
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 13/15 pp370–385
DOI: 10 .26599 /TST.2022 .9010005
Volume 28, Number 2, Apri l 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

LETRNG — A Lightweight and Efficient True Random
Number Generator for GNU/Linux Systems

Yucong Chen, Fangfang Zhu, Yanshan Tian, Shuaixin Xu, Lihong Han, Qingguo Zhou�, and Nam Ling

Abstract: Unpredictable and irreproducible digital keys are required to modulate security-related information in

secure communication systems. True random number generators (TRNGs) rather than pseudorandom number

generators (PRNGs) are required for the highest level of security. TRNG is a significant component in the digital

security realm for extracting unpredictable binary bitstreams. Presently, most TRNGs extract high-quality “noise”

from unpredictable physical random phenomena. Thus, these applications must be equipped with external hardware

for collecting entropy and converting them into a random digital sequence. This study introduces a lightweight and

efficient true random number generator (LETRNG) that uses the inherent randomness of a central processing unit

(CPU) and an operating system (OS) as the source of entropy. We then utilize a lightweight post-processing method

based on XOR and fair coin operation to generate an unbiased random binary sequence. Evaluations based on

two famous test suites (NIST and ENT) show that LETRNG is perfectly capable of generating high-quality random

numbers suitable for various GNU/Linux systems.

Key words: GNU/Linux system; true random number generator; complex system; inherent randomness; non-

determinism

1 Introduction

As the Cyber-Physical-Social-Systems (CPSS) have
expanded into multiple sectors such as the Internet-
of-Things (IoT), smart cities, healthcare, intelligent
transportation, and so on, various GNU/Linux systems
in CPSS keep increasing. An encrypted communication

�Yucong Chen, Yanshan Tian, Shuaixin Xu, Lihong Han,
and Qingguo Zhou are with School of Information Science
and Engineering, Lanzhou University, Lanzhou 730000,
China. E-mail: chenyc18@lzu.edu.cn; tianysh12@lzu.edu.cn;
xushx19@lzu.edu.cn; hanlh16@lzu.edu.cn; zhouqg@lzu.
edu.cn.
�Yucong Chen and Fangfang Zhu are with Institute of Modern

Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
E-mail: chenyc@impcas.ac.cn; zhuff@impcas.ac.cn.
�Nam Ling is with Department of Computer Science and

Engineering, Santa Clara University, Santa Clara, CA 95053
USA. E-mail: nling@scu.edu.
�To whom correspondence should be addressed.

Manuscript received: 2021-12-15; revised: 2022-02-20;
accepted: 2022-02-21

channel is an important approach for interconnecting
those devices. Because cryptographic security feature is
important in communication protection[1–7], generating
high-quality random numbers is critical for cryptography
algorithms. A true random number generator (TRNG) is
required to generate sufficient true random sequences in
a timely and effective manner to ensure the security of
real-time communications. The entropy production for a
TRNG is a challenging task, which is a key part of the
security system.

However, many popular random entropy sources such
as keyboard input, mouse movements[8], hard disk
activities, and other hardware events[9] in each modern
general-purpose computer system, are incompatible with
most of the GNU/Linux systems used in CPSS[10, 11].
Meanwhile, widely used random entropy production
methods in GNU/Linux systems are flawed, resulting
in a predictable and lower-quality noise sequence. In
addition, some flaws that are related to security issues
go undetected. Most embedded GNU/Linux systems
have limited resources, and are unable to connect to

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 371

external hardware typically used for generating true
random numbers[12]. Consequently, it is critical to design
and implement a lightweight and efficient TRNG based
on some inherent characteristics.

A random number generator (RNG) is a device or
algorithm that generates a random number or sequence
of symbols. Traditionally, it can be divided into TRNG
and pseudo-random number generator (PRNG), as
shown in Fig. 1. The TRNG, also known as a hardware
RNG, generates random numbers through physical
processes. These RNGs can usually produce some subtle
and statistical “noise”, and the “noise” source[13] on
these devices can also be common physical phenomena,
such as audio and video noise[14], radio noise, thermal
noise, and quantum phenomena. These random physical
processes are not only completely unpredictable in
theory but also confirmed by physical experiments.
TRNGs are usually made up of three components: an
energy conversion unit, a signal amplification unit,
and an Analog-to-Digital Conversion (ADC) unit. The
energy conversion unit converts other forms of energy
into electrical energy (electrical signal); the signal
amplification unit amplifies the electrical signal to
the level that can be detected by the ADC; and the
ADC converts the acquired analog signal into a digital
signal[15–17]. Alternatively, the PRNG is also known as a
deterministic random bit generator. It is an algorithm that
can generate an “approximate” random number sequence
based on a small set of initial values.

The traditional random number generator
classification method cannot account for many of
the current research results of RNG because some
existing research results[18, 19] show that the structure
of TRNG does not necessarily include the three
traditional elements (energy converter, amplifier, and
ADC). Therefore, some international standardization
organizations give the classification of RNGs in relevant
standards according to the actual needs, such as ISO/IEC
18031:2011, which divides RNGs into two types, as

Fig. 1 Traditional classification of RNGs.

shown in Fig. 2. The first type is deterministic RNG
(traditional PRNG); the second type is non-deterministic
RNG (TRNG), which is composed of two subtypes:
physical RNG (traditional hardware RNG) and non-
physical RNG. The non-physical RNG is based on
non-deterministic events, such as system time, hard disk
seeks time, user interaction events (mouse movement,
keyboard tapping, touch screen operating, etc.).

To design TRNGs without the use of external
peripherals, some algorithms use the unpredictable
behavior of internal computer architecture as the source
of randomness[20], such as hard disk speed variation[21].
This study introduces a new TRNG based on the inherent
randomness of the modern computer system to produce
high-quality random numbers. The method used is not
only lightweight and effective but also independent
of a specific platform. Therefore, it can be widely
used in various GNU/Linux systems. A post-processing
function based on XOR and fair coin operations is
implemented[22–25] to ensure that the final output is
unbiased and robust.

This study is organized as follows: Section 2 discusses
the various implementations of RNGs based on the
non-determinism of a central processing unit (CPU)
and an operating system (OS) in the literature, while
Section 3 introduces the inherent randomness and race
condition (coin-tossing) model in modern computer
systems. Section 4 provides a detailed explanation of
the proposed system, followed by Section 5, which
analyses the distribution of coin-tossing results and the
security performance of the proposed system. Section 6
concludes the study with some final remarks.

2 Related Work

True random numbers based on the inherent non-
determinism of complex systems have received little
attention in the recent literature. The work we reference

Fig. 2 Taxonomy of RNGs according to ISO/IEC
18031:2011.

372 Tsinghua Science and Technology, April 2023, 28(2): 370–385

here is not directly related though it does have
similarities at the conceptual level.

Davis and Niphadkar[26] use the OS-level non-
determinism (related to the mutex wakeup order) to
build a multithreaded pseudo random number generator
(MTPRNG). While the mutex wakeup mechanism is
completely deterministic in terms of functionality, the
order in which wakeup calls are executed is found to be
non-deterministic to some extent if multiple threads of
execution are waiting on a wakeup event simultaneously.
This is known as a trampling-herd effect of mutexes
with numerous threads sleeping on them. The MTPRNG
library is implemented using 64 threads, each of which
injects either 0 or 1 in a shared pool to generate a
random 32-bit permutation. The results presented are
inconclusive as to whether the entropy extracted using
this method is suitable for cryptographic means.

AT&T’s CryptoLib[27] is based on the randomness
inherent in operating systems. The model is to have
two physical timer sources and use the fact that they
are never precisely synchronized to extract random bits
from them. However, it is unclear if this is attributed to
the physical non-determinism of the two clock sources
or if it is attributed to the non-determinism of the OS
when querying the two independent sources. The most
valuable discovery is that complex systems (even by
1993 standards) exhibit inherent entropy and do not rely
on external asynchronous events.

CPU time jitter-based non-physical true random
number generator was brought up by S. Müller[28] and
had been added to the mainline of the Linux kernel in
the form of a patch in 2015. This is based on CPU
execution time jitter and extracts entropy from different
time delta while executing the same code snippet, then
adds it to the kernel random device. The CPU jitter
RNG reads a timestamp from a high-resolution timer to
calculate a delta and folds it into one bit using a folding
loop. Then, the value is processed with a von Neumann
unbiased operation, which is added to the entropy pool
using XOR. This operation is executed 64 times until all
64-bits of the entropy pool are filled with a new 64-bit
random number. CPU jitter RNG gathers entropy using
jent get nstime(), which is an architecture-dependent
function with different implementations. In the Linux
kernel space, the random get entropy() function obtains
the high-resolution timestamp. In the user space,
the clock gettime() function is available for a high-
resolution timer.

Mc Guire[29] proposed an embarrassingly simple

random number generator (ESRNG) for GNU/Linux,
which is based on the inherent non-determinism of the
GNU/Linux. The principle of ESRNG is that when two
writer threads execute concurrently to change the value
of a shared variable, the results obtained by a reader
thread each time are different, and it can be used as a
source of entropy. The main advantage of ESRNG is
that the method used to design such a software RNG is
very simple. Furthermore, a histogram that records the
intermediate values that occur in the inner loop should be
added. Another advantage is that this is a pure software
RNG that can run on almost any system that does not
require any special hardware. ESRNG is based on trivial
code and is implemented in user space as an unprivileged
process. However, after collecting data extracted from
the entropy source, ESRNG must eliminate “no-event”
elements before putting the data into the entropy pool.

3 Preliminaries

In this section, we provide a short exhibition of inherent
randomness and the coin-tossing model. Those concepts
are used in the rest of this study.

3.1 Inherent randomness

RNGs are essentially based on some form of physical
non-determinisms, such as a radioactive source[30].
The key point is that the physical phenomena of the
component involved are unpredictable. The distribution
of the phenomena used to extract entropy is an emerging
property of RNG systems. Structural non-determinism
is an emerging property of complex systems. Complex
systems are often linked with non-deterministic chaos.
Some systems exhibit complexity by virtue of being
chaotic. However, a completely chaotic system is
indistinguishable from one that behaves randomly[31].
The term structural non-determinism is used in other
contexts, so we will refer to the concept outlined here as
inherent randomness of the complex system[32–34].

Currently, the sources of non-determinism or
randomness in computer systems can be divided
into two categories: hardware-related and software-
related[35]. The hardware-related sources of randomness
originate from CPU instruction pipelines (superscalar
pipelining, multiple issue pipelining, and out-of-
order execution), branch prediction units, CPU multi-
level cache and memory hierarchy, the difference
between CPU clock and memory bus clock, CPU
performance scaling[36], CPU power management,
hardware topology, or hardware interrupts resulting

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 373

from external events. The software-related sources of
randomness include randomized algorithms, randomized
methods for preventing unauthorized access, and some
complex components, such as memory allocator or task
scheduler. In short, all types of non-determinism are
inherent in current systems.

Among the many infrastructure software platforms,
OS serves as the foundation for other variants of
applications. It provides various services and interfaces,
allowing users to implement a diverse set of applications.
There are many popular open-source OSs such as
GNU/Linux and FreeBSD, in which GNU/Linux is most
widely used in our daily lives and workplaces, ranging
from smartwatches to supercomputers. The Linux kernel
is the innermost part of the GNU/Linux. We focus on
the Linux kernel to demonstrate the non-determinism
of current systems, which is a significant viewpoint for
observing random phenomena.

3.1.1 Execution path diversity
The traditional idea about real-time systems is that the
execution path and environment are determinism and
predictability. However, in the Linux kernel, the system
call execution path is highly unpredictable; it has a strong
possibility because of the non-deterministic state of the
execution environment[37–39]. The highly unpredictable
feature of the system-call execution path in the Linux
kernel is known as path variability, which could also
have large differences between different system calls.

To illustrate the path diversity of a Linux kernel-
based system, we used FTrace, a tracing utility built
directly into the Linux kernel, to record the kernel space
execution paths. The experiment was performed on
a Raspberry Pi 3B. Besides, the hardware platform
runs Ubuntu 20.04 with the kernel version 4.19.75
at idle. The objects of focus for tracing are some of
the common system calls for file operations, such as
sys open, sys read, sys write, and sys close. Figure 3

Fig. 3 Number of paths for file operations in ext2, ext3, and
ext4.

shows the number of execution paths in three file
systems, Ext2, Ext3, and Ext4.

3.1.2 Execution time non-determinism
With the high complexity of modern CPUs and their
operating systems, all the mentioned computer systems
are extensively used. However, due to the hardware
complexity, there are no suitable methods and techniques
to determine which is the fill level of the caches or
branch prediction units, or the precise location of data
in memory at one given time[28]. We are also unable
to predict when an interrupt/exception event will occur.
This implies that the execution of function may have
obvious variations in execution time.

To demonstrate the execution time distributions of the
Linux kernel functions, we use Kprobes[40], a debugging
mechanism that can also be used for monitoring events
inside a production system, to monitor the execution
time of the Linux kernel functions. The experiment is
performed on a DE2i-150 FPGA development board,
which is powered by an Intel Atom dual-core processor
N2600 running at 1.6 GHz, and 2GB DDR3 SDRAM.
Besides, the board runs the Linux Kernel version 4.19.75.
Same as above, we still focus on the system calls related
to the file systems. Figure 4 shows that the execution
times distribution plot is spread out over such a large
area, not several specific points.

3.1.3 Relationship among executive functions
Linux kernel consists of large quantities of functions,
which collaborate through function calls and shared
data structures. We also collected the function-call
graphs from SIL4Linux[41] project to analyze the
relationship among Linux kernel functions. The function
call relationship uses functions as nodes and function
calls as edges, as shown in Fig. 5, to illustrate the
function call relationship among a set of Linux kernel
functions, so the relationship can be represented as a
directed network.

It is so difficult to describe the relationship among
the kernel functions in a generic way, such as formulae,
matrix, and simple graphs, that we have to use other
different methods for analyzing the relationships, like
McCabe’s Cyclomatic Complexity[42] and complex
network[43–45]. It is necessary to highlight that few
studies have discussed the relationships among data
structures in the Linux kernel. Meanwhile, no domestic
scholar has conducted extensive research on the
comprehensive combination of data structures and
function calls.

374 Tsinghua Science and Technology, April 2023, 28(2): 370–385

 0

 200

 400

 600

 800

 1000

 1200

 1000 10 000 100 000 10
6

10
7

R
el

at
iv

e
nu

m
b
er

s

Execution time of sys_open

 0

 500

 1000

 1500

 2000

 2500

 1000 10 000 100 000 106 107 108 109 1010

R
el

at
iv

e
nu

m
b
er

s

Execution time of sys_read

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 10 000 100 000 10
6

10
7

10
8

10
9

R
el

at
iv

e
nu

m
b
er

s

Execution time of sys_write

 0

 500

 1000

 1500

 2000

 2500

 1000 100 000

R
el

at
iv

e
nu

m
b
er

s

 10 000

Execution time of sys_close

Fig. 4 Execution time distribution.

Fig. 5 Complex network in Linux kernel.

3.2 Coin-tossing model

3.2.1 Deterministic race condition model
Figure 6 shows an ideal deterministic race condition
model. The thought experiment goes as follows: take
two systems of perfect deterministic design; assume that
the systems are perfectly synchronous and jitter-free; add
to these two systems a shared resource like a dual-ported
register accessible to both systems with identical timing.

If both processors start at the same clock tick and
execute the same code sequence, the difference is
the values of Systems H and T writing to the shared
register (H and T, respectively). Even though the entire
setup is deterministic, the actual value found in the

Write(T, Reg)Write(H, Reg)

System H System T

CLK

Reg: H

Fig. 6 Ideal deterministic race condition model.

register is undetermined. The shared register cannot
hold both H and T simultaneously. Thus, the perfectly
deterministic hardware, paired with a deterministic
execution sequence in software, produced a perfectly
random result, P(H) = P(T) = 1/2. All that remains is
to introduce points in the system where determinism is
broken by a shared single state resource. This is the key
concept behind a lightweight and efficient true random
number generator (LETRNG). They harvest structural
non-determinism rather than physical non-determinism.

The design problems of such a system are comparable
to those of physical RNGs, bias problems, possibilities
of the physical phenomena drifting, external influences
such as thermal or voltage instability, and so on. Some
hardware RNGs, such as the Intel RNG[46], use unbiasing
methods to resolve bias issues, though this algorithm is
only applicable if the bias is stable over time. Similarly,

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 375

the structural non-determinism approach must convert
potentially biased events into unbiased events and ensure
stability in the presence of biased disturbances.

3.2.2 Race-based coin-tossing model
The remainder of this section proposes a lightweight
race-based coin-tossing model to extract entropy for
LETRNG. The objective is to provide a simpler, more
efficient digital bitstream generator.

(1) Definitions and designs
Here we design a race condition intentionally, with

the race being symmetric in the sense that we use two
coin threads (Thread 1 and Thread 2) that modify the
global variable multiple times by assignment operations,
and one Sampling Thread that asynchronously sample
the global variable coin. Asynchronous here means that
the threads are independently scheduled. Independent
means that they declare no explicitly shared data, except
for the global variable; though they are threads belonging
to the same process and operate in the same address
space. Furthermore, they are not restricted by the OS
scheduling them on a particular CPU or any other
implicit coupling that the OS may introduce. While
this is a relatively weak notion of independence, it is
sufficient to provide a reliable source of entropy. The
architecture of the coin-tossing model is shown in Fig. 7.

Thread 1 writes H to the coin, and Thread 2 writes T to
the coin. Thus, a sequence of coin-tossing experiments
is performed, with the Sampling Thread’s observation
sequence consisting of a series of heads and tails. A
typical observation sequence would be H H T T T H
T � � �� � �� � � T, where H stands for the head and T stands for
the tail. The coin-tossing sampling method is shown in
Algorithm 1. If the value read by Sampling Thread from
the coin is H, then heads will be incremented by 1; if the
value is T, tails will be incremented by 1.

(2) Probability computation
Suppose coin-tossing has P(heads) = P(H) = p, where

for (i = 0; i < N; i++) {

 coin = H;

}

for (j = N; j > 0; j--) {
 coin = T;

}

Thread 1

Thread 2

Coin

Sampling thread

while (active) {

 loc = coin;

 if (loc == H)

 heads++;

 else if (loc == T)

 tails++;

 else

 continue;

}

Fig. 7 Coin-tossing model implementation.

Algorithm 1 Coin-tossing algorithm for sampler
Input: shared unsigned int coin, boolean active.
Output: unsigned int variables heads and tails.
1: wait writer thread
2: while active DD True do
3: if coin DD H then
4: heads heads C 1

5: else if coin DD T then
6: tails tails C 1

7: else
8: continue
9: return result

p 2 [0, 1], on each sampling. For i 2 f1, 2, 3, ..., Ng;
let Ri = H or T according to ith coin-tossing sampling;
define H = 1 and T = 0.

Let

Sn.H/ D
nX

iD0

Ri

be the number of heads in the n samplings.
Let

Pn.H/ D
Sn

n

be the proportion of heads in the n samplings.
The probability p that an unbiased coin-tossing result

is H can be expressed as

p D P.H/ D lim
n!1

nX
iD0

Ri

n
D
1

2
as n!1.

4 LETRNG System Design

This study proposed RNG which is based on the
inherent randomness of OS and competitive conditions
of complex computer systems. The core composition of
the RNG is shown in Fig. 8.

LETRNG is composed of three parts: 1. Binary
sequence generation component; 2. Binary data
sampling component; 3. Entropy extraction and
processing component. They are introduced below.

4.1 Binary sequence generation component

As shown in Fig. 8 and Algorithm 2, the binary
sequence generation component is composed of two
threads, named Thread 1 and Thread 2, which share a
global variable coin. They write 0 or 1 into the shared
variable via “coin = n% 2”. There is no synchronization
protection between Thread 1 and Thread 2, and they are
running completely independently.

376 Tsinghua Science and Technology, April 2023, 28(2): 370–385

for (n = 0; n < N; n++) {

 coin = n % 2;

}

for (n = N; n > 0; n--) {

 coin = n % 2;

}

Thread 1

Thread 2

Coin

Sampling Thread X

Sampling Thread Y

while(active) {

 loc = coin;

 x64 <<= 1;

 x64 |= loc;

}

while(active) {

 loc = coin;

 y64 <<= 1;
 y64 |= loc;

}

x64 y64

Fair coin operation

Folding to
1 bit

Folding to
1 bit

XOR into pool

Rotate left by 1

Random number

Generating entropy thread

Fig. 8 Proposed LETRNG implementation.

Algorithm 2 Binary sequence generation algorithm
Input: number of iterations N .
Output: boolean active, shared unsigned int coin.
1: wait sampler thread
2: active True
3: for each n 2 Œ1; 2; 3; : : : ; N � do
4: coin n%2
5: active False
6: return result

Figure 8 shows that the cores of Thread 1 and Thread
2 are almost the same. The number of for loops is N.
The only difference between them is as follows: Thread
1 executes an increment operation, whereas Thread 2
performs a decrement operation on the loop body count
condition n.

Because the executions of Thread 1 and Thread 2 are
not subject to any restrictions, they write 0 or 1 into
shared variable coin simultaneously. Because of the
statistics, the time for the shared variable coin holds the
0 or 1 should be equal. It is necessary to introduce a
sampling thread to verify this inference. The coin read by
the sampling thread is either 1 or 0, and the probability
is 0.5.

The condition variable active was controlled by
Thread 1 and Thread 2. When either of them completes
for loop, the active will be set to false and the sampling
thread is terminated. In addition, this study uses the
volatile keyword to define shared variable coin to ensure
that the sampling thread always reads data directly from
the variable address.

4.2 Random binary sequence sampling component

According to the description in the previous section,
Thread 1 and Thread 2 can write 0 and 1 to the global
shared variable coin with equal probability without
any protection of synchronization measures. The binary
sequences generated by Thread 1 and Thread 2 must
be sampled to obtain a random binary sequence. The
sampling procedure described in the previous section
is only used to experimentally verify the statistical
distribution of 0 and 1 in the sampling results. However,
the sampling procedure used in the RNG design process
is different from that used for verification in the previous
section.

Because the value of n of the core instruction “coin =
n%2” in Thread 1 and Thread 2 uses two different
change strategies, which are increment and decrement,
this study defines two variables x64 and y64 for the
sampling procedure, and their data types are volatile
unsigned long long, which is a 64-bit unsigned integer.
The two sampling threads corresponding to x64 and
y64 are Sampling Thread X and Sampling Thread Y,
respectively. The two sampling threads save the binary
sequence obtained from each sampling into x64 and y64,
respectively. The core function related to sampling in
the sampling thread is shown in Algorithm 3.

Binary sequence generation and sampling threads
must be executed concurrently in the RNG proposed
in this study. However, it is necessary to use any
synchronization mechanism between them, and they can
run arbitrarily in the target system without restrictions.

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 377

Algorithm 3 Sampling random binary stream algorithm
Input: shared unsigned long long coin and loc, boolean active.
Output: unsigned long long variable x64.
1: sampler thread:
2: while active DD True do
3: loc coin

4: x64 x64 \ .:0x1LL/

5: x64 x64 [loc

6: x64 x64� 1

7: return result

When the binary sequence generation threads execute
the given number loops, it sets the condition variable
active to false. Thus, if the sampling thread detects that
the active is false, it will stop sampling.

Because the size of these two storage variables was
determined when x64 and y64 were initially defined, the
length of the binary sequence that the sampling thread
can store will not exceed 64 bits, so the two Sampling
Threads can only save the latest 64-bit data. The
following three operations were also used: AND, OR,
and SHIFT. In each sampling operation, the sampling
thread first reads the global shared variable coin and
saves it into the local variable loc, then cleared the lowest
bit of x64 (y64). Then, the collected data is saved to the
lowest bit of x64 using the OR operation. Finally, the
overall arithmetic of x64 shifted left 1-bit. In addition,
because Thread 1, Thread 2, Sampling Thread X, and
Sampling Thread Y shared the global variable coin, there
were competitive relationships between them.

4.3 Post-processing sampling results

LETRNG follows similar post-processing methods as the
CPU Jitter RNG[28]. LETRNG defined a 64-bit unsigned
integer for caching random binary sequences. This
integer is also known as an “entropy pool”. This study
specifically introduced a thread for generating entropy,
known as Generating Entropy Thread, to effectively
process the binary sequence collected by Sampling
Thread X and Sampling Thread Y. This thread executes
a loop body dedicated to processing binary sequences
(collecting entropy). The loop body mainly includes the
following key operations:

Step 1. Extract sampling results x64 and y64 from
Sampling Thread X and Sampling Thread Y;

Step 2. Use XOR operation to combine the sampled
64-bit binary sequence into 1-bit, that is, x64 and y64
are combined into 1-bit;

Step 3. Use fair Coin Operation proposed by von
Neumann to process the two bits generated in Step 2;

Step 4. Use XOR operation to add one random bit
generated in Step 3 to the entropy pool;

Step 5. Shift the entropy pool to the left circularly to
prepare storage space for the next random bit.

To fill the entropy pool, the above five steps must be
performed 64 times. When the entropy pool is filled, a 64-
bit random number can be provided to the caller (user).
The following five key operations will be discussed in
detail.

4.3.1 Extracting sampling results
The method used by LETRNG to extract the sampling
results is very simple, consisting of a read operation on
ordinary 64-bit unsigned integer variables. However,
the extraction operation cannot be executed immediately
at any time, because any extraction operation would
be blocked before Sampling Thread X and Sampling
Thread Y finish sampling (that is, every bit in x64 and
y64 was updated). When the extraction operations were
successful in Generating Entropy Thread, it would notify
the sampling thread to start sampling.

4.3.2 Merging binary sequences
After the sampling results were extracted, the 64-bit
x64 (y64) must be combined into one bit using an XOR
operation. The specific method is shown in Algorithm 4.

The fold bits function contained a for loop body, with
a fixed number of loops of 64, which corresponded to
the data types of x64 and y64. In addition, in the process
of merging data bits, a shift operation was used in the
loop body in addition to the XOR operation.

4.3.3 Fair coin operation
According to Section 4.2 in RFC 4086[47], the fair
coin operation proposed by John von Neumann can
eliminate any potential tendency or bias in the coin-
tossing test. In probability theory and statistics, a series
of independent Bernoulli tests whose probability of each
test is equal to 0.5 can be called the fair coin. If the
probability of a test is not equal to 0.5, it can only
be called a biased or unfair coin. In many theoretical
studies, it is usually assumed that a fair coin is an ideal

Algorithm 4 Folding random binary stream algorithm
Input: unsigned long long Bi .
Output: unsigned long long Ro.
1: for each n 2 Œ1; 2; 3; : : : ; 64� do
2: Ti Bi � .64 � n/

3: Ti Ti � 63

4: Ro Ro ˚ Ti

5: return result

378 Tsinghua Science and Technology, April 2023, 28(2): 370–385

coin. However, some coin-tossing experiments show that
many “coins” in the real world have a certain tendency,
which is not the ideal fairness[48].

The probability and statistical characteristics of coin-
tossing experiments are used as examples in some
elementary or advanced textbooks, which assume that
coins are fair or ideal. For example, the idea of the
“random walk” of the mathematical-statistical model is
based on a fair coin. To use the “unfair coin” to get a fair
result, John von Neumann gives the following method:
(1) Flip the coin twice;
(2) If both the results are the same, discard the two

results and start from the first step again;
(3) If the two results are different, the result of the

first toss is used and the result of the second toss
is discarded.

The reason Algorithm 5 can produce fair results is that
the probability of getting the head of the coin first and
then the tail must be equal to the probability of getting
the tail of the coin first and then the head. Assume that
the probability of getting the heads of a coin is ˇ and
the probability of getting the tails is (1�ˇ), then the
probability of getting the head first and then the tail is
ˇ(1�ˇ), and the probability of getting the tail first and
then the head is (1�̌)ˇ because the coin does not change
its propensity in two coin tosses. However, the two coin
tosses are completely independent. The above method
only obtains the results of one experiment, and it does
not change the tendency of subsequent experiments. By
repeating the three steps of the aforementioned method,
the events with the same results can be eliminated, so that
only two results with the same probability are generated
in the coin-tossing experiment. Note that the above
method is effective only when the coin-tossing operation
is performed in pairs, and the probability of a certain

Algorithm 5 Fair coin algorithm
Input: shared unsigned in Ca and Cb .
Output: unsigned long long variable V.
1: sampler thread:
2: while True do
3: A toss.Ca/

4: B toss.Cb/

5: if A DD B then
6: continue
7: if A DD 1 then
8: V 1

9: else
10: V 0

11: return result

side of a coin cannot be 0.
From the above discussion, we must collect and

process two random bits to perform a fair coin operation,
which is the key reason we define two sampling threads
(Sampling Thread X and Sampling Thread Y) and two
integer variables (x64 and y64) to cache 64-bit binary
sequences.

4.3.4 Filling entropy pool
After the 64-bit sampling results are merged into 1-bit
and the von Neumann fair coin operations, the final
result must be added to the entropy pool. LETRNG
will XOR the latest random bit with a bit that is in the
entropy pool and store the result in the entropy pool.
Therefore, which bit in the entropy pool is selected for
XOR operation? LETRNG selects the lowest bit in the
entropy pool and performs a circular left shift operation
on the entire entropy pool, only circularly shifting 1-
bit to the left each time because only 1-bit has to be
added to the entropy pool each time after the fair coin
operation.

5 Experiments

We select the following as our primary targets for
evaluating LETRNG: (1) distribution of coin-tossing
results, (2) quality of random numbers generated, and
(3) the bandwidth of the proposed TRNG in each test
platform.

5.1 Experimental setup

Even though we did run LETRNG on a relatively large
number of platforms and have attempted to test as
different systems as possible, this does not cover all
possibilities. Notably, on low-end systems, we would
expect that the current settings may be insufficient.
Below is a summary of systems used in Table 1.

All systems could reach the 1 GB sample size, which
is recommended for analysis with the NIST test suit. An
unprivileged user executed the LETRNG instance as a
user-space task. All systems are connected to LAN. All
systems were idle but running in a multi-user mode; no
special measures were taken to limit load or create any
particular load scenario.

5.2 Coin-tossing results

After performing coin-tossing experiments on Intel E5-
2650 v4 with Ubuntu 16.04 and ICT Loongson-3B V0.7
with CentOS 6.4, the results shown in Figs. 9 and 10.
The distributions in the sampling results are consistent,
and the probability of the heads and tails of the coin is

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 379

Table 1 List of tested system configurations.
CPU GNU/Linux distribution Kernel State RAM (GB)

Intel Core i7-4790 Debian 8.7 3.16.0 IDLE 8
Intel Core i7-4790K Debian 8.6 3.16.0 IDLE 16
Intel Xeon E5-2620 Ubuntu 14.10 3.19.0 IDLE 8
Intel Xeon E5530 Debian 7.11 3.2.0 IDLE 6

Intel Xeon E5-2630 CentOS 7.2 3.10.0 IDLE 32
Jetson-TK1 ARMv7 Ubuntu 14.04 3.10.40 IDLE 2

Raspberry Pi 3B ARMv7 Debian 8.0 (32-bit) 4.4.11 IDLE 1
Raspberry Pi 3B ARMv8 Ubuntu 20.04 (64-bit) 5.4.0 IDLE 1

AMD Athlon X4 750 Debian 8.1 3.16.0 IDLE 4
Loongson-3A2000 Debian 8.5 3.16.7 IDLE 2

Jetson-TX1 ARMv8 Debian 8.3 3.10.67 IDLE 4
Intel Core i7-9700K Debian 10.2 4.19.0 IDLE 64

Intel Core i3-8145UE Ubuntu 18.04 5.4.0 IDLE 16
Xilinx XCZU3EG Debian 10.11 5.4.0 IDLE 4

Raspberry Pi 4B ARMv7 Raspbian 10 (32-bit) 4.19.75 IDLE 4
Raspberry Pi 4B ARMv8 Ubuntu 20.04 (64-bit) 5.13.0 IDLE 4

Loongson-3A5000 Loongnix 20 4.19.0 IDLE 16
NanoPC-T4 RK3399 Ubuntu 20.04 5.10.60 IDLE 4

Intel Atom N2600 Ubuntu 21.04 5.11.0 IDLE 2

15 0000

0.5

1.0

1.5

2.0

2.5

N
um

be
r o

f H
ea

ds

107

15 0000

0.5

1.0

1.5

2.0

2.5

N
um

be
r o

f T
ai

ls

107

0 15 0005000 10 000
Number of experiment cycle

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Pr
ob

ab
ilit

y
of

 h
ea

ds

5000 10 000

0 15 0005000 10 000
Number of experiment cycles

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Pr
ob

ab
ilit

y
of

 ta
ils

 5000 10 000

(a) Statistical distribution of heads

(c) Probability distribution of heads

Number of experiment cycles
(b) Statistical distribution of tails

Number of experiment cycles

(d) Probability distribution of tails

Fig. 9 Coin-toss sampling distribution of heads and tails on E5-2650 V4.

equal to 0.5. The above experimental results show that
Thread 1 and Thread 2 of LETRNG can write sequences
of H and T to the global shared variable coin with equal
probability.

5.3 ENT and NIST test results
The security of LETRNG is evaluated using several
criteria in this section. Firstly, the black-box statistical
testing is executed to ensure that the output of

380 Tsinghua Science and Technology, April 2023, 28(2): 370–385

0 15 000
3.5

4.0

4.5

5.0

N
um

be
r

of
 h

ea
ds

107

0 15 000
3.5

4

4.5

5

N
um

be
r

of
 ta

ils

107

0 15 0005000 10 000

Number of experiment cycles

0.45

0.50

0.55

P
ro

ba
bi

lit
y

of
 h

ea
ds

5000 10 000
Number of experiment cycles

0 15 0005000 10 000

Number of experiment cycles

0.45

0.50

0.55

P
ro

ba
bi

lit
y

of
 ta

ils

5000 10 000
 Number of experiment cycles

(a) Statistical distribution of heads

(c) Probability distribution of heads

(b) Statistical distribution of tails

(d) Probability distribution of tails

Fig. 10 Coin-toss sampling distribution of heads and tails on Loongson3B V0.7.

LETRNG has a uniform distribution and better statistical
characteristics[49]. The procedure for testing consists of
two steps. First, the production of the random sequences
was monitored using the ENT suite[50] which is a
collection of five statistic tools (Entropy, Chi-square
test, Arithmetic mean, Monte Carlo value for Pi, and
Serial correlation coefficient). ENT suite was used for
screening to detect LETRNG failures, although it is not
very exacting, it allows to discard weak designs that
commonly fail the Chi-square test[51]. Secondly, we have
tested the binary file with the NIST SP 800-22 Statistical
Test Suite[52] to which we submitted 1024 bit-streams,
each 1 MB in size, generated by the test systems, running
all 15 tests. The parameters used for the NIST test are
shown in Table 2.

Table 2 NIST STS-2.1.2 parameter settings used.
Parameter Value

Significance level 0.01
Bitstream length 8 388 608

Block frequency block length 128
Nonoverlapping template block length 9

Overlapping template block length 10
Approximate entropy block length 10

Serial block length 16
Linear complexity sequence length 500

NIST SP 800-22 explains the calculation method
based on Formula (1) of confidence intervals for statistics
test items.

p0 ˙ 3

r
p.1 � p0/

n
(1)

where n is the number of samples and p0 equal to 1 � ˛,
˛ is significance level. To ensure the accuracy of the test
results, n must be greater than or equal to 1000.

Because the random bit-stream generated by
LETRNG is stored in a file, we must first obtain those
files generated on different platforms. In the experiment,
the size of the random files generated on each platform
is different, with the sample size ranging from 0.5 GB
to 3.1 GB. The detail is shown in Tables 3 and 4, which
also show the test results of each platform. STS-2.1.2
which is the latest version of the officially provided test
software is used for the NIST test set. Furthermore,
the parameters used throughout the test were those
recommended in the documentation. In the testing
process using NIST, we only test 1 GB data and divide
it into 1024 bitstreams whose size is 1 MB for testing
samples larger than 1 GB. The data are not tested if their
sample size is less than 1 GB. According to the value
calculated using Formula (1), the confidence interval of
the tested samples is [0.99 � 0.009328022, 0.99 C

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 381

Table 3 ENT test results.

System
Sampling size

(GB)
Entropy Chi-square

Arithmetic
mean

Monte Carlo value
for Pi

Serial correlation
coefficient

Intel Core i7-4790 1.730 8.000 000 236.32 127.4975 3.141 701 586 0.000 014
Intel Core i7-4790K 2.640 8.000 000 247.43 127.5004 3.141 629 920 0.000 016
Intel Xeon E5-2620 1.980 8.000 000 235.24 127.5005 3.141 519 611 �0.000 008
Intel Xeon E5530 1.960 8.000 000 272.43 127.5003 3.141 602 775 �0.000 013

Intel Xeon E5-2630 2.370 8.000 000 215.83 127.5012 3.141 658 791 �0.000 021
Jetson-TK1 ARMv7 2.000 8.000 000 260.74 127.4965 3.141 584 586 �0.000 033

Raspberrypi 3B ARMv7 0.776 8.000 000 257.83 127.4986 3.141 876 825 0.000 038
Raspberrypi 3B ARMv8 1.1 8.000 000 216.10 127.5006 3.141 734 010 0.000 006

AMD Athlon X4 750 0.496 8.000 000 258.95 127.4944 3.141 842 928 0.000 017
Loongson-3A2000 0.588 8.000 000 236.39 127.4984 3.141 724 119 �0.000 073

Jetson-TX1 ARMv8 0.738 8.000 000 231.66 127.4963 3.141 536 597 0.000 014
Intel Core i7-9700K 3.1 8.000 000 248.54 127.5014 3.141 566 541 0.000 000

Intel Core i3-8145UE 2.6 8.000 000 263.36 127.5001 3.141 503 002 �0.000 010
Xilinx XCZU3EG 1.4 8.000 000 265.21 127.5016 3.141 516 272 �0.000 021

NanoPC-T4 RK3399 1.1 8.000 000 239.28 127.4971 3.141 634 115 �0.000 028
Raspberry Pi 4B ARMv7 0.95 8.000 000 222.30 127.5052 3.141 532 996 0.000 018
Raspberry Pi 4B ARMv8 1.1 8.000 000 222.16 127.4983 3.141 466 001 �0.000 011

Loongson-3A5000 1.4 8.000 000 259.89 127.4972 3.141 591 849 �0.000 042
Intel Atom N2600 1.1 8.000 000 231.23 127.4986 3.141 616 041 �0.000 024

Table 4 NIST test results.

System
Sampling
size (GB)

Number of
testing bitstreams

Failed statistical
test items

Result

Intel Core i7-4790 1.73 1024 null Passed
Intel Core i7-4790K 2.64 1024 null Passed
Intel Xeon E5-2620 1.98 1024 null Passed
Intel Xeon E5530 1.96 1024 null Passed

Intel Xeon E5-2630 2.37 1024 null Passed
Jetson-TK1 ARMv7 2.00 1024 null Passed

Raspberry Pi 3B ARMv7 1.44 1024 OverlappingTemplate Passed
Raspberry Pi 3B ARMv8 1.1 1024 null Passed

AMD Athlon X4 750 1.18 1024 null Passed
Loongson-3A2000 1.25 1024 null Passed

Jetson-TX1 ARMv8 1.93 1024 null Passed
Intel Core i7-9700K 3.1 1024 null Passed

Intel Core i3-8145UE 2.6 1024 null Passed
NanoPC-T4 RK3399 1.3 1024 null Passed

Xilinx XCZU3EG 1.4 1024 null Passed
Raspberry Pi 4B ARMv7 1.1 1024 null Passed
Raspberry Pi 4B ARMv8 1.1 1024 null Passed

Loongson-3A5000 1.4 1024 null Passed
Intel Atom N2600 1.1 1024 null Passed

0.009328022] for 1 GB data. In other words, the
confidence interval is roughly between [0.9806, 1] and
at least 1004 samples of 1024 samples pass the test.

According to Table 3, the random bit stream files
generated by LETRNG passed the five tests of ENT on
all test platforms. Table 4 shows that all the platforms
passed the tests except Raspberry Pi 3B ARMv7 because

it has one item that did not pass the tests. According to
the final analysis report of the platform, the p-value of the
failed overlapping template test item is 0.22574, which is
larger than the average ˛ = 0.01 and should be identified
as a random value in theory. However, the number of
passed samples is 1003, and the value calculated from
the confidence interval is 1004. Furthermore, there may

382 Tsinghua Science and Technology, April 2023, 28(2): 370–385

be abnormality conditions in the test process, and it is
normal if an item does not pass the test. Therefore, we
can obtain the conclusion that the RNG designed in this
study runs on different platforms has passed all the tests
of test suites, meeting the requirements of the encryption
applications for random numbers.

5.4 Bandwidth analysis

Table 5 lists the bandwidth of random sequence
generation in LETRNG of different hardware platforms.
The table shows that the bandwidths in most platforms
are relatively high, which have significant advantages
compared with the bandwidth of random number
generation by /dev/random with the method used in
Linux. The bandwidth on embedded systems is relatively
low because of the lower CPU frequency on these
platforms. In the experiment, we found an intriguing
phenomenon that the speed of generating random
sequence by LETRNG on the platform with Intel
Atom N2600 dual-core four threaded processor with
the main frequency of 1.6 GHz is slower than those on
platforms with Loongson-3A2000 quad-core processor
with the main frequency of 0.8 GHz or BCM2837 quad-
core processor with the main frequency of 1.2 GHz.
Loongson-3A2000 belongs to MIPS architecture while
Jetson-TX1, Jetson-TK1, Raspberry Pi, NanoPC-T4
RK3399, and Xilinx XCZU3EG are equipped with an
ARM-base processor. MIPS and ARM are two different
instruction set architectures in the family of Reduced
Instruction Set Computing (RISC), while Intel Atom
series processors are based on Complex Instruction Set
Computers (CISC) architecture. Therefore, we suspect
that the non-determinism of platforms based on RISC is
more significant than CISC processors.

6 Conclusion

This study presented a lightweight and efficient
TRNG based on the inherent non-determinism of the
modern computer system. The proposed framework
and algorithm take advantage of modern complex CPU

and OS caused by unpredictabilities CPU jitter, race
condition, and so on. The proposed method was analyzed
using common and effective statistical test suites NIST
SP 800-22 and ENT. LETRNG passed all test items in
these suites indicating its capability to generate high-
quality random numbers. Meanwhile, LETRNG has
a throughput of more than 3.5 kbps that fully satisfies
the requirements for GNU/Linux devices in most of the
typical applications of CPSS. In conclusion, LETRNG
can generate true random numbers appropriate for
security-related applications at a sufficient bandwidth
without requiring any extra hardware.

Acknowledgment

The authors would like to thank Nicholas Mc Guire
for his thoughtful advices and review. This work was
partially supported by National Key R&D Program of
China (No. 2020YFC0832500), Fundamental Research
Funds for the Central Universities (Nos. lzujbky-2021-
sp47, lzujbky-2020-sp02, lzujbky-2019-kb51, and lzujbky-
2018-k12), and the National Natural Science Foundation
of China (No. 61402210). We also gratefully acknowledge
the support of NVIDIA Corporation with the donation of
the Jetson-TX1 used for this research.

References

[1] B. Kerrigan and Y. Chen, A study of entropy sources in
cloud computers: Random number generation on cloud
hosts, in Proc. 6th Int. Conf. on Mathematical Methods,
Models and Architectures for Computer Network Security,
St. Petersburg, Russia, 2012, pp. 286–298.

[2] F. Goichon, C. Lauradoux, G. Salagnac, and T. Vuillemin,
Entropy transfers in the Linux random number generator,
HAL preprint HAL Id: 1409.4842, 2014.

[3] L. Sumter, Cloud computing: Security risk, in Proc. 48th

Ann. Southeast Regional Conf., Oxford, MS, USA, 2010,
p. 112.

[4] M. Mowbray and S. Pearson, A client-based privacy
manager for cloud computing, in Proc. 4th Int. ICST Conf.
on communication System software and middleware,
Dublin, Ireland, 2009, p. 5.

[5] D. Lin and A. Squicciarini, Data protection models for
service provisioning in the cloud. in Proc. 15th ACM Symp.

Table 5 Bandwidth of LETRNG on test systems.
System Throughout (kbps) System Throughout (kbps) System Throughout (kbps)

Intel Core i7-4790 69.53 Intel Core i7-4790K 74.24 Intel Xeon E5-2620 57.00
Jetson-TK1 ARMv7 22.88 Intel Xeon E5530 82.72 Raspberry Pi 3B ARMv7 5.80

Raspberry Pi 3B ARMv8 18.51 Intel Xeon E5-2630 75.20 AMD Athlon X4 750 13.86
Jetson-TX1 ARMv8 16.48 Loongson-3A2000 5.70 Intel Core i7-9700K 87.00

Intel Core i3-8145UE 15.97 NanoPC-T4 RK3399 68.45 Xilinx XCZU3EG 15.62
Raspberry Pi 4B ARMv7 12.15 Raspberry Pi 4B ARMv8 12.80 Loongson-3A5000 19.62

Intel Atom N2600 3.56

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 383

on Access Control Models and Technologies, Pittsburgh,
PA, USA, 2010, pp. 183–192.

[6] C. Yuan, Y. Zhong, and S. Yang, Composite chaotic pseudo-
random sequence encryption algorithm for compressed
video, Tsinghua Science and Technology, vol. 9, no. 2,
pp. 234–241, 2004.

[7] G. Zhong, K. Xiong, Z. Zhong, and B. Ai, Internet of
things for high-speed railways, Intelligent and Converged
Networks, vol. 2, no. 2, pp. 115–132, 2021.

[8] X. Wang, X. Qin, and L. Teng, A novel true random number
generator based on mouse movement and a one-dimensional
chaotic map, Mathem. Probl. Eng., vol. 2012, p. 931802,
2012.

[9] K. Wallace, K. Moran, E. Novak, G. Zhou, and K. Sun,
Toward sensor-based random number generation for mobile
and IoT devices, IEEE Internet Things J., vol. 3, no. 6,
pp. 1189–1201, 2016.

[10] Z. Gutterman, B. Pinkas, and T. Reinman, Analysis of the
Linux random number generator, in Proc. 2006 IEEE Symp.
on Security and Privacy, Berkeley/Oakland, CA, USA,
2006, pp. 371–385.

[11] T. Suzuki and M. Kaminaga, A true random number
generator method embedded in wireless communication
systems, IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., vol. E103.A, no. 4, pp. 686–694, 2020.

[12] V. Fischer and M. Drutarovský, True random number
generator embedded in reconfigurable hardware, in Proc.
4th Int. Workshop on Cryptographic Hardware and
Embedded Systems, Redwood Shores, CA, USA, 2002,
pp. 415–430.

[13] M. Bucci and R. Luzzi, Design of testable random bit
generators, in Proc. 7th Int. Workshop on Cryptographic
Hardware and Embedded Systems, Edinburgh, UK, 2005,
pp. 147–156.

[14] I. T. Chen, Random numbers generated from audio and
video sources. Mathem. Probl. Eng., vol. 2013, p. 285373,
2013.

[15] S. Poli, S. Callegari, R. Rovatti, and G. Setti, Post-
processing of data generated by a chaotic pipelined ADC
for the robust generation of perfectly random bitstreams, in
Proc. 2004 Int. Symp. on Circuits and Systems, Vancouver,
Canada, 2004, p. IV–585.

[16] Y. Ma, T. Chen, J. Lin, J. Yang, and J. Jing, Entropy
estimation for ADC sampling-based true random number
generators, IEEE Trans. Inf. Forensics Secur., vol. 14, no. 11,
pp. 2887–2900, 2019.

[17] E. Fatemi-Behbahani, K. Ansari-Asl, and E. Farshidi, A new
approach to analysis and design of chaos-based random
number generators using algorithmic converter, Circuits
Syst. Signal Process., vol. 35, no. 11, pp. 3830–3846, 2016.

[18] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, and D.
Wichs, Security analysis of pseudo-random number
generators with input: /dev/random is not robust. in Proc.
2013 ACM SIGSAC Conf. on Computer & Communications
Security, Berlin, Germany, 2013, pp. 647–658.

[19] A. Colesa, R. Tudoran, and S. Banescu, Software random
number generation based on race conditions, in Proc. 2008
10th Int. Symp. on Symbolic and Numeric Algorithms for
Scientific Computing, Timisoara, Romania, 2008, pp. 439–
444.

[20] G. Souaki and K. Halim, Random number generation based
on MCU sources for IoT application. in Proc. 2017 Int. Conf.
on Advanced Technologies for Signal and Image Processing
(ATSIP), Fez, Morocco, 2017, pp. 1–6.

[21] D. Davis, R. Ihaka, and P. Fenstermacher, Cryptographic
randomness from air turbulence in disk drives, in Proc. 14th

Annu. Int. Cryptology Conf. on Advances in Cryptology,
Santa Barbara, CA, USA, 1994, pp. 114–120.

[22] P. Lacharme, Post-processing functions for a biased physical
random number generator, in Proc. 15th Int. Workshop on
Fast Software Encryption, Lausanne, Switzerland, 2008,
pp. 334–342.

[23] J. S. Teh, W. Teng, A. Samsudin, and J. Chen, A post-
processing method for true random number generators
based on hyperchaos with applications in audio-based
generators, Front. Comput. Sci., vol. 14, no. 6, p. 146405,
2020.

[24] V. Rožić and I. Verbauwhede, Hardware-efficient post-
processing architectures for true random number generators,
IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 7,
pp. 1242–1246, 2019.

[25] L. Gantel, A. Duc, L. Steiner, F. Vannel, A. Upegui, and
F. Gluck, A FPGA-based post-processing and validation
platform for random number generators, in Proc. 2020 IEEE
Int. Parallel and Distributed Processing Symp. Workshops,
New Orleans, LA, USA, 2020, pp. 123–126.

[26] M. Davis and S. Niphadkar, LibMTPRNG: A multithreaded
pseudo random number generator, https://www.drdobbs.
com/parallel/libmtprng-a-multithreaded-pseudo-random/
216900024.

[27] J. B. Lacy, Cryptolib: Cryptography in software, in Proc.
4thUSENIX UNIX Security Symp., Santa Clara, CA, USA,
1993.

[28] S. Müller, CPU time jitter based non-physical true random
number generator, https://www.chronox.de/jent/doc/CPU-
Jitter-NPTRNG.html, 2013.

[29] N. Mc Guire, Principles and implementation of esrngs
– embarrassingly simple random number generators
for gnu/Linux, presented at the (4th Real-Time Linex
Workshop, Chapel Hill, NC, USA, 2012, p. 26.

[30] A. Alkassar, T. Nicolay, and M. Rohe. Obtaining true-
random binary numbers from a weak radioactive source.
in Proc. Int. Conf. on Computational Science and its
Applications, Singapore, 2005, pp. 634–646.

[31] J. Ladyman, J. Lambert, and K. Wiesner, What is a complex
system? Eur. J. Phil. Sci., vol. 3, no. 1, pp. 33–67, 2013.

[32] N. Mc Guire, P. Okech, and G. Schiesser, Analysis of
inherent randomness of the Linux kernel, presented at the
11th Real-Time Linux Workshop, Dresden, Germany,
2009, p. 41.

[33] V. M. Weaver, D. Terpstra, and S. Moore, Non-determinism
and overcount on modern hardware performance counter
implementations, in Proc. 2013 IEEE Int. Symp. on
Performance Analysis of Systems and Software, Austin, TX,
USA, 2013, pp. 215–224.

[34] J. Hughes and J. O’Donnell, Expressing and reasoning

384 Tsinghua Science and Technology, April 2023, 28(2): 370–385

about non-deterministic functional programs, in Proc.
1989 Glasgow Workshop on Functional Programming,
Fraserburgh, Scotland, 1989, pp. 308–328.

[35] M. Hocko and T. Kalibera. Reducing performance non-
determinism via cache-aware page allocation strategies. in
Proc. 1st Joint WOSP/SIPEW Int. Conf. on Performance
Engineering, San Jose, CA, USA, 2010, pp. 223–234.

[36] R. J. Wysocki, CPU performance scaling, https://www.
kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html,
2017.

[37] B. A. Nejmeh, NPATH: A measure of execution path
complexity and its applications, Commun. ACM, vol. 31, no.
2, pp. 188–200, 1988.

[38] P. Okech, N. M. Guire, and W. Okelo-Odongo, Inherent
diversity in replicated architectures, arXiv preprint arXiv:
1510.02086, 2015.

[39] P. Okech, N. McGuire, and C. Fetzer, Investigating
execution path non-determinism in the Linux kernel,
presented at 15th Real Time Linux Workshop, Lugano-
Manno, Switzerland, 2013, p. 15.

[40] S. Goswami, An introduction to kprobes, https://lwn.
net/Articles/132196/, 2005.

[41] L. Wang, C. Zhang, Z. Wu, N. Mc Guire, and Q. Zhou,
SIL4Linux: An attempt to explore Linux satisfying sil4 in
some restrictive conditions, presented at 11th Real-Time
Linux Workshop, Dresden, Germany, 2009, p. 28.

[42] A. Jbara, A. Matan, and D. G. Feitelson, High-MCC
functions in the Linux kernel, Emp. Softw. Eng., vol. 19, no.
5, pp. 1261–1298, 2014.

[43] Y. Gao, Z. Zheng, and F. Qin, Analysis of Linux kernel as
a complex network, Chaos Solitons Fractals, vol. 69, pp.
246–252, 2014.

[44] L. Wang, P. Yu, Z. Wang, C. Yang, and Q. Ye, On the
evolution of Linux kernels: A complex network perspective,
J. Softw. Evol. Process., vol. 25, no. 5, pp. 439–458, 2013.

[45] L. Han, Q. Zhou, J. Zhang, X. Yang, R. Zhou, and J. Tang,
Polymorphism and consistency: Complex network based
on execution trace of system calls in Linux kernels, Int. J.
Mod. Phys. C, vol. 31, no. 9, p. 2050126, 2020.

[46] G. Cox, C. Dike, and D. J. Johnston, Intel’s digital random
number generator (DRNG). In Proc. 2011 IEEE Hot Chips
23 Symp. (HCS), Stanford, CA, USA, 2011, pp. 1–13.

[47] D. E. Eastlake, J. I. Schiller, and Steve Crocker,
Randomness Requirements for Security, https://doi.org/
10.17487/RFC4086, 2005.

[48] P. Diaconis, S. Holmes, and R. Montgomery, Dynamical
bias in the coin toss, SIAM Rev., vol. 49, no. 2, pp. 211–235,
2007.

[49] L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E.
Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel,
D. L. Banks, et al., Sp 800-22 Rev. 1a. A Statistical Test
Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications, Gaithersburg, MD, USA:
National Institute of Standards & Technology, 2010.

[50] J. Walker, ENT: A pseudorandom number sequence test
program, https://www.fourmilab.ch/random/, 2008.

[51] C. Camara, H. Martı́n, P. Peris-Lopez, and L. Entrena, A
true random number generator based on gait data for the
internet of you, IEEE Access, no. 8, pp. 71642–71651, 2020.

[52] A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E.
B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L.
Banks, and N. A. Heckert, A statistical test suite for random
and pseudorandom number generators for cryptographic
applications, https://doi.org/10.6028/NIST.SP.800-22R1A,
2010.

Yucong Chen received the BS degree
in software engineering from Hunan
University. He is currently a PhD candidate
at Lanzhou University with his major
research interests focusing on safety-critical
systems, embedded systems, and real-time
systems. Since 2015, he works as an
engineer at the Institute of Modern Physics,

Chinese Academy of Sciences, where he has participated in
different research and engineering projects involving safety-
related embedded systems.

Shuaixin Xu received the BS degree in
internet of things engineering, from Wuhan
University of Technology, China in 2019.
He is now a master student in the School
of Information Science & Engineering,
Lanzhou University. His research interests
include system virtualization and operating
system.

Fangfang Zhu received the MS degree
in computer architecture from Lanzhou
University. She is currently an engineer at
the Institute of Modern Physics, Chinese
Academy of Sciences, where she has
participated in different research and
engineering projects involving open-source
software for experimental physics and

industrial control systems. Her research interest includes
embedded systems and magnet power supply control systems
for particle accelerators.

Lihong Han received the MS degree in
2009 from Lanzhou Jiaotong University,
and earned the PhD degree in 2021
from Lanzhou University. He is currently
an associate professor at the School of
Statistics, Lanzhou University of Finance
and Economics, Lanzhou, China, working
in the fields of complex systems, data

mining, and intelligent optimization.

Yucong Chen et al.: LETRNG — A Lightweight and Efficient True Random Number Generator for GNU/Linux Systems 385

Yanshan Tian received the BS degree from
Southwest Normal University and the MS
degree from the Beifang University of
Nationalities, China. He is a PhD candidate
in technology of computer application
at the School of Information Science &
Engineering, Lanzhou University. He is
a vice professor with Ningxia Normal

University in computer science. His research interests include
high-performance computing with GPU, embedded and
distributed systems, and random number generators.

Qingguo Zhou received the BS and MS
degrees in physics from Lanzhou University
in 1996 and 2001, respectively, and received
the PhD degree in theoretical physics
from Lanzhou University in 2005. Now
he is a professor of Lanzhou University
and working in the School of Information
Science and Engineering. He is also a fellow

of IET. He was a recipient of IBM Real-Time Innovation Award
in 2007, a recipient of Google Faculty Award in 2011, and a
recipient of Google Faculty Research Award in 2012. His research
interests include safety-critical systems, embedded systems, real-
time systems, and autonomous driving.

Nam Ling received the BEng degree
from the National University of Singapore
and the MS and PhD degrees from the
University of Louisiana, Lafayette, USA.
He is currently the Wilmot J. Nicholson
Family Chair Professor (Endowed Chair) of
Santa Clara University (USA) and the Chair
of its Department of Computer Science

& Engineering (since 2010). From 2010 to 2020, he was the
Sanfilippo Family Chair Professor (University Endowed Chair) of

Santa Clara University. From 2002 to 2010, he was an associate
dean for its School of Engineering. He is/was also a Cuiying
Chair Professor for Lanzhou University, a guest professor for
Tianjin University, a chair professor and Minjiang Scholar for
Fuzhou University, a distinguished professor for Xi’an University
of Posts & Telecommunications, a guest professor for Shanghai
Jiao Tong University, a guest professor for Zhongyuan University
of Technology (China), and a consulting professor for the National
University of Singapore. He has more than 220 publications
(including books) in video/image coding and systolic arrays. He
also has seven adopted standards contributions and has been
granted more than 17 U.S. patents. He is an IEEE Fellow due
to his contributions to video coding algorithms and architectures.
He is also an IET Fellow. He was named IEEE Distinguished
Lecturer twice and was also an APSIPA Distinguished Lecturer.
He received the IEEE ICCE Best Paper Award (First Place) and
the IEEE Umedia Best/Excellent Paper Awards (three times).
He received six awards from Santa Clara University, four at the
University level (Outstanding Achievement, Recent Achievement
in Scholarship, Presidents Recognition, and Sustained Excellence
in Scholarship), and two at the School/College level (Researcher
of the Year and Teaching Excellence). He has served as Keynote
Speaker for IEEE APCCAS, VCVP (twice), JCPC, IEEE ICAST,
IEEE ICIEA, IET FC & U-Media, IEEE U-Media, Workshop
at XUPT (twice), ICCIT, as well as a Distinguished Speaker
for IEEE ICIEA. He is/was General Chair/Co-Chair for IEEE
Hot Chips, VCVP (twice), IEEE ICME, IEEE U-Media (five
times), and IEEE SiPS. He was an Honorary Co-Chair for IEEE
Umedia. He has also served as Technical Program Co-Chair for
IEEE ISCAS, APSIPA ASC, IEEE APCCAS, IEEE SiPS (twice),
DCV, and IEEE VCIP. He was Technical Committee Chair for
IEEE CASCOM TC and IEEE TCMM, and has served as Guest
Editor/Associate Editor for IEEE TCAS-I, IEEE J-STSP, Springer
JSPS, Springer MSSP, and other journals. He has delivered more
than 120 invited colloquia worldwide and has served as Visiting
Professor/Consultant/Scientist for many institutions/companies.

