explain individual forecast methods. SHAP is
based on the best Shapley value in game theory.

(3) Evaluation metrics
To select the best model for screening people at

a high COPD risk, we evaluated the model using
seven widely used evaluation metrics—accuracy, area
under the receiver operating characteristic curve (AUC),
sensitivity, precision, F1, kappa, and MCC (Matthew’s
correlation coefficient). The seven criteria are calculated
based on the following:

Accuracy D
TPC TN

TPC TNC FPC FN
(1)

AUC D
Z 1

xD0

TPR.FPR�1.x//dx (2)

Sensitivity D
TP

TPC FN
(3)

Precision D
TP

TPC FP
(4)

F1 D 2
Precision � Recall

PrecisionC Recall
(5)

Kappa D
p0 � pe

1 � pe

(6)

MCC D
TP�TN�FP�FNp

.TPCTN/.TPCFN/.TNCFP/.TNCFN/
(7)

where TP (FN) is the number of positive samples
predicted to be positive (negative), and TN (FP) is
the number of negative samples classified as negative
(positive); the true positive rate (TPR) is equal to the
previously defined recall and FPR (false-positive rate =
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FP/(FP + TN)); p0 is the sum of the number of samples
from each of the correct categories divided by the total
sample, representing accuracy. pe is the sum of the
product of the actual and predicted numbers for each
category divided by the square of the total number of
samples.

Accuracy indicates the predicted result of the
percentage of total samples. AUC represents the
relationship curve between TPR and FPR and the area
of the curve. In medicine, AUC can comprehensively
evaluate sensitivity and specificity. The sensitivity
indicates the ability of the model to correctly predict
the population at a high COPD risk.

(4) Results
The accuracy, AUC, sensitivity, precision, F1, kappa,

and MCC of the 18 machine learning models in the
training dataset are shown in Table 3. The models are
ranked from high to low according to accuracy. The
AUC for estimators (linear SVM and ridge) that do
not support “predict proba (probability prediction)” is
0.0000. According to the results in Table 3, the overall
performance of the GBDT model was better than that of
the baseline model (LR) and other models, and CatBoost
provided the highest accuracy of 98.96%. Although
AUC is a key measure of sensitivity and specificity
performance, XGBoost showed the highest AUC of
99.84%. NB showed the highest sensitivity of 95.33%.

We comprehensively considered each assessment
indicator in Table 3 and screened out CatBoost,
LightGBM, XGBoost, GBC, AdaBoost, and LR as

candidate optimization models and the baseline model.
During the optimization, the accuracy was considered
the main optimization objective to maximize the
screening performance of COPD-SQ, and AUC was
considered the secondary optimization objective to
optimize the sensitivity and specificity of the model to
reduce the rate of missed diagnosis and misdiagnosis.
The highest values for each indicator in the single model
and ensemble model are shown in bold in Table 3. By
optimization, different models showed different degrees
of metrics on the test dataset. CatBoost was still the
best model, with an accuracy of 99.25%. AUC had
an accuracy of 99.85%, a sensitivity of 94.81%, and a
precision of 1. Compared with the single and ensemble
models, the comprehensive evaluation results of the
stacking model were close to those of CatBoost. The
external dataset test results presented in Table 4 and
Fig. 3 showed that the overall generalization ability of
the ensemble models was better than that of the single
models.

Figure 4 shows the ranking of feature importance
of a single model. After preprocessing methods such
as coding and transformation, the 28 features were
expanded to 104 features, and 49 features were obtained
using four feature selection methods in the preprocessing.
The number following the underscore in the feature name
represents the category to which the category feature
belongs. The features considered important by the
machine learning model included cough, age, smoking
status, BMI, smoking quantity, and waist-to-hip ratio

Table 3 Performance of 18 models on training samples.
Model Accuracy AUC Sensitivity Precision F1 Kappa MCC

CatBoost 0.9896 0.9980 0.9467 0.9683 0.9560 0.9501 0.9511
LightGBM 0.9864 0.9976 0.9200 0.9670 0.9415 0.9338 0.9351
XGBoost 0.9856 0.9984 0.9133 0.9661 0.9376 0.9295 0.9308

GBC 0.9855 0.9959 0.9067 0.9719 0.9374 0.9293 0.9304
AdaBoost 0.9839 0.9968 0.9000 0.9662 0.9307 0.9216 0.9231

DT 0.9719 0.938 0.8933 0.8841 0.8863 0.8704 0.8719
RF 0.9599 0.9846 0.7467 0.9134 0.8174 0.7952 0.8027
LR 0.9551 0.9865 0.7533 0.8631 0.7981 0.7732 0.7792

MLP 0.9542 0.9844 0.7733 0.8411 0.7998 0.7742 0.7787
Linear SVM 0.9503 0.0000 0.7533 0.8329 0.7815 0.7539 0.7608

LDA 0.9422 0.9785 0.7267 0.7865 0.7467 0.7146 0.7205
ET 0.9390 0.9688 0.6533 0.8133 0.7200 0.6864 0.6941

RBF SVM 0.9374 0.9841 0.5267 0.9294 0.6654 0.6343 0.6690
Ridge 0.9253 0.0000 0.4667 0.8723 0.5958 0.5596 0.5983
KNN 0.9189 0.9089 0.4533 0.7698 0.5579 0.5189 0.5465
GPC 0.9165 0.8978 0.3533 0.9038 0.4926 0.4586 0.5237
QDA 0.8169 0.5391 0.1733 0.2509 0.1704 0.0886 0.1022
NB 0.3283 0.6503 0.9533 0.1474 0.2552 0.0589 0.1526



Xinshan Lin et al.: A Case-Finding Clinical Decision Support System to Identify Subjects with Chronic Obstructive : : : 533

Table 4 Performance of optimized models on test samples.
Modle type Model Accuracy AUC Sensitivity Precision F1 Kappa MCC

Single model

CatBoost
LightGBM
XGBoost

0.9925 0.9985 0.9481 1.0000 0.9733 0.9690 0.9695
0.9832 0.9963 0.8831 1.0000 0.9379 0.9282 0.9306
0.9776 0.9929 0.8831 0.9577 0.9189 0.9059 0.9069

GBC 0.9720 0.9961 0.8182 0.9844 0.8936 0.8776 0.8826
AdaBoost 0.9832 0.9955 0.9091 0.9722 0.9396 0.9298 0.9305
Baseline 0.9346 0.9661 0.6883 0.8281 0.7518 0.7145 0.7185

Ensemble model

Bagging
Boosting
Blending
Stacking

0.9888 0.9975 0.9221 1.0000 0.9595 0.9907 0.9530
0.9540 0.9976 0.9351 1.0000 0.9664 0.9610 0.9618
0.9869 0.9967 0.9091 1.0000 0.9524 0.9448 0.9463
0.9925 0.9923 0.9481 1.0000 0.9733 0.9690 0.9695

(Fig. 4). Besides these features, other features accounted
for a relatively small percentage of the importance
rankings (less than 10%).

The model interpretability analysis is shown in Fig. 5.
Figure 5a shows the influence of the characteristic value
of the best single model CatBoost on prediction. The
results of machine learning were consistent with those
of the clinical demonstration analysis, such as in age;
the higher the value, the greater the contribution to the
prediction of high-risk populations. For Cough 0, the
greater the value, the greater the contribution to the
prediction of the nonhigh-risk population. Figure 5b
shows the results of individual case analyses. We
extracted 60 individual cases for analysis, and the
contribution of cough and age (here, it is the converted
age; the actual age is 72 years) to the predicted high-risk
group was enhanced.
3.2.4 System implementation
A screening and risk assessment system for COPD
was established based on the following: The system
retrieves public health data from the server, conducts
a risk assessment of COPD among residents, and
generates a public health data COPD-SQ assessment
result report. The medical staff can use the system to
perform an extensive COPD screening in an efficient
and convenient manner and decide whether to conduct
further pulmonary function tests on residents according
to the results of the COPD risk assessment given by the
system.

In the pie chart of Fig. 6, red is the probability of
high risk, and green is the probability of nonhigh risk.
According to the threshold setting, the model determined
that a certain probability value higher than 50% is a
category.

4 System Validation and Results

Emeishan village, South Dulehe Town, Pinggu District,

Beijing, China, was one of the first places where a
public health database for residents was established,
and a complete electronic health record and outpatient
electronic medical record database were established. We
conducted a small-scale study in this area.

Approximately 2800 residents lived in this area, of
which 1875 had electronic health records and were
selected as the research objects. We used the system
to screen the population at a high COPD risk in the
experimental area (n = 370).

Statistical analysis. The data were expressed as
means˙SD or numbers (%), as appropriate. Continuous
variables were compared using a t-test or one-way
analysis of variance, followed by Bonferroni’s test for
pairwise comparisons. Categorical data were evaluated
using a chi-squared test. The accuracy of using different
modalities to screen COPD could be determined using
ROC curve analysis. The optimal cutoff of the selected
modality was calculated using the Youden index to
determine the sensitivity, specificity, positive predictive
value, and negative predictive value. The characteristics
of the baseline data are shown in Tables 3 and 4.

We made targeted invitations to high-risk groups.
Finally, 116 people from 79 high-risk groups and 37
random groups participated in the field screening. After
signing the informed consent form, the 116 visiting
residents were screened using the on-site COPD-SQ
questionnaire and subjected to spirometry examinations
assisted by the quality control system.

Spirometry examination identified 31 patients with
obstructive ventilation dysfunction (25 in the high-risk
group and 6 in the random group). We summarized the
relevant data of recent similar studies in Table 5.

To test the efficiency of our system, we performed
an ROC curve analysis based on public health data
and COPD-SQ field investigation screening results and
determined whether the spirometer detected obstructive
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(a) Baseline (b) CatBoost

(c) LightGBM (d) XGBoost

(e) GBC (f) AdaBoost

(g) Bagging (h) Boosting

(i) Blending (j) Stacking

Fig. 3 Comparison of model performance for detecting populations at a high COPD risk. ROC: Receiver operating
characteristic curve; AUC: Area under the receiver operating characteristic curve; micro-average: Compute the metric
independently for each class and then take the average (hence treating all classes equally); macro-average: Aggregate the
contributions of all classes to compute the average metric.
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(a) Baseline (b) CatBoost (c) LightGBM

(d) XGBoost (e) GBC (f) AdaBoost

Fig. 4 Ranking of feature importance of a single model. The model included 49 features; here, the top ten features were
considered.

Fig. 5 Model interpretability analysis. Each point in Fig. 5a represents an instance, and the color represents the size of the
value of the feature. The horizontal axis is the value of SHAP, which considers 0 as the origin and has a positive (high-risk group
of COPD) and a negative (nonhigh-risk group of COPD) impact on the judgment. Figure 5b shows the analysis of individual
cases of feature interpretability, and 60 individual cases were selected for analysis.

ventilation dysfunction. The AUC of public health data
screening was 0.615 (95% conference interval (CI):
0.504–0.725). The AUC of COPD-SQ field investigation
screening was 0.627 (95% CI: 0.511–0.504).

5 Discussion

Presently, in all known relevant studies on the screening
of COPD, the information was collected and input
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Fig. 6 Interface of screening and risk assessment system for COPD patients. Figure 6a shows the first case. The patient was
50 years old and a light smoker. Diagnosis result: The patient belongs to the high-risk group of COPD. Treatment suggestion:
Spirometer examination should be performed to determine whether the patient has COPD. Figure 6b shows the second condition.
The patient was 63 years old and did not smoke, and the fuel type was coal. Diagnosis result: The patient belongs to the high-risk
group because of long-term smoking, long-term exposure to secondhand smoke, dust exposure, and other reasons. Treatment
suggestion: Spirometer examination should be performed to determine whether the patient has COPD.

Table 5 Performance of final models on the external dataset.
Modle type Model Accuracy AUC Sensitivity Precision F1 Kappa MCC

Single model

CatBoost
LightGBM
XGBoost

GBC
AdaBoost
Baseline

0.9787 0.9091 0.8182 1.0000 0.9000 0.8882 0.8938
0.9787 0.9091 0.8182 1.0000 0.9000 0.8882 0.8938
0.9681 0.8636 0.7273 1.0000 0.8421 0.8248 0.8378
0.9787 0.9091 0.8182 1.0000 0.9000 0.8882 0.8938
0.9787 0.9091 0.8182 1.0000 0.9000 0.8882 0.8938
0.9468 0.8516 0.7273 0.8000 0.7619 0.732 0.7331

Ensemble model

Bagging
boosting
Blending
Stacking

0.9787 0.9091 0.8182 1.0000 0.9000 0.9787 0.8882
0.8938 0.9091 0.8182 1.0000 0.9000 0.8882 0.8938
0.9787 0.9091 0.8182 1.0000 0.9000 0.8882 0.8938
0.9787 0.9091 0.8182 1.0000 0.9000 0.8882 0.8938

manually. Because of the heavy workload and high
cost, it is unsuitable for grassroots medical staff with
heavy daily work to perform the daily prevention and
treatment of COPD. Additionally, the questionnaire for
COPD screening has a high requirement concerning
the investigation skills of investigators, and short-
term training cannot meet the needs of a large range
of COPD screening using questionnaires. Developing
an efficient and accurate screening method for the
population at a high COPD riskimproves the efficiency
and effect of primary medical staff in performing COPD
screening[25, 26].

Therefore, we developed CDSS based on COPD-SQ.
All the medical data of the population were extracted
from the residents’ electronic health records, and the
disease screening model processed the data and fed back
the screening results.

In the screening model, the 10-fold cross-validation
results of 18 machine learning models on the training
dataset showed that the GBDT model has the best
overall performance, and CatBoost had the highest
accuracy (98.96%), which is close to the detection
efficiency of COPD-SQ. Although the AUC is a key
measure of sensitivity and specificity performance, the
highest AUC of XGBoost is 0.9984, which completely
avoids missed and error screenings. NB has the highest
sensitivity (95.33%), butits other metrics are too low to
be selected as a candidate optimization model. However,
the characteristics of the NB model revealed that some
metrics in the data substantially contributed to screening
high-risk groups. We comprehensively considered each
evaluation metric and screened CatBoost, LightGBM,
XGBoost, GBC, AdaBoost, and LR as candidate
optimization models and baseline models.
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We further tested the previously mentioned models
on the test and external datasets. According to
the comprehensive performance ranking of various
evaluation metrics in Table 3, we selected five
models (CatBoost, LightGBM, XGBoost, GBC, and
AdaBoost) as the final optimization objects. During
the optimization, the accuracy was considered the
main optimization objective to maximize the screening
performance of COPD-SQ, and AUC was considered
the secondary optimization objective to optimize the
sensitivity and specificity of the model to reduce the
rate of missed diagnosis and misdiagnosis. Through
the optimization, various metrics of different models on
the test dataset have been improved. CatBoost remains
the best model for comprehensive evaluations, with
an accuracy of 99.25%, nearly 6% higher than the
baseline model after optimization, an AUC of 99.85%,
and a sensitivity of 94.81%. The precision of CatBoost
at this time is one, indicating that the nonhigh-risk
population is not diagnosed as a high-risk population,
and the misdiagnosis rate is zero. Compared with
the single models and ensemble learning models, the
comprehensive evaluation result of the stacking model is
close to CatBoost. The external dataset test results show
that the overall generalization ability of the ensemble
learning model is better than that of the single model.

The test results of several models were the same
because of the small number of samples in the external
dataset (94 patients) and unbalanced sampling of positive
and negative samples. However, the verification results
can reflect the generalization ability of the final model
to a certain extent.

Simultaneously, we conducted a study on the
importance of model features and found that the
important features included cough, age, smoking status,
BMI, smoking quantity, and the waist-to-hip ratio.
Besides these features, the other features accounted for
a relatively small percentage of the importance ranking
(less than 10%). These results also indicate that the
high-risk factors for COPD considered by the algorithm
are consistent with the important indicators considered
by experienced clinicians. Additionally, some features
after the ranking of important features can be used as
additional observation indicators for clinicians to study
and verify the clinical correlation.

We used the final model as the kernel and developed
a COPD screening CDSS based on public health
data. In the external validation of the system, we
analyzed the electronic health records of 1875 patients,

of which 370 (19.73%) required further spirometry
examination according to model screening. Of 370
patients, 79 (21.35%) underwent spirometry. Of 79
patients, 25 (31.64%) were found to have obstructive
ventilation dysfunction. We compared the results with
previous studies on COPD case findings. Compared with
COPD-SQ, the efficiency of our systematic screening
when detecting obstructive ventilation dysfunction was
approximately at the same level, as shown in Fig. 7. In
Table 6, the pooled results of several similar studies are
shown.

The China Pulmonary Health Study adopted
multistage stratified cluster random sampling to conduct
field investigations on Chinese residents and collect
information related to respiratory diseases. Obstructive
ventilatory dysfunction was observed in 13.5% of
Chinese individuals aged older than 20 years[2]. Large-
scale epidemiological investigations only apply to the
cross-sectional investigation of the disease. This method
is unsuitable for daily COPD screening work. Therefore,
scholars worldwide have conducted a series of case-
finding studies using questionnaire screening. The
undiagnosed COPD and asthma population study in
Canada[16] identified a COPD risk population using a
random telephone survey. A total of 12 117 individuals
were surveyed by telephone. A total of 1260 (10.40%)
were selected for spirometry examination, and 910 (72%)
were registered and underwent spirometry. Obstructive
ventilation dysfunction was detected in 184 subjects
(20% of the study participants), and 111 patients
were eventually diagnosed with COPD. The Chinese

Fig. 7 Diagnostic accuracy according to ROC curve
analysis.
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Table 6 Summary of our research and related studies.

Study
Investigation

method
Sample size

Number of patients
requiring spirometry
examination (rate)

Actual number of
spirometry examinations

performed (rate)

Number of patients with
obstructive ventilation

dysfunction (rate)
The China Pulmonary Health
study[2]

Field
investigation

50 991 50 991 (100%) 50 991 (100%) 6866 (13.47%)

Undiagnosed COPD and
asthma population study[16]

Telephone
interview

12 117 1260 (10.40%) 910 (72.22%) 184 (20.22%)

Chinese COPD Tiered Diagnosis
and Treatment Project[18]

Field
investigation

1 008 518 191 498 (18.99%) 63 523 (33.17%) 20 700 (31.59%)

Our study
Big data
screening

1875 370 (19.73%) 79 (21.35%) 25 (31.64%)

COPD Tiered Diagnosis and Treatment Project[1, 27]

is based on community units. PCPs from primary
medical institutions performed an on-site COPD-SQ
questionnaire for residents aged older than 40 years
in the communities. The project is still in progress.
By November 2019, 1 008 518 people were screened
using questionnaires, of whom 191 498 (18.99%) had
COPD-SQ scores of 16 and 63 523 (33.17%) underwent
spirometry examinations. Of 63 523 people, 20 700
(31.59%) were diagnosed with obstructive ventilation
dysfunction.

Comparing the results of the previously mentioned
studies, we found that our study is more efficient.
The screening of high-risk groups accurately identified
the population that required further examination and
avoided the waste of medical resources. Because of the
high screening accuracy, the new model of big data
screening significantly reduces the cost of screening.
Additionally, our screening model significantly reduces
unnecessary crowding because the initial screening effort
is performed by CDSS analysis of available public health
data. This finding is valuable in the context of the current
COVID-19 epidemic.

Our study has limitations. We did not perform
bronchodilation tests or other tests to confirm COPD
because of the limitations of the conditions. Although
using prebronchodilator values has been shown
to overestimate the prevalence of COPD[27, 28], no
difference was found in the diagnostic accuracy
for COPD between them. Hoesein showed that
bronchodilation tests have little value in diagnosing
COPD in older symptomatic populations[29]. Comparing
the detection rate of obstructive ventilation dysfunction
in spirometry examinations in similar studies indicates
the effectiveness of this protocol in identifying patients
with COPD to a certain extent. Another limitation is the
small sample size, which may limit the generalization of

the proposed method. Therefore, whether our findings
apply to other populations remains to be determined.
Our scheme has completed the preliminary model
verification and system experiment. The next step
concerns the pilot area data of the Chinese COPD Tiered
Diagnosis and Treatment Project to verify the model and
effectiveness of the system in a larger scope.

6 Conclusion

Strengthening the capacity to identify patients with
COPD at primary medical institutions is critical to
reducing the prevalence and burden of the disease.
To improve the performance of PCPs, the screening,
diagnosis, and standardized management of COPD must
be covered. How to effectively identify populations
at a high COPD risk and standardize spirometry
examinations remain to be further solved. The
application of innovative technologies such as big data
analysis, machine learning, and artificial intelligence-
assisted decision-making can effectively improve the
early identification and diagnosis of populations at a high
COPD risk at primary medical institutions, providing
new solutions for standardized management of COPD
and reducing the impact of COPD on residents’ health.
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