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Core Decomposition and Maintenance in Bipartite Graphs

Dongxiao Yu, Lifang Zhang, Qi Luo�, Xiuzhen Cheng, and Zhipeng Cai

Abstract: The prevalence of graph data has brought a lot of attention to cohesive and dense subgraph mining. In

contrast with the large number of indexes proposed to help mine dense subgraphs in general graphs, only very few

indexes are proposed for the same in bipartite graphs. In this work, we present the index called ˛.ˇ/-core number

on vertices, which reflects the maximal cohesive and dense subgraph a vertex can be in, to help enumerate the

.˛; ˇ/-cores, a commonly used dense structure in bipartite graphs. To address the problem of extremely high time

and space cost for enumerating the .˛; ˇ/-cores, we first present a linear time and space algorithm for computing the

˛.ˇ/-core numbers of vertices. We further propose core maintenance algorithms, to update the core numbers of

vertices when a graph changes by avoiding recalculations. Experimental results on different real-world and synthetic

datasets demonstrate the effectiveness and efficiency of our algorithms.

Key words: core decomposition; core maintenance; bipartite graph; dense subgraph mining

1 Introduction

Many real-world relationships among different entities
are modeled as bipartite graphs, including collaboration
networks[1], gene co-expression networks[2], and user-
item networks[3]. The vertices of a bipartite graph G D
.U; V;E/ are composed of two disjoint sets, i.e., U
and V , and each edge connects a vertex in U to a
vertex in V . Due to the wide range of applications of
bipartite graphs, such as user recommendation[4], fraud
identification[1], privacy-preserving[5–7], and genetic
analysis[8], the problem of making better use of bipartite
graph data and its analysis have been studied in recent
years. Among them, the problem of identifying cohesive
and dense subgraphs has drawn a great deal of attention
from research communities and industry. The (˛, ˇ)-
core is considered as an effective tool for mining dense

�Dongxiao Yu, Lifang Zhang, Qi Luo, and Xiuzhen Cheng
are with the School of Computer Science and Technology,
Shandong University, Qingdao 266237, China. E-mail: fdxyu,
xzchengg@sdu.edu.cn; fzhanglf, luoqi2018g@mail.sdu.edu.cn.
� Zhipeng Cai is with the Department of Computer Science,

Georgia State University, Atlanta, GA 30303, USA. E-mail:
zcai@gsu.edu.
�To whom correspondence should be addressed.

Manuscript received: 2021-10-12; revised: 2021-11-16;
accepted: 2021-11-19

subgraphs in bipartite graphs, and computing (˛, ˇ)-core
for a given ˛ and ˇ has become an important research
topic[4, 9].

The .˛, ˇ)-core is a maximal bipartite subgraph G0

derived from two vertex sets U 0 � U and V 0 � V ,
and it satisfies that all the vertices in U 0 and V 0 have a
degree of at least ˛ and ˇ, respectively. According to
the definition, the basic algorithm for computing an .˛,
ˇ)-core when given ˛ and ˇ, was presented in Ref. [4].
In brief, the main idea is to iteratively remove vertices
from U and V that have a degree less than ˛ and ˇ,
respectively, until no more vertices can be deleted. The
time complexity of computing an .˛, ˇ)-core is O.m/
in the worst case, where m is the number of edges in the
bipartite graph. Therefore, when the scale of the graph is
very large, implementing this method is not acceptable
since it needs to traverse the whole graph which costs too
much time. To solve this problem, a linear space index
structure called BiCore-index is proposed in Ref. [9],
which guarantees that an .˛, ˇ)-core can be calculated
in the optimal time, i.e., linear time with respect to the
result size. Specifically, it precomputes .˛, ˇ)-cores for
all possible combinations of ˛ and ˇ and then makes use
of a three-level tree structure to preserve them locally.
As a result, when given a particular ˛ and ˇ combination,
it figures out the .˛, ˇ)-core immediately by visiting the
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vertices stored in the corresponding location. However,
even if the authors have optimized the index structure, it
still takes up a lot of space.

Inspired by the concept of k-core in general graphs[10],
we present the concept of ˛.ˇ/-core number in bipartite
graphs, to solve the problem of high time and space
costs in the computation of .˛; ˇ/-cores. Specifically,
given an ˛ (or ˇ), the ˛.ˇ/-core number of a vertex
v is defined as the maximum Ǒ such that v can be in
an .˛; Ǒ/-core. After computing ˛.ˇ/-core numbers
of all vertices for all combinations of ˛ and ˇ, it
is easy to enumerate the .˛; ˇ/-cores in the bipartite
graph. Meanwhile, comparing the index structure given
in Ref. [9], the space for storing the index can be
significantly reduced. More importantly, ˛.ˇ/-core
exhibits its merit in handling dynamic graphs. As the
graph change usually affects a small part of the graph, it
only needs to update the core numbers of a small number
of vertices that are affected, avoiding recomputation of
all .˛; ˇ/-cores.

With the concept of ˛.ˇ/-core number, we first study
the core decomposition problem, i.e., computing the
core numbers of vertices. For any given ˛ (or ˇ), we
propose an algorithm that can compute the ˛.ˇ/-core
numbers of vertices in linear time and space. We further
propose efficient algorithms for the core maintenance
problem, i.e., updating the core numbers of vertices after
the graph changes. We focus on the scenario of edge
insertion/deletion since the vertex changes can be seen
as edge changes[11].

We start from the single-edge insertion/deletion
scenario. By proposing the concept of pre-core, it allows
us to quantify the variance of the core number of every
vertex and identify vertices whose core numbers change.
Based on this observation, we propose core maintenance
algorithms that can greatly reduce the number of vertices
and edges visited during the process of updating, thus
facilitating a quicker update of the core numbers of
vertices. Experiments on real-world graphs show that the
update time can be reduced by 80% to 90% compared
with the recomputation of the core numbers using the
core decomposition algorithm.

We further consider a general case where multiple
edges are inserted/deleted into/from a graph. An intuition
approach is to adopt the single-edge core maintenance
algorithms to handle the inserted/deleted edges one
by one. But this approach is obviously inefficient. To
improve the efficiency of core maintenance, we propose
a batch processing approach that can handle multiple

edge insertions/deletions simultaneously. However, the
core number change becomes much more complex when
multiple edges are inserted/deleted together. This is
because the change in the core number of a vertex can
be affected by multiple inserted/deleted edges, which
makes it hard to determine the exact change on the core
number value. Furthermore, different from the single-
edge scenario, it is difficult to identify the set of vertices
that may change the core numbers. To overcome these
difficulties, a new structure of inserted/deleted edges,
called V -independent edge set (VES), is proposed to
solve the challenge of determining the core number
change of vertices. We show that the insertion/deletion
of a VES can make the core number of each vertex
change by at most 1. In this way, when inserting/deleting
a V -independent edge set, the core maintenance
task is simplified to identify the vertices whose
core numbers change, such that multiple edges can
be handled simultaneously. Then the inserted/deleted
edges can be processed iteratively by splitting these
edges into multiple disjoint VESs. With this batch
processing approach, we propose core maintenance
algorithms that can reduce the number of iterations for
processing the inserted/deleted edges from the number of
inserted/deleted edges to the maximum number of edges
inserted/deleted to each vertex in V . The experiments
on real-world graphs show that the batch processing
algorithms can further reduce the updating time from
50% to 90%, comparing with the single-edge processing
algorithms.

The rest of this paper is organized as follows: We first
review the related work in Section 2 and then give some
basic concepts in Section 3, including the definition of
˛.ˇ/-core number of each vertex in a bipartite graph. In
Section 4, the specific algorithm for core decomposition
is proposed. Based on the theoretical results, we give the
single-edge processing and batch processing algorithms
in Sections 5 and 6, respectively. In Section 7, the
experimental results are reported. Finally, the paper
is concluded in Section 8.

2 Related Work

Dense subgraph mining. With the prevalence of graph
data, mining dense subgraphs has attracted a lot of
attention[12, 13]. One fundamental structure of dense
subgraph is clique in which every pair of vertices
is connected. However, computing a clique is NP-
Hard[14], so a lot of work has been done to come up
with new structures to loosen up the clique. Among
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them, the most commonly used indexes to measure
dense subgraphs include k-core[15–17], k-truss[18–20], k-
plex[21, 22], etc. These indexes are all proposed for
general graphs. In contrast, there are fewer indexes that
are particularly presented for dense subgraph mining
in bipartite graphs. In Ref. [23], .˛, ˇ)-core in bipartite
graphs was first introduced and algorithms for computing
.˛, ˇ)-core were proposed in Refs. [4, 9]. Moreover, a
few other works tried to adapt some indexes of dense
subgraphs in general graphs to bipartite graphs. For
example, in Ref. [24], it changed the concept of k-clique
to biclique and quasi-biclique was further proposed in
Ref. [25].

Core maintenance. The core maintenance problem
is to update the core numbers of partial vertices
after the graph changes instead of recalculating the
entire graph. In Ref. [26], it is proven that the core
number of each vertex can change by at most 1 after
inserting/deleting one edge and proposed an effective
algorithm, called TRAVERSE, to identify the vertex
set whose core numbers really change. In Ref. [27],
Wang et al. proposed a structure called superior edge
set and showed that inserting/deleting these edges
into/from a graph changes the core number of each
vertex by at most 1. Based on it, parallel algorithms
were presented to simultaneously process multiple edges
in each iteration. Reference [28] showed that if the
inserted/deleted edges constitute a matching, the core
number update with respect to each inserted/deleted
edge can be handled in parallel. In Ref. [11], it further
optimized the structure of edge set, which greatly
improves the efficiency of core maintenance. In Ref. [29],
an effective algorithm was proposed to improve the I/O
efficiency of core maintenance. The core maintenance
problem in the distributed environment was studied in
Refs. [30, 31]. In Ref. [32], it presented a new definition
of weighted coreness for vertices in a weighted graph.
Reference [33] studied exact hypercore maintenance in
large-scale dynamic hypergraphs. Although there have
been many definitions of core numbers under different
network models, none of them distinguishes between
different types of vertices. In fact, in a bipartite graph,
such as a user-item graphs, there should be different
constraints on users and items. Therefore, core numbers
on bipartite graph are necessary to be studied.

3 Definition

We use G D .U; V;E/ to represent a bipartite graph,

where U.G/ and V.G/ denote two disjoint vertex sets
and E.G/ denotes the edge set. The number of vertices
in U.G/ (V.G/) is denoted by Nu (Nv), and let N
and M be the total number of vertices and edges in
G, respectively. For a bipartite graph, there is no edge
between U or between V , i.e., 8e D .u; v/ 2 E.G/,
it satisfies that u 2 U.G/ and v 2 V.G/ or vice
versa. We use degG.v/ and neighG.v/ to represent
the degree and neighbors of the vertex v in graph G,
respectively. When the context is clear, we can omit G
in the symbolic representation for simplicity. Given
two vertex sets U 0 � U.G/ and V 0 � V.G/, we
can obtain a bipartite subgraph G0 of G induced by
U 0 and V 0 such that U.G0/ D U 0, V.G0/ D V 0, and
E.G0/ D E.G/ \ .U 0 � V 0/.

Definition 1 ((˛̨̨ , ˇ̌̌)-core) Given a bipartite graph
GD.U; V;E/ and two integers ˛ and ˇ, the .˛, ˇ)-core is
a maximal bipartite subgraphG0 derived from two vertex
sets U 0 and V 0 where U 0� U and V 0� V , satisfying that
the degree of each vertex is not less than ˛ in U 0 and
not less than ˇ in V 0, i.e., 8u 2 U 0, degG0.u/ > ˛ and
8v 2 V 0, degG0.v/ > ˇ.

An example of a bipartite graph is shown in Fig. 1.
The vertices in the graph are divided into two sets,
represented by U (the top part) and V (the bottom
part). The two endpoints of all edges are one from U

and one from V . fu3; u4; u5; v2; v3g is a (3, 2)-score and
fu1; u2; v1g is a (2, 1)-core. According to Definition 1,
an .˛, ˇ)-core in a bipartite graph can be easily computed
by iteratively removing vertices that do not satisfy the
degree constraint, and its time complexity is O.M/ in
the worst case[4]. However, the scale of the real graph
is usually very large, so it will take a lot of time to
calculate an .˛, ˇ/-core. In addition, the parameter ˛ (ˇ)
may frequently change due to the graph evolution, so the
computation algorithm is very expensive, since it needs
to traverse the whole graph each time. In Ref. [9], an
index structure called BiCore was proposed to prestore
all .˛; ˇ/-cores, which guarantees to get an .˛; ˇ/-core

u1

v1

u2
0 1→4 3→4 3→4 3→4

3→43→41

u3 u4 u5

v3v2

Fig. 1 Change in the core number of each vertex when an
edge (u2, v2) is inserted.
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efficiently. However, storing all .˛; ˇ/-cores would cost
huge space. Combining these two methods, it makes us
wonder whether we can compromise the cost of time and
space, and solve the problem of computing .˛; ˇ/-core
more effectively.

Inspired by the widely used k-core model, we find
that the .˛, ˇ/-core has a similar nesting property with
k-core. Specifically, it is known that a .kC1/-core must
be a k-core, and similarly, an .˛, ˇ C 1/-core and an
.˛C 1, ˇ/-core must be an .˛, ˇ/-core. Considering the
core numbers of vertices in general graph, we can also
define the core numbers of vertices in a bipartite graph.
Specifically, two kinds of core numbers are defined for
each vertex.

Definition 2 (̨˛̨.̌ˇ̌/-core number) Given an integer
˛, if a vertex w 2 G can be in an (˛, ˇ)-core but not in
an (˛, ˇ C 1)-core, then the ˛-core number of w is ˇ,
denoted as core˛.w/ D ˇ. Correspondingly, the ˇ-core
number of w is defined when ˇ is given and we denote
it by coreˇ .w/.

Notice that if there is not an .˛, ˇ)-core including w
given an integer ˛, then we say core˛.w/D0. Similarly,
when ˇ is decided and w is not in any .˛, ˇ/-core,
then coreˇ .w/D0. Because core˛.�/ and coreˇ .�/ are
similar, we are going to focus on core˛.�/ for the rest
of the paper. Specifically, when ˛ is explicit, we can
directly represent core˛.w/ as core.w/ for simplification
and call it as the core number of w.

Example 1 In Fig. 1, we take ˛ = 2 as an example to
explain the core number of each vertex before inserting the
edge (u2, v2). Since the degree of u1 is less than 2, it is not
included in any .2;�/-core, and hence core2.u1/ D 0:

For the other vertices, u3; u3; u5; v2; v3 can be in a .2; 3/-
core together, so they all have core2.�/ = 3. At last,
because u2 and v1 are at most in a .2; 1/-core, their core
number is 1 when ˛ = 2.

With the definition of ˛.ˇ/-core number, we only
need to look at the core number of each vertex stored
under all possible ˛ (ˇ) to check whether the vertex
is in an .˛, ˇ/-core or not. For example, if we want
to compute a .2; 3/-core in Fig. 1, we can check the
core2.�/ of each vertex in the graph. All the vertices
whose core numbers are not less than 3 are in the
.2; 3/-core. Hence, it is easy to figure out the .2; 3/-core
in Fig. 1 is fu3; u4; u5; v2; v3g.

In subsequent sections, we will pay attention
to two categories of core computation algorithms,
core decomposition and core maintenance. The core
decomposition problem is to compute the core number

of each vertex in a given bipartite graphG, while the core
maintenance problem is to maintain the core numbers
of vertices when the graph is changed. In particular, we
study the scenarios where a set of edges Es are either
inserted into or deleted from the bipartite graph G, and
they are called the incremental and decremental core
maintenance problems, respectively.

4 Core Decomposition

In this section, we first solve the core decomposition
problem. Specifically, by adapting the algorithm for
.˛; ˇ/-core computation given in Ref. [9], we present an
algorithm for core decomposition in bipartite graphs in
Algorithm 1.

For a bipartite graph G D .U; V;E/, the value of ˛
ranges from 1 to degmax.U /, since the ˛ value represents
the degrees of vertices in U (Line 1). For each ˛, we
calculate the corresponding core˛.�/ for all vertices. For
each fixed ˛, the vertices in U whose degrees are less
than ˛ are removed along with their adjacent edges. The
core numbers of these vertices are set as 0 (Lines 3–
5). Then we need to compute the core numbers of rest
vertices in V and U , respectively.

In the remaining graph G0, the vertices in V are
handled in the order of increasing degrees. Let the
minimum degree in V.G0/ be ˇmin, all vertices in
V whose degrees are not greater than ˇmin and their
adjacent edges are deleted. The core numbers of these
vertices are set as ˇmin (Lines 7–10). For the vertices
in U , once there is a vertex u whose degree is less
than ˛, then we set core˛.u/ = ˇmin and remove u

Algorithm 1:�ComputeCore (G)
Input: An bipartite graph G D .U; V;E/
Output: Core numbers of all vertices in G

1 for ˛ D 1 to degmax.U / do
2 G0  G;
3 while 9u 2 U and degG0.u/ < ˛ do
4 core˛.u/ 0;
5 remove u and its adjacent edges from G0;

6 while G0 ¤ ∅ do
7 ˇmin  minv2G0fdegG0.v/g;
8 while 9v 2 V.G0/ and degG0.v/ 6 ˇmin do
9 core˛.v/ ˇmin;

10 remove v and its adjacent edges from G0;
11 while 9u 2 U.G0/ and degG0.u/ < ˛ do
12 core˛.u/ ˇmin;
13 remove u and its adjacent edges from G0;

14 return core.U [ V /
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and its adjacent edges from G0, since u cannot be in
any .˛; ˇ/-core with ˇ>ˇmin (Lines 11–13). When G0

becomes empty, i.e., all the vertices have been processed,
then we obtain the core number of each vertex under the
fixed ˛. While traversing through each possible value of
˛, the core number of each vertex under each possible ˛
can be computed.

The correctness of Algorithm 1 can be easily obtained
by the definition of ˛-core number. We next show the
efficiency of the algorithm.

Theorem 1 Given a bipartite graph G D .U; V;E/,
the time needed for core decomposition is O..N C
M/ � degmax/ and the space required to store the core
numbers of vertices is O.N � degmax/, where N , M ,
and degmax D minfdegmax.U /; degmax.V /g are the total
number of vertices, the total number of edges, and the
smaller value between maximum degree of vertices in
U and maximum degree of vertices in V , respectively.

Proof Each vertex and each edge only need to
be traversed once, and hence the time for core
decomposition is O.N CM/. To be more efficient, we
can interchange U and V when degmax.U / > degmax.V /,
then ˛ can be at most degmax and we will get the time
complexity of the algorithm. As for the space required,
for each vertex we need to store core numbers for at
most degmax values, and hence the total space used is
O.N�degmax/. �

In reality, the graph may change over time, hence the
core numbers of vertices have to be updated after the
graph changes. Intuitively, we can execute Algorithm 1
to recompute the core numbers of all vertices. However,
though the computation time of core numbers for
each fixed ˛ is only linear, it is still unacceptable
considering that the graph may have billions of vertices
and edges. Hence, we next turn our attention to the core
maintenance problem, i.e., updating the core numbers
of vertices by avoiding recomputations. We will first
present the scenario of a single edge insertion/deletion,
and then propose a batch processing approach to further
improve the efficiency of core maintenance.

5 Core Maintenance with Single-Edge
Insertion/Deletion

In this section, we propose our core maintenance
algorithms in a single-edge insertion/deletion scenario.
Specifically, we will first present the theoretical basis for
core number updates and then give the incremental and
decremental core maintenance algorithms.

5.1 Theoretical basis

Given a bipartite graphG D .U; V;E/, we consider core
maintenance under the scenario that a single edge e is
inserted into/deleted from graph G. Before presenting
the core maintenance algorithms, we need to solve
two problems, quantifying the core number change of
vertices and identifying the vertices which will change
the core numbers after the insertion/deletion.

As for the k-core, it has been shown that after
inserting/deleting an edge, the core number of every
vertex can change by at most 1[26]. However, it becomes
much more complex when considering bipartite graphs,
where the ˛ (ˇ)-core number change is much more than
1. We use the graph in Fig. 1 as an example. When an
edge .u2; v2/ is inserted into the graph, the core number
of u2 changes from 1 to 4. This is because u2 already
has a neighbor v3 that satisfies core2.v3/ > core2.u2/.
Hence when u2 adds another new neighbor with a
large core number, core2.u2/ increases by more than
1. Similarly, it is also possible that the core number of
vertices may decrease by more than 1 after deleting an
edge.

To overcome this difficulty, we propose the concept of
pre-core on vertices in U . Interestingly, the core number
of each vertex in U can change by at most 1 with respect
to their pre-core values.

Definition 3 (pre-core) Let G0 D .U 0; V 0; E 0/ be
the graph obtained after inserting/deleting an edge e D
.u; v/ into/from a bipartite graph G D .U; V;E/. For
a fixed ˛, the pre-core of vertex u 2 U 0 is defined as
arg maxˇ>0fj fv 2 neighG0.u/ j core˛.v/ > ˇg j> ˛g:

In Fig. 1, for ˛ D 2, because u2 has 3 neighbors in
G0 whose core numbers are core.v1/ D 1, core.v2/ D
3, and core.v3/ D 3, so the pre-core of u2 is 3. In
subsequence, when we say that the core number of vertex
u 2 U 0 changes, we mean it changes with respect to its
pre-core value.

Lemma 1 Given a bipartite graph G D .U; V;E/,
let G0 be the graph obtained by inserting/deleting an
edge e D .u; v/ into/from G. For a fixed ˛, the core
number of every vertex changes by at most 1.

Proof We first analyze the case of edge insertion.
For any vi 2 V , assuming that core.vi / D ˇ in G and it
increases by x > 1 after the insertion. By Definition 2,
we know that vi has at least ˇ C x neighbors in G0

whose core numbers are not less than ˇ C x. Because
core.vi / = ˇ before insertion, then vi has at most ˇ
neighbors whose core numbers are not less than ˇ C x
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in G. However, since vi adds at most one neighbor
after inserting an edge (actually only v adds a neighbor),
then vi must need another neighbor u1 2 U whose core
number increases from ˇ to ˇ C x. As for u1, its core
number increase requires another neighbor v1 whose
core number changes from ˇ to ˇ C x (the vertices in
U including u have no new neighbors because of the
pre-core), because u1 has at most ˛ � 1 neighbors in G
whose core numbers are not less than ˇ C x. However,
the reason for the increase of core.v1/ is the same as
vi . Since the size of the whole graph is finite, there
must be a circle where the core number of vertex w
increases because of itself, which is impossible. So the
assumption is not correct, which means the core number
of each vertex v 2 V changes by at most 1. As for any
ui 2 U , assuming core.ui / D ˇ0 before insertion (for u,
this core number refers to its pre-core value). Now that
we know the core number of any vertex in V changes by
at most 1, then ui has at most ˛ neighbors whose core
numbers are not less than ˇ0 C 1 after inserting an edge.
That is to say, core.ui ) 6 ˇ0 C 1 in G0, which proves
that the core number of any vertex in U increases by at
most 1 after insertion.

For the deletion case, suppose there is a vertex w
whose core number decreases by x, where x > 1. If
we add (insert) the deleted edge back, then it causes
core.w/ to increase by x. Since we have shown that
this is not true, the core number of each vertex decreases
by at most 1 after deleting an edge. �

When inserting/deleting an edge e D .u; v/ into/from
a graph G D .U; V;E/, given ˛, let r denote the vertex
with a smaller core number between u and v and k =
core.r/. If a path is rooted in r and each vertex w in
the path satisfies core.w/ = k, then we call it a C -path
of edge e. With this definition, we have the following
lemma.

Lemma 2 Given a bipartite graph G D .U; V;E/,
if we insert/delete an edge e D .u; v/ into/from it and G
becomes G0, then only vertices w in a C -path of e can
change their core numbers.

Proof Without loss of generality, we assume that
k D core.u/ 6 core.v/ and analyze how u affects other
vertices. For each w 2 neighG0.u/, we analyze the core
number change of w in two cases. If core.w/ > k, then
u cannot be in an .˛; k C 2/-core with w, as its core
number increases by at most 1 as stated in Lemma 1,
so u can not help w to increase w’s core number. If
core.w/ < k, then the inserted edge also cannot cause
core.w) to increase, because u has already been the

vertex in G that supports the current core number of
w. To sum up, only the vertices in the C -path of e are
affected by u, which means their core numbers may
increase.

Similarly, we can easily show that removing an edge
only decreases the core numbers of those vertices in the
C -path of e. �

With Lemmas 1 and 2, we can start from either
vertex u or v and identify those vertices whose core
numbers may change when an edge is inserted/deleted.
Once all these vertices have been identified, we will
increase/decrease their core numbers by 1. Based on
these observations, we next present core maintenance
algorithms for scenarios of single-edge insertion and
deletion, respectively.

5.2 Incremental core maintenance

Algorithm. The detailed algorithm to maintain the
core number of each vertex after inserting an edge is
given in Algorithm 2. After inserting .u; v/ into G, it
iterates over all values of ˛ from 1 to degG0.u/, since
the largest value of ˛ that u can have in an .˛; ˇ/-core
is its own degree (Lines 1 and 2). We set Q and C
to preserve the vertices to be checked and the vertices
whose core numbers might increase, respectively (Line
3). To prevent repetitive processing of a vertex, we set
visitedŒ � to mark the vertices that have been visited (Line
4). For each possible ˛, we aim to find the vertices in
the graph whose core numbers change after inserting an
edge and then increase their core numbers by 1.

According to Lemma 1, we need to compute the
pre-core˛.u/, to make sure that core˛.u/ changes by
at most 1 (Line 5). We will set r be the vertex with
the smaller core number between u and v and add it
to Q (Lines 6–8). When a vertex x is ejected from Q,
we insert it to C and set visitedŒx� as true (Lines 9–
11). For each vertex x in Q, we are going to check its
each neighbor y, to see if u’s core number is likely to
increase. If core˛.y/ > k or y is in C , then y must
support the increase of core.x/, because y is already in
an .˛; k C 1/-core or core˛.y/ is supposed to increase
from k to k C 1. Besides that, if core˛.y/ D k and
is not visited, then y is also likely to help core˛.x/ to
increase. So when the neighbor y of x satisfies one of
these two conditions, SN.x/ increases by 1 (Lines 12–
16). When SN.x/ is larger than the threshold k, it
means that it is possible for core˛.x/ to increase. Based
on Lemma 2, each neighbor y of x with core˛.y/=
core˛.x/ and not visited is pushed into Q for further
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Algorithm 2:� AnEdgeInsert (G, e, core (U[[[V))
Input: A bipartite graph G D .U; V;E), an edge e D .u; v/

to be inserted and core.U [ V / is the core number
of each vertex under different ˛

Output: The updated core number for each vertex
1 G0 insert .u; v/ into G;
2 for ˛ = 1 to degG0.u/ do
3 Q empty queue; C  ∅;
4 visitedŒw� false and SN.w/ D 0 for each

w 2 .U.G0/ [ V.G0//;
5 core˛.u/ pre-core˛.u/;
6 if core˛.u/ 6 core˛.v/ then r  u;
7 else r  v;
8 Q:push.r/; k = core˛.r/;
9 while Q ¤ ∅ do

10 x Q:pop./; Q1  Q;
11 C:insert.x/; visitedŒx� true;
12 for y 2 neighG0.x/ do
13 if core˛.y/ > k or y 2 C then SN.x/CC;
14 else if core˛.y/ = k and not visitedŒy� then
15 SN.x/CC;
16 if y … Q1 then Q1:push.y/;

17 if x 2 V.G0/ and SN.x/ > k or x 2 U.G0/ and
SN.x/ > ˛ then

18 Q Q1;

19 else
20 DfsDelete (x; C;G0; core˛.�/; ˛);

21 for each w 2 C do
22 core˛.w/CC;

23 return core.U 0 [ V 0/
24 Precedure DfsDelete (x; C;G; core; ˛):
25 C .remove(x);
26 for w 2 neighG.x/ do
27 if w 2 C and core.w/ D core.x/ then
28 SN.w/ � �;
29 if w 2 V and SN.w/ 6 core.w/ or w 2 U and

SN.w/ < ˛ then
30 DfsDelete (w;C;G; core; ˛);

checking (Lines 17 and 18). Once SN.x/ is not enough
to support the increase in the core number of x, the
procedure DfsDelete, which is DFS process, is invoked
to delete the vertices from C that cannot increase their
core numbers (Lines 19 and 20). While Q becomes
empty, we have dealt with all the vertices whose core
number might change. Finally, all the vertices in C that
have not been deleted will increase their core numbers
by 1 (Lines 21 and 22).

The procedure DfsDelete removes the vertex x from
C , since it does not satisfy the increasing condition
(Line 25). For each neighbor w of x, if it is in C and

core.w/ D core.x/, we will reduce the SN.w/ by 1,
since y has lost a neighbor x to support its core number
increase (Lines 26–28). When w does not have enough
neighbors to hold its core number increase, DfsDelete
will be invoked again to recursively remove w (Lines 29
and 30).

Performance analysis. We will analyze the
correctness and efficiency of Algorithm 2. Firstly, some
notations are defined, which will be used in measuring
the time complexity of the algorithm.

When an edge eD.u;v/ is inserted into the graph
GD.U;V;E/, for each ˛, let U 1˛ and V 1˛ be the set of
vertices whose core numbers are equal to core˛.e/ in
U and V , respectively, where core˛.e/Dminfcore˛.u/;
core˛.v/g. Let UI D max16˛6degG0 .u/ U

1
˛ and VI D

max16˛6degG0 .v/ V
1
˛ . E1˛ is the set of edges in

the subgraph induced by U 1˛ to V 1˛ . Let EI D

max16˛6degG0 .u/E
1
˛ .

Let N ˛
U D maxui2U 1˛ fSN0.ui / � ˛; 0g, where

SN0.ui / denotes the SN value of ui when ui is first
processed. Let NU = max16˛6degG0 .u/N

˛
U . Similarly,

we define N ˛
V D maxvi2V 1˛ fSN0.vi / � core˛; 0g and

NV D max16˛6degG0 .u/N
˛
V .

Theorem 2 When inserting an edge e D .u; v/

into graph G, Algorithm 2 can correctly update the
core numbers of all vertices and the time complexity
is O.degG0.u/ � .EI C UI �NU C VI �NV //.

Proof For each ˛, Algorithm 2 first finds the vertices
whose core numbers change and then increases their
core numbers by 1. In the algorithm, the core numbers
of u and v are compared and the one with smaller core
number is labeled as r . The algorithm traverses from
r and pushes all vertices w with core˛.w/ = core˛.r/
that are reachable from r through a C -path to Q for
further identification. According to Lemma 2, only those
vertices may change their core numbers.

If core˛.w/ = core˛.r/ = k and core˛.w/ increases
after insertion, then w must satisfy one of the following
conditions: (1) w has a new neighbor whose core
numbers are at least k C 1. (2) Some neighbors of w
have their core numbers increased from k to k C 1.
In the algorithm, SN.w/ records the number of these
neighbors that support w’s core number increase. If
SN.w/ 6 core˛.w/, it is obvious that w’s core number
will not increase. Once a vertex is identified not to
change its core number, the SN values of other vertices
are updated by invoking DfsDelete. After all the vertices
whose core numbers might change have been processed,
the subgraph induced by the vertices in C that are not
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deleted constitutes an .˛; k C 1/-core, as the SN value
of these vertices is at least k C 1. Then by Lemma 1, all
these vertices will increase the core number by 1. Hence,
the algorithm can correctly update the core numbers of
vertices.

Next, we analyze the time complexity. Firstly, there
are degG0.u/ iterations in the algorithm execution. For
each iteration, since only the vertices w with core.w/ D
k are reachable from r through a C -path, and will be
processed, so the number of vertices and edges that the
algorithm visits are at mostUICVI andEI , respectively.
For each vertex, except for the first calculation of the
SN value when ejected from Q, the subsequent visits
will decrease its SN value by 1. Therefore, the vertex
u 2 U .v 2 V / can be visited at most N ˛

U (N ˛
V ) times

for a certain ˛, since it will be removed when its SN
is smaller than ˛ .core˛/. Then we can see that the
vertex u 2 U .v 2 V / will be visited at most NU (NV )
times in any iteration. To sum up, the time complexity
of Algorithm 2 can be obtained. �

Example 2 Here is an example to illustrate the
execution of Algorithm 2 in Fig. 1 at ˛ D 2. We first
insert .u2; v2/ into the graph and compute pre-core.u2/D
3 and kD 3. Since core.u2/ D core.v2/, without loss
of generality, let r D u2. We push u2 into Q, and then
set visitedŒu2� D true to avoid repeated visits. We can
easily get that SN.u2/ D 2, because the core numbers
of its neighbors v2 and v3 are both 3 and not visited.
Since SN.u2/ > ˛ and core.v2/ D core.v3/ D k, we
will next push v2 and v3 to Q. As for v2, it can be
obtained that SN.v2/ D 4 > k, so v2 will not be deleted,
and we are going to process v2’s neighbors. When all
the vertices in Q are processed, we find that the vertices
that are still in C are fu2; v2; u3; v3; u4; u5g. As a result,
we increase their core numbers by 1, to give the value 4
and Algorithm 2 terminates.

5.3 Decremental core maintenance

Similar to Algorithm 2 of core maintainance after single-
edge insertion, we here give the core maintenance
algorithm after deleting an edge.

Algorithm. The detailed algorithm to update the core
number of each vertex after removing an edge is given
in Algorithm 3. After deleting .u; v/ from G, it iterates
over all possible values of ˛ from 1 to degGu, since
the largest value of ˛ can affect the .˛; ˇ/-core while
deleting edge .u; v/ is the degree of u in G (Lines 1
and 2).

Algorithm 3:� AnEdgeDelete (G, e, core (U[[[V))
Input: A bipartite graph G D .U; V;E), an edge e D .u; v/

to be deleted, and core.U [ V / is the core number of
each vertex under different ˛

Output: The updated core number for each vertex
1 G0 delete .u; v/ from G;
2 for ˛ D 1 to degG.u/ do
3 Q empty queue; C  ∅;
4 visitedŒw� false and SN.w/ D 0 for each

w 2 .U.G0/ [ V.G0// ;
5 if core˛.u/ 6 core˛.v/ then
6 Q:push.u/; k = core˛.u/;

7 Lines 6–7 by replacing u with v;
8 while Q ¤ ∅ do
9 x Q:pop./;

10 visitedŒx� true;
11 for each y 2 neighG0.x/ do
12 if core˛.y/ > k and y … C then SN.x/CCI

13 if x 2 V.G0/ and SN.x/ < k or x 2 U.G0/ and
SN.x/ < ˛ then

14 DfsUpdate (x; C;G0; core˛.�/; ˛; visitedŒ�;Q);

15 for each w 2 C do
16 core˛.w/ � �;

17 if core˛.u/ > pre-core˛.u/ then
18 core˛.u/ pre-core˛.u/;

19 Procedure DfsUpdate (x; C;G; core; ˛; visitedŒ�;Q):
20 C:insert.x/;
21 for w 2 neighG.x/ do
22 if not visitedŒw� and core.w/ D core.x/ and w … Q

then Q:push.w/I
23 if visitedŒw� and w … C and core.w/ D core.x/ then
24 SN.w/ � �;
25 if w 2 V and SN.w/ < core.x/ or w 2 U and

SN.w/ < ˛ then
26 DfsUpdate .w; C;G; core; ˛; visitedŒ�;Q/

In each iteration of ˛, the algorithm process is similar
to Algorithm 2. The difference is that it compares
core˛.u/ and core˛.v/ to determine r instead of
computing pre-core˛.u/ (Lines 5–7). When dealing
with each vertex x in Q, it computes SN.x/ value by
counting x’s neighbors whose core numbers are not less
than k and are not in C (Lines 8–12). Once SN.x/ is
not enough to keep the current core number of x, the
procedure DfsUpdate is invoked to record the vertices
whose core numbers are going to decrease (Lines 13
and 14). Finally, all the vertices in C that have not been
deleted will decrease their core numbers by 1 (Lines
15 and 16). Specifically, if core˛.u/ after deletion is
greater than pre-core˛.u/, we will set the core˛.u/ as
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pre-core˛.u/, since the core.u/ is at most pre-core(u)
according to Definition 3 (Lines 17 and 18).

The DfsUpdate first adds x to C and then checks its
each neighbor (Lines 20 and 21). For those vertices w
with core.w/ D core.x/, we will discuss them in two
cases. If w is not visited, then it will be pushed into Q
for further detection (Line 22). Otherwise, if it has been
visited but not in C , we decrease SN.w/ by 1. Once
SN.w/ is less than ˛ or core.x/, the DfsUpdate will be
recursively called (Lines 23–26).

Performance analysis. We will analyze the
correctness and efficiency of Algorithm 3. Similar to
Algorithm 2, we first give some useful notations.

Given a graph GD.U; V;E/, we delete an edge
eD.u; v/ from it. For each ˛, let U 2˛ and V 2˛ be the set of
vertices whose core numbers are equal to core˛.e/ in U
and V , respectively, where core˛.e/ D minfcore˛.u/;
core˛.v/g. Let UD D max16˛6degG.u/ U

2
˛ and VD D

max16˛6degG.v/ V
2
˛ . Let E2˛ be the set of edges in

the subgraph induced by U 2˛ to V 2˛ . Let ED D

max16˛6degG.u/E
2
˛ .

Let QN ˛
U D maxui2U 2˛ fSN0.ui /�˛; 0g, where SN0.ui /

denotes the SN value of ui when ui is first processed.
Let QNU D max16˛6degG.u/

QN ˛
U . Similarly, we define

QN ˛
V D maxvi2V 2˛ fSN0.vi / � core˛; 0g and QNV D

max16˛6degG.u/
QN ˛
V .

Using the notations above and an analysis similar to
the single-edge insertion case, we can easily obtain the
following theorem.

Theorem 3 When deleting an edge e D .u; v/ from
graph G, Algorithm 3 can update the core numbers of
vertices inO.degG.u/� .EDCUD� QNU CVD� QNV //
time.

6 Core Maintenance with Multiple-Edge
Insertion/Deletion

In this section, we consider a more general scenario
where multiple edges are inserted/deleted, and present
batch processing algorithms to handle multiple-edge
insertion/deletion.

As discussed before, the core number change
becomes much more complex when multiple edges
are inserted/deleted together, because the core number
change of a vertex can be affected by multiple
inserted/deleted edges. In the case of multiple-edge
insertion/deletion, it is hard to determine the exact
change of the core number value and to identify the

set of vertices that may change the core numbers.
Let us consider core number of each vertex in Fig. 1

at ˛ D 1, assuming .u2; v2/ has been inserted. It can
be easily concluded that core.u1/ D core.v1/ D 2 and
all the other vertices have core numbers of 4. If we
remove the edge set Es D f.u2; v1/; .u2; v2/; .u3; v2/;
.u4; v3/; .u5; v3/g from the graph, then it is difficult to
tell which vertices have their core numbers changed. In
fact, core numbers of all the vertices have changed. In
addition, we can know that each vertex inU has pre-core
value that is equal to its original core number. However,
there are many vertices whose core numbers decrease by
more than 1, such as core.u3/, which goes from 4 to 2
after deletion.

To overcome these difficulties, we here propose a
structure of inserted/deleted edges, called V -independent
edge set, to solve the challenge of determining the
core number change of vertices, by showing that the
insertion/deletion of a VES can cause the core number
of each vertex to change by at most 1. Based on this
observation, we propose our batch processing algorithms,
which divides the inserted/deleted edges into multiple
VESs and handles these VESs iteratively.

In subsequence, we first introduce the structure of
V -independent edge set and give some theoretical
results, and then present the core maintenance algorithms
for both incremental and decremental scenarios.

6.1 Theoretical basis

Given a set of edges Ei D .e1; e2; :::; ep/, where ei D
.ui ; vi /, let Uc denote the set of all vertices ui 2 U
connected to Ei .

Definition 4 (V-independent edge set (VES))
Given a bipartite graph G D .U; V;E/, let G0 D .U 0;

V 0; E 0/ be the graph after inserting/deleting a set of
edges Es into/from G. If an edge set Ei � Es satisfies
that for any vertex in V 0, it has at most one neighbor in
Uc , then we call Ei as a V -independent edge set.

Here we give an example to explain the definition
of the V -independent edge set. A bipartite graph
is shown in Fig. 2, where dotted lines represent

u3u2u1 u4 u5 u6

v5v4v3v2v1

Fig. 2 An example for V-independent edge set.
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edges in the graph that need to be updated (inserted/
deleted). According to the definition above, EiD
f.u1; v1/; .u2; v3/; .u3; v5/; .u4; v3/; .u6; v4/g and UcD
fu1; u2; u3; u4; u6g. Let E0 D f.u1; v1/; .u2; v3/; .u3;
v5/; .u6; v4/g, then it is easy to conclude thatE0 is a VES
because each vertex in fv1; v3; v4; v5g has at most one
neighbor in Uc . Next, we prove that if inserting/deleting
a VES into/from graphG, the core number of each vertex
changes by at most 1 (for some vertices u 2 U , their core
numbers change with respect to their pre-core value).

Lemma 3 Let G0 D .U 0; V 0; E0/ be the graph
obtained by inserting/deleting a V -independent edge
set Ei into/from graph G D .U; V;E/. Then for each
w 2 .U 0 [ V 0/, core.w/ can change by at most 1.

Proof We first analyze the insertion of edges, and
discuss the vertices in U 0 and V 0, respectively. For each
vertex v 2 V 0, we assume that core.v/ increases from ˇ

to ˇ C x after inserting a VES, where x > 1. According
to Definition 4, v adds at most one new neighbor ui in
G0. So v still needs another neighbor u1 whose core
number goes from ˇ to ˇ C x in G0. As for u1, it has
at most ˛ � 1 neighbors in G whose core numbers are
not less than ˇ C x and has no new neighbors because
of pre-core, so its increasing in core number requires
another neighbor v1 whose core number changes from
ˇ to ˇ C x. However, the reason for the increase of
core.v1/ is the same as vi . Similar to the analysis in
Lemma 1, we can prove that this assumption is wrong,
which means the core number of each vertex v 2 V
changes by at most 1. As for any ui 2 U 0, assume
core.ui/ D ˇ0 before insertion (for some vertices in U 0,
it refers to its pre-core value). Since the core number
of any vertex in V 0 changes by at most 1, then ui has at
most ˛ neighbors whose core numbers are not less than
ˇ0C 1 after inserting an edge. That is to say, core.ui/ 6
ˇ0 C 1 in G0, which proves that the core number of any
vertex in U 0 increases by at most 1 after inserting a VES
into the graph.

In the case of edge deletion, if there is a vertex w
whose core number can reduce by x, where x > 1. When
we add back the deleted edges to G0, then core.w/ will
increase by x after inserting a VES, which contradicts
the previous conclusion. So it is easy to say that the
core numbers of all vertices change by at most 1 when
deleting a V -independent edge set. �

6.2 Incremental core maintenance

Algorithm. The detailed algorithm to maintain each
vertex’s core number with the insertion of multiple edges

is given in Algorithm 4. It is executed until all edges
in Es have been processed (Line 1). In each iteration,
the algorithm calls the subroutine FindInsertEdges to
find a V -independent edge set Ei and deletes it from Es
(Lines 2–4). For each possible ˛, the InsertChangedSet
algorithm is invoked to find the vertices whose core
numbers will increase by 1 after insertion and change
their core numbers (Lines 5–9).

Algorithm 5 aims to find a V -independent edge set Ei
from all unprocessed edges in Es . Basically, it sets two
parameters, addNŒ � marking the connection between a

Algorithm 4:�MultiEdgesInsert (G, Es, core (U[[[V))
Input: A bipartite graph G D .U; V;E/, a set of edges Es to

be inserted, and core.U [ V / is the core number of
each vertex under different ˛

Output: The updated core number for each vertex
1 while Es ¤ ∅ do
2 Ei  FindInsertEdges.G;Es);
3 G0  insert Ei into G ;
4 delete Ei from Es ;
5 for ˛ = 1 to maxDi do
6 Vchanged  ∅;
7 Vchanged  InsertChangedSet.G0; Ei ; core˛.�/; ˛);
8 for each w 2 Vchanged do
9 core˛.w/ core˛.w/C 1;

Algorithm 5:� FindInsertEdges (G, Es)
Input: A bipartite graph G D .U; V;E/, a set of edges Es to

be inserted
Output: A V -independent edge set of Es

1 Ei  ∅; Uc  ∅;
2 for each v 2 V do
3 addNŒv� 0;

4 flag = false;
5 for each e D .u; v/ 2 Es do
6 flag true;
7 if u … Uc then
8 for each vi 2 neigh.u/ and v do
9 if addNŒvi � ¤ 0 or addNŒv� ¤ 0 then

10 flag = false;
11 break;

12 else if addNŒv� ¤ u and addNŒv� ¤ 0 then
13 flag D false;

14 if flag then
15 add e into Ei ;
16 if u … Uc then
17 Uc .insert(u); addNŒv� D u;
18 set addNŒw� D u for each w 2 neigh.u/;

19 return Ei
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node in V and the selected edges, and flag indicating
whether an edge is selected or not (Lines 2–4). For each
endpoint u of edge e D .u; v/ in Es , there are two cases
for the algorithm execution. When u is not in Uc , then it
checks if u’s neighbors and v are already connected to
other vertices in Uc (Lines 7 and 8). Once any vertex is
found whose addNŒ � is not 0, the algorithm will set flag
to false indicating this edge cannot be selected (Lines
9–11). Similarly, when u has been in Uc , the algorithm
will check if v is already connected to other vertices in
Uc (Lines 12 and 13). When flag is true, the edge e will
be added into Ei (Lines 14 and 15). If u is not in Uc ,
it will add u to Uc and update addNŒ � D u for each
neighbor of u and v (Lines 16–18).

After the VES is found, Algorithm 6 is invoked
to find all vertices whose core numbers will change

Algorithm 6:� InsertChangedSet (G, Ei, core, ˛̨̨)
Input: A bipartite graph G D .U; V;E/, a set of edges Ei to

be inserted, and core is the core number of each
vertex under a particular ˛

Output: The set of vertices whose core number changes
after inserting the edge set Ei .

1 Q empty queue;
2 C  ∅;
3 if Q ¤ ∅ then
4 for each w 2 .U [ V / do
5 visitedŒw� false;
6 SN.w/ D 0;

7 for each .ui ; vi / 2 Ei do
8 core.ui / pre-core.ui /;
9 if core.ui / 6 core.vi / and ui … Q then

10 Q:push.ui /

11 else if core.vi / < core.ui / and vi … Q then
12 Q:push.vi /

13 while Q ¤ ∅ do
14 x  Q:pop./; Q1  Q;
15 C:insert.x/;
16 visitedŒx� true;
17 for each y 2 neigh.x/ do
18 if core.y/ > core.x/ or core.y/ D core.x/ and

y 2 C then
19 SN.x/CC;

20 else if core.y/ D core.x/ and not visitedŒy� then
21 SN.x/CC;
22 if y … Q1 then Q1:push.y/;

23 if x 2 V and SN.x/ > core.x/ or x 2 U and
SN.x/ > ˛ then

24 Q Q1;

25 else DfsDelete (x; C;G; core; ˛);

26 return C

after insertion. Similar to Algorithm 2, we first do the
initialization (Lines 1–6). For each edge .ui ; vi / to be
inserted, it computes the pre-core of ui and then adds
the endpoint with the smaller core number to Q (Lines
7–12). When a vertex x is ejected fromQ, the algorithm
inserts it into C and sets visitedŒx� as true (Lines 14–
16). For each vertex x in Q, each of its neighbors y is
checked to see if x’s core number is likely to increase.
The calculation of SN value is the same as the case of
single-edge insertion (Lines 17–22). If SN.x/ reaches
the threshold, i.e., SN.x/ is greater than core.x/ when
x in V or is not less than ˛ when x in U , then each
neighbor y of x which satisfies core˛.y/ = core˛.x/
and is not visited is pushed into Q for further checking
(Lines 23 and 24). Otherwise, the procedure DfsDelete
is invoked to remove x from C , since it is impossible for
core.x/ to increase (Line 25).

Performance analysis. To analyze the time
complexity of the algorithm, we first provide some
useful notations. Let �I be the maximum number of
edges inserted for each vertex in V . By the definition
of VES, it is easy to see that the inserted edges can
be divided into �I V -independent edge sets. When
a VES Ei is inserted into graph G D .U; V;E/, the
maximum degree of all vertices in Uc is denoted
by maxDi and maxDI D max16i6�ImaxDi . For
each ˛, let U 3˛ and V 3˛ be the set of vertices
whose core numbers are equal to core.ei / in U

and V , respectively, where ei D .ui ; vi / 2 Ei and
core˛.ei / D minfcore˛.ui /; core˛.vi /g. Let QUI D

max16 ˛ 6maxDI U
3
˛ and QVIDmax16 ˛ 6maxDIV

3
˛ . Let

E3˛ be the set of edges in the subgraph induced by U 3˛ to
V 3˛ , and let QEI D max16˛6maxDI E

3
˛ .

LetM ˛
U = maxui2U 3˛ fSN0.ui /�˛; 0g, where SN0.ui /

denotes the SN value of ui when ui is processed for the
first time. Let MU = max16˛6maxDI M

˛
U . Similarly, we

define M ˛
V = maxvi2V 3˛ fSN0.vi / � core˛; 0g and MV =

max16˛6maxDI M
˛
V .

The following theorem gives the time complexity of
Algorithm 4 and proves its correctness.

Theorem 4 Algorithm 4 can correctly update the
core numbers of all vertices after inserting an edge set
Es inO.�I�.maxDI�.. QEIC QUI�MUC QVI�MV ////

time.
Proof Algorithm 4 is executed in iterations and

each iteration includes two parts. The first part finds
a V -independent edge set from all unprocessed edges
in Es by executing Algorithm 5. According to Lemma
3, each vertex can change its core number by 1 after
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inserting a V -independent edge set into the graph.
As for the second part, we invoke Algorithm 6 to

identify the vertices whose core number can increase
after insertion for each ˛. It starts from the inserted edges
and adds each endpoint with the smaller core number to
Q for further identification. Similar to Algorithm 2, the
algorithm uses SN.w/ to record the number of neighbors
that support w’s core number increase. If SN.w/ 6
core˛.w/, it is obvious that w’s core number will not
increase. Once a vertex is identified not to change its
core number, the SN values of other vertices are updated
by invoking DfsDelete. After all the vertices whose core
numbers might change have been processed, the vertices
in C that are not deleted will increase their core numbers,
as these vertices have enough neighbors to support them
in an .˛; ˇ/-core with a larger ˇ value. When all edges
in Es are handled, the potential vertices are visited and
the ones that cannot increase core numbers are removed.
All of the above ensure the correctness of Algorithm 4.

As for the time complexity, it is similar to the case of
single-edge insertion. The difference is that Algorithm 4
has to deal with multiple edges in �I batches. For each
batch, the algorithm needs to iterate at most max Di

times. Based on Lemma 2, when inserting an edge
e D .u; v/ (assuming core˛.u/ 6 core˛.v/), only the
vertices w with core.w/ = core.u/ are reachable from u

through a C -path, and can change their core numbers.
Therefore, when inserting a VES into the graph, the
number of vertices and edges visited by Algorithm 4
is at most UI CVI and EI , respectively. For each vertex,
except for the first SN value calculation when ejected
from Q, all the subsequent visits will decrease its SN
value by 1. So for the vertex u 2 U.v 2 V /, it can be
visited by at mostNu.Nv/ times, since it will be removed
from C when its SN is smaller than ˛ .core˛/. Then we
can know that the vertex u 2 U .v 2 V / will be visited
at mostNU (NV ) times in any iteration. Therefore, it can
be concluded that the time complexity of the Algorithm 4
is the same as stated in Theorem 4. �

Discussion. A point we would like to emphasize
is that the batch processing algorithm can greatly
reduce redundant computations. This is because when
processing the insertion of a VES , once a vertex is
determined to increase its core number, it is unnecessary
to visit this vertex again, as it will not increase the core
number anymore. We illustrate this observation with
the graph in Fig. 1. Assuming that Es D f.u2; v1/;
.u2; v2/; .u2; v3/g is the edge set that needs to deal
with. If we insert these edges one by one using

Algorithm 2, then we need to visit vertex u2 three
times, vertex u1 and v1 two times, and the rest vertices
once. However, since the Es satisfies the conditions of
V -independent edge set, so we can process these edges
using one iteration and visit all vertices in U and V only
once. Thus, the time consumed is significantly reduced.

6.3 Decremental core maintenance

Algorithm. The detailed algorithm to maintain each
vertex’s core number when multiple edges are deleted
is given in Algorithm 7. It is executed until all edges in
Es have been processed (Line 1). In each iteration, the
algorithm calls the subroutine FindDeleteEdges to find
a V -independent edge set Ei of Es (Line 2). Then for
each ˛, the DeleteChangedSet algorithm is invoked to
find the vertices whose core numbers will decrease by
1 after deleting Ei and set their core numbers (Lines 5–
9). Specifically, for those vertices in U connected to Ei ,
their current core numbers are compared with pre-core,
because deleting Ei may cause their core numbers to
change by more than 1 (Lines 10–12).

Algorithm 8 finds a VES from the unprocessed edges
in Es . The algorithm is similar to Algorithm 5 except
that for each edge e D .u; v/, we need not to deal with
v, because v is no longer a neighbor of u after deletion.
When finding the vertices whose core number changes in
Algorithm 9, the difference is that it compares core˛.u/
with core˛.v/ instead of computing pre-core˛.u/ for
each edge e D .u; v/ (Lines 3–6). When dealing with
each vertex x in Q, the process of computing SN.x/
value is similar to Algorithm 3 (Lines 11–17). Once the
SN.x/ is not enough to keep the current core number

Algorithm 7:�MultiEdgesDelete (G, Es, core (U[[[V))
Input: A bipartite graph G D .U; V;E/, a set of edges Es to

be deleted, and core (U [ V ) is the core number of
each vertex under different ˛

Output: The updated core number for each vertex
1 while Es ¤ ∅ do
2 Ei  FindDeleteEdges.G;Es);
3 G0  delete Ei from G;
4 delete Ei from Es ;
5 for ˛ D 1 to maxDd do
6 Vchanged  ∅;
7 Vchanged DeleteChangedSet .G0; Ei ; core˛.�/; ˛);
8 for each w 2 Vchanged do
9 core˛.w/ core˛.w/ � 1;

10 for each ui 2 Uc do
11 if core˛.ui / > pre-core˛.ui / then
12 core˛.ui / = pre-core˛.ui /;
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Algorithm 8:� FindDeleteEdges (G, Es)
Input: A bipartite graph G D .U; V;E/, a set of edges Es to

be deleted
Output: A neighbor edge set of Es

1 Ei  ∅; Uc  ∅;
2 for each v 2 V do
3 remNŒv� 0;

4 flag = false;
5 for each e D .u; v/ 2 Es do
6 flag true;
7 if u … Uc then
8 for each vi 2 neigh.u/ do
9 if remNŒvi � ¤ 0 then

10 flag D false;
11 break;

12 if flag then
13 add e into Ei ;
14 if u … Uc then
15 Uc :insert.u/;
16 set remNŒw� D u for each w 2 neigh.u/;

17 return Ei

Algorithm 9:� DeleteChangedSet (G, Ei, core, ˛̨̨)
Input: A bipartite graph G D .U; V;E/, a set of edges Ei to

be deleted, and core is the core number of all vertices
under a particular ˛

Output: The set of vertices whose core number changes
after deleting the edge set Ei .

1 Q empty queue;
2 C  ∅;
3 for each .ui ; vi / 2 Ei do
4 if core.ui / 6 core.vi / and ui … Q then
5 Q:push.ui /

6 Lines 4–5 by replacing ui with vi ;

7 if Q ¤ ∅ then
8 for each w 2 .U [ V / do
9 visitedŒw� false;

10 SN.w/ D 0;

11 while Q ¤ ∅ do
12 x  Q:pop./;
13 visitedŒx� true;
14 for each y 2 neigh.x/ do
15 if core.y/ > core.x/ then SN.x/CCI
16 else if core.y/ D core.x/ and y … C then
17 SN.x/CC;

18 if x 2 V and SN.x/ < core.x/ or x 2 U and
SN.x/ < ˛ then

19 DfsUpdate .x; C;G; core; ˛; visitedŒ�;Q);

20 return C

of x, the procedure DfsUpdate is invoked to record
core˛.x/ that is going to decrease (Lines 18 and 19).

Performance analysis. Firstly, we will give some
notations that are similar to the case of inserting multiple
edges and then the correctness and time complexity of
Algorithm 7 can be easily obtained.

Let �D be the maximum number of edges deleted
from each vertex in V . Similarly, we can get that the
number of VESs is �D . When a VES Ei is deleted
from graph G D .U; V;E/, the maximum degree of all
vertices in Uc is denoted by maxDd and maxDD D
max16i6�D maxDd . For each ˛, let U 4˛ and V 4˛ be the
set of vertices whose core numbers equal to core.ei /
in U and V , respectively, where ei D .ui ; vi / 2 Ei
and core˛.ei / D minfcore˛.u/; core˛.v/g. Let QUD D
max16˛6maxDD U

4
˛ and QVDDmax16˛6maxDD V

4
˛ . Let

E4˛ be the set of edges in the subgraph induced by U 4˛ to
V 4˛ and let QED D max16˛6maxDD E

4
˛ .

Let QM ˛
U Dmaxui2U 4˛ fSN0.ui /�˛; 0g, where SN0.ui /

denotes the SN value of ui when ui is processed for the
first time. Let QMU D max16˛6maxDD

QM ˛
U . Similarly,

we define QM ˛
V D maxvi2V 4˛ fSN0.vi / � core˛; 0g and

QMV = max16˛6maxDD
QM ˛
V .

Theorem 5 Algorithm 7 can correctly update the
core numbers of all vertices after deleting an edge set Es
inO.�D�.maxDD�.. QEDC QUD� QMUC QVD� QMV ////

time.

7 Experiment

In this section, we conduct empirical studies to evaluate
the performances of our proposed algorithms. We
evaluate the algorithms on 5 real-world graphs and
2 synthetic graphs, real-world graphs are shown in
Table 1. We first evaluate the running time of core
decomposition, and then evaluate the efficiency of our
proposed core maintenance algorithms on real graphs by
computing the average processing time per edge while
changing the number of edges inserted/deleted. We also
compared the single-edge insertion/deletion algorithms
and the multiple-edge insertion/deletion algorithms with
the approach of recomputing the core numbers of
all vertices, to assess the effectiveness of our core
maintenance algorithm. Finally, we use synthetic graphs
to evaluate the scalability of the proposed algorithms.

All programs were implemented in Java language and
compiled with IntelliJ IDEA, and all experiments were
performed on a machine with Intel Core i5-7500
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Table 1 Real-world graph datasets and core decomposition time.
Dataset Nu Nv M degmax .U / degmax .V / ComputeCore .s/

OC (opsahl-collaboration) 1.7�104 2.2�104 0.59�106 116 18 0.7
DW (dbpedia-writer) 8.9�104 4.6�104 0.14�103 42 246 2.8
BC (BookCrossing) 0.4�106 0.1�106 1.2�106 13 601 2502 1737
BT (bibsonomy-2ti) 0.2�106 0.77�106 2.6�106 182 908 341 1017
WE (Wikipedia-en) 1.85�106 0.18�106 3.8�106 54 11 593 195

3.41 GHz and 8 GB DDR3-RAM in Windows 10. The
graphs for the experimental section are generated by a
python program.

Dataset. All the real-world graphs are downloaded
from KONECT�. The opsahl-collaboration dataset is
extracted from Openflights.org data, the dbpedia-writer
dataset is extracted from DBpedia, the BookCrossing
dataset contains information about books read by
members of the BookCrossing community, the
bibsonomy-2ti dataset is a bipartite tagCpublication
network from BibSonomy, and the Wikipedia-en dataset
is a bipartite edit network of the English Wikipedia.
For the synthetic bipartite graphs, the basic idea is to
randomly divide the vertices of a general graph into two
groups and then delete the edges connecting the vertices
in the same group. To generate general graphs, we use
Stanford Network Analysis Platform system with two
models: the Watts-Strogatz (WS) model[34], which is
a random graph with small-world network properties
such as clustering and short average path length, and the
Gnm-Random (GR) model[35] that generates a random
graph with a specified number of vertices and edges. All
the synthetic graphs have vertices in the range of 215 to
219, and the maximum degree is approximately 13 for
GR graphs and 11 for WS graphs, respectively.

7.1 Performance evaluation

We first analyze the experimental results of the core
decomposition algorithm and then evaluate the impact of
the size of inserted/deleted edges on the single-edge and
multiple-edge insertion/deletion algorithms, respectively.
Finally, we analyze the influence of the graph size on the
core maintenance algorithms. The first two experiments
are conducted on real-world graphs, and the third one is
on synthetic graphs.

The time of core decomposition on real graphs is
given in Table 1. In general, the time of Algorithm 1
increases as the graph grows. But there are exceptions
because the time complexity is also influenced by the
vertex degree of the graph according to Theorem 1. For
example, although the size of the graph BC is not very

� http://konect.cc/networks/

large, the core decomposition time is long due to its large
vertex degree. On the other hand, since graph WE has
a smaller vertex degree, the core decomposition is very
fast.

We then evaluate the performance and the stability
of our single-edge deletion/insertion algorithms. The
evaluation is conducted on the five real-world graphs
given in Table 1. In each graph, Pi edges are selected
randomly, where Pi = 10i for i D 0; 1; 2; 3; 4. These
edges are first deleted from the original graph to evaluate
the deletion algorithm and then are inserted back to
evaluate the insertion algorithm. The processing time
per edge for the deletion and insertion cases are shown
in Figs. 3a and 3b, respectively. It can be seen that
the processing time per edge has a slight downward
trend as the number of deleted/inserted edges increases.
Theoretically, the execution time of each edge is nearly
the same regardless of the number of changed edges.
However, because of caching and other factors in the
actual experiments, the execution time per edge will
have a downward trend when we call the single-edge
algorithms multiple times continuously. Furthermore,
Fig. 3 also illustrates that the processing time of the
single-edge insertion/deletion algorithms is much less,
comparing with the recomputation of the core numbers
of all vertices. This is because of the locality of core
maintenance. Only a small part of vertices around the
inserted/deleted edge may change the core number, and
the core maintenance algorithms try to reduce the search
range as much as possible.

We also evaluate the performance of multiple-edge
insertion/deletion algorithms on real-world graphs. The
experimental setting is similar to the single-edge case,
and the results are demonstrated in Fig. 4. It can be
seen that the processing time per edge of multiple-
edge algorithms is much less than that of invoking
the single-edge algorithm multiple times. The reason
is that if there are a large number of updated edges, the
multiple-edge insertion/deletion algorithm can handle
multiple edges in one iteration, which can greatly
reduce unnecessary duplicate accesses to vertices and
edges. Furthermore, we can also find that the average
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Fig. 3 Influence of the number of deleting/inserting edges on single-edge core maintenance algorithms.

Fig. 4 Influence of the number of deleting/inserting edges on multiple-edge core maintenance algorithms.

processing time decreases as the number of updated
edges increases, this is because when more edges are
updated, they can be processed together using the
multiple-edge insertion/deletion algorithms.

In Fig. 5, we demonstrate the acceleration ratio of
the single-edge and multiple-edge core maintenance
algorithms, comparing with recomputing the core
numbers of all vertices when the graph changes. For each
real-world graph, 10 000 edges are randomly selected
as the update set. In Fig. 5, the x-axis represents

the graphs and the y-axis is the ratio of the average
time of processing an edge using core maintenance
algorithms and the time of core decomposition. For the
deletion scenario, the running time of a single-edge core
maintenance algorithm for different graphs is less than
10% of the time for core decomposition. Meanwhile,
the multiple-edge core maintenance algorithm takes
less than 5% of the time for core decomposition. For
graphs BC and BT, the speedup can be as much
as 100 times. For the insertion case, the single-edge

Fig. 5 Comparison of the efficiency of two core maintenance algorithms and the core decomposition algorithm.
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algorithm takes about 10% to 20% of the time for core
decomposition, while the multiple-edge algorithm takes
between 3% and 10% of the time for core decomposition.
Hence, comparing with recomputing the core number,
our core maintenance algorithms can greatly improve
the efficiency of core numbers update.

7.2 Scalability evaluation

We finally evaluate the scalability of our algorithms in
synthetic graphs, by letting the number of vertices scale
from 215 to 219. In the experiments, we randomly select
1000 edges as the update set for each graph. Here we
compute the time per edge for single-edge algorithms
(GR2 and WS2) and multiple-edge algorithms (GR and
WS). As shown in Fig. 6, the former takes more time
than the latter in almost all cases. Moreover, it also
shows that though the graph size increases exponentially,
the average processing time of the multiple-edge core
maintenance algorithms increases almost linearly, which
demonstrates our algorithms can work well in the graphs
with large size. Especially, it is surprising to see that
the average processing time of the deletion algorithms
changes slightly as graph size increases exponentially.

8 Conclusion

We propose an index of ˛.ˇ/-core number in bipartite
graphs that reflects the maximal cohesive and dense

Fig. 6 Impact of graph size; GR .GR2) and WS .WS2/

refer to the multiple-edge (single-edge) core maintenance
algorithms.

subgraphs a vertex can be in. Efficient algorithms
for core decomposition and core maintenance are
proposed to compute and update the core numbers
of vertices. The core decomposition algorithm can
compute the core number of every vertex in linear
time and space, while by quantifying the core number
change and accurately identifying the vertices whose
core numbers may change after edge insertion/deletion,
the core decomposition algorithms can update the core
numbers in both the single-edge and multiple-edge
insertion/deletion scenarios, visiting only a small number
of vertices and edges, thus avoiding recomputations.
Experimental results showed that the core maintenance
algorithms can greatly reduce the core number update
time comparing with recalculation.
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[29] A. E. Sariyüce, C. Seshadhri, A. Pinar, and Ü. V. Catalyurek,
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