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Intra-Patient and Inter-Patient Multi-Classification of
Severe Cardiovascular Diseases Based on CResFormer

Dengao Li�, Changcheng Shi, Jumin Zhao, Yi Liu, and Chunxia Li

Abstract: Severe cardiovascular diseases can rapidly lead to death. At present, most studies in the deep learning

field using electrocardiogram (ECG) are performed on intra-patient experiments for the classification of coronary

artery disease (CAD), myocardial infarction, and congestive heart failure (CHF). By contrast, actual conditions are

inter-patient experiments. In this study, we proposed a deep learning network, namely, CResFormer, with dual

feature extraction to improve accuracy in classifying such diseases. First, fixed segmentation of dual-lead ECG

signals without preprocessing was used as input data. Second, one-dimensional convolutional layers performed

moderate dimensionality reduction to accommodate subsequent feature extraction. Then, ResNet residual network

block layers and transformer encoder layers sequentially performed feature extraction to obtain key associated

abstract features. Finally, the Softmax function was used for classifications. Notably, the focal loss function is used

when dealing with unbalanced datasets. The average accuracy, sensitivity, positive predictive value, and specificity

of four classifications of severe cardiovascular diseases are 99.84%, 99.68%, 99.71%, and 99.90% in intra-patient

experiments, respectively, and 97.48%, 93.54%, 96.30%, and 97.89% in inter-patient experiments, respectively. In

addition, the model performs well in unbalanced datasets and shows good noise robustness. Therefore, the model

has great application potential in diagnosing CAD, MI, and CHF in the actual clinical environment.

Key words: dual-lead ECG signals; coronary artery disease; myocardial infarction; congestive heart failure; inter-

patient experiments; intra-patient experiments; CResFormer

1 Introduction

In general, cardiovascular diseases refer to ischemic or
hemorrhagic diseases that are due to hyperlipidemia,
thick blood, atherosclerosis, and hypertension, which
seriously threaten human life and health. Such diseases
include asymptomatic myocardial ischemia, coronary
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artery disease (CAD), angina pectoris, myocardial
infarction (MI), and ischemic heart disease (IHD). Based
on the data from the World Health Organization, nearly
17 million deaths are due to cardiovascular diseases[1],
which ranks first among all diseases. By 2035, the
number of adults with cardiovascular diseases will
exceed 130 million[2]. Among cardiovascular diseases,
CAD is the occurrence of atherosclerotic lesions in
coronary arteries. Fibrous plaques begin to form thick
areas on the inner wall of the arteries, which slows
down the blood flow to the heart and hinders normal
blood circulation[3]. In severe cases, the disease may
lead to fatal heart diseases, such as congestive heart
failure (CHF), MI, and IHD[4]. In 2014, approximately
26 million adults with CHF were reported worldwide[5, 6].
In 2015, approximately 110 000 Americans died of
MI in the United States. The annual incidence of MI
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is about 605 000 cases[7]. The characteristics of these
typical cardiovascular diseases are as follows: Fast onset,
susceptibility to severe, and widespread distribution.
Therefore, accurate identification and early treatment
of these diseases are necessary.

Electrocardiogram (ECG) is an effective and common
tool for the diagnosis of serious cardiovascular
diseases. It is non-invasive and intuitive. In the current
clinical environment, 12-lead ECG can be used for
comprehensive diagnosis. The ECG manifestations of
CAD are as follows: Low and flat T waves, ST-segment
shifting down or up, and decreasing or disappearing
changes of R waves. In general, MI is manifested as ST-
segment elevation and arching upward. T waves result in
the occurrence of leads facing the ischemic myocardium
surrounding the injured area. The Q wave deepens and
widens in the infarct zone[8]. Severe MI is marked by
ST-segment depression in leads I, II, V4, V5, and V6
and ST-segment elevation in lead aVR. MI can lead to
myocardial necrosis, abnormal pumping of the heart, and
systemic dysfunction. It can also trigger heart failure
that manifests as a period of low ST-segment or QRS
wave groups that exhibit low amplitude in ECG[9].

However, the specific interpretation of ECG is
generally performed by a specialist physician[10].
The precise interpretation of ECG depends on the
training, experience, and maturity of knowledge of
the physician[11]. Given the complexity of the ECG
signal information, even experts in the field cannot
obtain enough information from the ECG signal to
ensure an accurate diagnosis[12]. In recent years, many
researchers have applied deep learning to processing
signals. For example, the use of eight digital signal
modulation recognition techniques fused with deep
learning applications is more accurate and flexible[13].
However, deep learning algorithms require large batches
of datasets for training to form stable and accurate
models. For example, digital twins facilitate the
expansion of real and valid data[14]. Therefore, a large
volume of datasets and deep learning algorithms should
be used for computer-aided diagnosis to build effective
models and ensure a fast and accurate diagnosis.

2 Related Work

To date, machine-learning-based algorithmic models
and deep-learning-based network models have been
widely used in the field of autonomous driving, image
recognition, machine translation, and signal processing,
which have achieved notable results. Tables 1–3 shows

algorithms for the automatic detection and classification
of ECG signals, which summarizes studies on the
diagnosis of CAD, CHF, and MI. The first stage is
the preprocessing of the signal. The signal is pre-
processed by denoising to remove interference to the
signal, detecting R-peaks, and extracting time-frequency
domain features[15, 16, 18, 25, 26, 28, 29, 33, 44, 45], statistical
features[20, 24, 33], and morphological features[30]. Second,
key features are extracted and classified by machine
learning algorithms, deep learning network algorithms,
artificial neural networks[27, 34, 35], or various types
of novel networks based on basic algorithms, such
as typical machine learning algorithms: Support
vector machines (SVM)[15–17, 20, 26, 27, 33], K-nearest
neighbor algorithms (KNN)[18, 28, 37, 44, 45], random forest
algorithm[27]. In addition, typical deep learning network
models, deep belief network[17], convolutional neural
network (CNN)[21, 22, 30, 32, 36, 41], long short-term memory
network (LSTM)[21], and hybrid model of convolutional
neural network[38, 46] are used for the extraction of such
key features. Synthesizing the literature collected over
the last six years in Tables 1–3, the total number of
literature collected on diagnostic models for CAD and
its complications with a classification accuracy of more
than 95% account for nearly 85% of the literature
collected. As shown in Table 1, according to Patidar et
al.[15], the accuracy, specificity, and sensitivity of normal
and CAD models are 99.72%, 99.81%, and 99.63%,
respectively. In addition, according to Sudarshan et
al.[28], the accuracy, specificity, and sensitivity of normal
and CHF models are 99.86%, 99.94% and 99.78%.
Moreover, according to Liu et al.[40], the accuracy,
specificity, and sensitivity of normal and MI models
are 99.90%, 99.54%, and 99.57%, respectively. This
result indicates that stable and reliable results have
been achieved in two-classification diagnostic models
for serious cardiovascular diseases such as CAD. The
recent literature on three-classification models for severe
cardiovascular diseases is shown in Table 2. The models
used by Yang et al.[42, 43] on the three-classification
problem of cardiovascular diseases were outstanding;
the accuracy, specificity, and sensitivity of their models
are 99.89%, 99.93%, 99.82%, and 99.96%, 99.98%,
99.93%, respectively. Such models also had a shorter
classification time, allowing for rapid diagnosis. At
present, research on the issue of triple classification
of severe cardiovascular diseases complicating CAD
is also maturing. The literature on the study of four-
classification problems, namely, normal, CAD, CHF,
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Table 1 Literature studies on two-classifications of normal, CAD, CHF, and MI.
Disease

classification Author Year Approach Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

Normal
and CAD

Patidar et al.[15] 2015
Tunable-Q wavelet transform (TQWT)
Principal component analysis (PCA)
Least squares support vector machine (LS-SVM)

99.72 99.81 99.63

Kumar et al.[16] 2017
Flexible analytic wavelet transform (FAWT)
Cross information potential (CIP), Parameter
Least squares support vector machine (LS-SVM)

99.60

Altan et al.[17] 2017 Deep belief model and hilbert transform 98.05 96.02 98.88

Acharya et al.[18] 2017
HOS bispectrum and cumulants
K-nearest neighbor (KNN)

98.99 98.50 99.70

Caliskan and Yuksel[19] 2017
A stacked autoencoder (SAE) network with a
Softmax classifier

92.20

Dolatabadi et al.[20] 2017 Principal component analysis (PCA), SVM 99.20 100 98.43

Tan et al.[21] 2018
Long short-term memory (LSTM)
Convolutional neural network (CNN)

99.85

Acharya et al.[22] 2017 CNN 95.11 95.88 91.13
Abdar et al.[23] 2019 A new genetic training N2Genetic-nuSVM 93.08

Normal
and CHF

Chandrakar[24] 2015
Detrended fluctuation analysis (DFA) short-term
and intermediate-term fractal scaling exponents

98.20

Chandrakar[25] 2015
Approximate entropy, sample entropy, permutation
entropy, energy entropy

99.90

Acharya et al.[26] 2017
Empirical mode decomposition (EMD)
Probabilistic neural network (PNN), SVM

97.64 98.24 97.01

Masetic and Subasi[27] 2016
Random forest, SVM, artificial neural networks
(ANN), KNN, C4.5 decision tree classifiers

100.00

Sudarshan et al.[28] 2017
Dual tree complex wavelet transform
KNN and decision tree (DT) classifiers

99.86 99.94 99.78

Kumar et al.[29] 2017
FAWT fuzzy entropy, accumulated permutation
entropy

98.21

Acharya et al.[30] 2019 CNN 98.97 98.87 99.01

Tripathy et al.[31] 2019
Stockwell (S)-transform and frequency division
Sparse representation classifier

98.78 99.09 98.48

Khade et al.[32] 2019 CNN 88.30

Hussain et al.[33] 2020

Linear features (time domain, frequency domain)
Statistical and nonlinear features, entropy-based
complexity features, wavelet entropy features
SVM

93.10

Normal
and MI

Safdarian et al.[34] 2014
T-wave and total integral features
Artificial neural network

94.74

Kora and Kalva[35] 2015 Bat algorithm Levenberg-marquardt neural network 98.90 92.20 93.34
Acharya et al.[36] 2017 CNN 95.22 95.49 94.19
Sharma et al.[37] 2018 Optimal biorthogonal filter bank KNN 99.74
Feng et al.[38] 2019 CNN and LSTM model 95.54 86.50 98.20
Han and Shi[39] 2020 Feature fusion and neural network 99.92
Liu et al.[40] 2020 MFB-CBRNN 99.90 99.54 99.97
Baloglu et al.[41] 2019 CNN 99.78

and MI, is shown in Table 3. The accuracy, specificity,
and sensitivity of the particle swarm optimization-based
KNN algorithm studied by Acharya et al.[45] are 99.55%,
99.24%, and 99.93%, respectively. All three metrics

exceeded 99%. Zhang et al.[47] used their own multilevel
discrete wavelet transform dense network (MDD-Net)
to automatically diagnose cardiovascular diseases; the
accuracy, specificity, and sensitivity of this network
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Table 2 Literature studies on three-classifications of normal, CAD, CHF, and MI.
Disease classification Author Year Approach Accuacy (%) Specificity (%) Sensitivity (%)

Normal, CAD, and MI Acharya et al.[18] 2017

Discrete cosine transform (DCT)
Continuous wavelet transform (CWT)
EMD
KNN

98.50 99.70 98.50

Normal, CAD, and CHF Yang et al.[42] 2020
ECG fragment alignment (EFA)-PCA
convolutional network (EFAP-Net)

99.89 99.93 99.82

Normal, CAD, and CHF Yang et al.[43] 2021

Canonical correlation analysis (CCA)
PCA
Independent component analysis (ICA)-
PCA convolutional network
A dempster-shafer (D-S) theory-based
linear
SVM

99.96 99.98 99.93

Table 3 Literature studies on four classifications of normal, CAD, CHF, and MI.
Author Year Approach Accuacy (%) Specificity (%) Sensitivity (%)

Fujita et al.[44] 2017 Wavelet packet decomposition Relief KNN 97.98 94.84 99.61
Acharya et al.[45] 2017 Contourlet transform particle swarm optimization KNN 99.55 99.24 99.93

Lih et al.[46] 2020 CNN coupled with LSTM 98.51 97.89 99.30

Zhang et al.[47] 2020
Multilevel discrete wavelet transform densely network
(MDD-Net)

99.74 99.83 98.67

are 99.74%, 99.83%, and 98.67%, respectively. In
addition, this network handles unbalanced data well,
and it is more flexible in handling the study of four-
classification problems of severe cardiovascular diseases.
Therefore, technical algorithms for the diagnosis of
severe cardiovascular diseases can allow for the rapid
and comprehensive diagnosis of multiple diseases.

The above-mentioned results show that the
classification of severe cardiovascular disease diagnoses
has shown a stable effect that can be applied in practice.
However, a number of issues must be addressed. First,
severe cardiovascular diseases are easily confused in
individual presentations, resulting in misdiagnosis
of diseases. Second, the vast majority of the above-
mentioned studies have been conducted on the basis
of intra-patient experiments. Intra-patient experiments,
which train and test models using the same patient’s
heartbeats, can achieve excellent performance by
learning the characteristics of each patient through
multiple training phases[48]. Under realistic conditions,
the model must predict and handle patients in a real
environment. Patient heartbeats cannot be used as
training data. The inter-patient paradigm suggests
that the training and test datasets have heartbeats
from different patients[49]. Third, the vast majority of
researchers use open data without evident noise and
other interfering signals for their experiments. The

ECGs are rarely distorted or blurred, which can be
tested directly to achieve better results. However, the
actual ECGs collected from patients are subject to
varying degrees of noise interference, and the ECG
data content is diverse. Fourth, the number of people
with severe cardiovascular diseases in the real-world
setting is still small, and the reality is complex. The
degree of unbalance in the data required remains
unpredictable. Fifth, the ECG data used in models
of severe cardiovascular diseases are single-lead data.
However, the single-lead ECG data measured do not
indicate the patient’s condition because such data are
susceptible to interference.

In addressing the above-mentioned issues, we
set a validated four-classification model of severe
cardiovascular diseases for the effective diagnosis
of CAD, MI, and CHF to reduce misdiagnosis of
patients. We trained and tested models using the ECG
information obtained from multiple leads to enhance
the comprehensiveness and certainty of the information.
Here we performed a combined input operation of the
two ECG information leads. Based on the literature[47],
inter-patient diagnosis on the issue of four classifications
of severe cardiovascular diseases still needs to be
improved. This paper proposes a CResFormer (CR-
Former) deep learning hybrid network structure, which
utilizes a dual extraction of features. Network’s residual
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extraction and full-domain intercorrelation of features
can extract and effectively bridge key features, thereby
reducing the loss of key features, enhancing the mutual
information among features, and improving the accurate
discrimination of data. In particular, the network was
structured in two phases: A feature extraction phase and
a classification phase.

First, we built a simple convolutional pooling
operation using the unique advantages of CNNs
in processing high-dimensional data to perform the
corresponding feature extraction and some degree of
dimensionality reduction in the feature extraction phase.
Then, the network constructed multiple connections of
residual blocks to obtain a richer set of key features based
on the unique feature of the Resnet residual network,
retain the original information of the extracted features,
and fused it with the extracted feature information.
Finally, the transformer encoder feature extraction unit
was constructed to enhance the tightness of the mutual
information association among key features[50]. The
extracted feature phase of this paper shows a fusion of a
convolutional neural network, ResNet residual network
blocks, and transformer encoders.

Second, we apply the Softmax function as the final
classification function to obtain four precise decision
values in the classification phase. The advantages of this
network structure are as follows:

(1) The CR-Former network utilizes a dual extraction
of features, which has achieved good results for inter-
patient tests.

(2) The network uses multi-lead data input to respond
to all aspects of data, further improving the diagnosis of
diseases among patients.

(3) The network can ignore upfront data preprocessing
operations, and it has excellent noise robustness in
processing data with different noise disturbances without
noise processing.

(4) The network applies the focal loss function to
reduce the internal sample weights and achieve excellent
results when dealing with unbalanced datasets.

3 Materials

3.1 Database used

The ECG signal data used in this study were obtained
from a public database (PhysioBank)[51]. In the database
storage network, we downloaded four public databases
of ECGs on normal, CAD, MI, and CHF as our
experimental data, namely, MIT-BIH Normal Sinus
Rhythm Database (NSRDB)[51], St Peters-burg INCART
12-lead Arrhythmia Database (INCARTDB)[51], PTB
Diagnostic ECG Database (PTBDB)[51], and Beth Israel
Deaconess Medical Centre (BIDMC) Congestive Heart
Failure Database[51]. Their ECG signal map segments
are shown in Fig. 1, and the specific information of the
ECG recordings in the database is shown in Table 4.

3.2 Datasets division

The anthropometric sites of the ECG1 and ECG2 leads
of the MIT-BIH NSRDB and BIDMC CHFDB are
consistent with the II and V1 leads of the St INCARTDB

Fig. 1 ECG signal waveform obtained from two leads. (a) NSRDB; (b) St INCARTDB; (c) PTB; (d) BIDMC.
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Table 4 Information of four databases of ECGs used.

Database Diagnostic
type

Lead Sampling
frequency (Hz)

Number Duration of
each case Specific case

MIT-BIH NSRDB Normal ECG1, ECG2 128 18 24 h

16265, 16272, 16273, 16420,
16483, 16539, 16773, 16786,
16795, 17052, 17453, 18177,
18184, 19088, 19090, 19093,
19140, 19830

St INCARTDB CAD
I, II, III, aVR, aVL, aVF
V1, V2, V3, V4, V5, V6

257 7 30 min
I01, I02, I20, I21, I22, I35, I36,
I37, I38, I39, I44, I45, I46, I57,
I58, I72, I73

PTBDB MI
I, II, III, AVR, AVL, AVF
V1, V2, V3, V4, V5, V6
VX, VY, VZ

1000 148 2 min

001–103, 108, 111, 120, 128, 135,
138–142, 145, 148, 149, 152, 158,
160, 163, 183, 189, 193, 195, 197,
205, 207, 211, 223, 226, 230, 231,
259, 261, 265, 268, 270, 273, 274,
280, 282, 283, 287, 290–294

BIDMC CHFDB CHF ECG1, ECG2 250 15 20 h
chf01, chf02, chf03, chf04, chf05,
chf06, chf07, chf08, chf09, chf10,
chf11, chf12, chf13, chf14, chf15

and PTBDB. Therefore, their lead data were used as
input data for experiments. The paper was divided into
several datasets, including division of two-classification
experimental datasets, three-classification experimental
datasets, and four-classification experimental datasets, to
verify the effectiveness of the network model in dealing
with multi-classification problems. Nine datasets (A–I)
were divided for the demonstration of the experiments.
The details are shown in Tables 5–8.

(1) Datasets A–F and G–I were used for intra-patient
and inter-patient classification experiments for normal,
CAD, MI, and CHF, respectively.

(2) We selected the same data points from each ECG
signal to construct balanced Datasets A–C. In addition,

Table 5 Information of balanced datasets for intra-patient
experiments.

Diagnostic type
Number of datasets

A B C
Normal 20 000 20 000 20 000
CAD – 20 000 20 000
MI – – 20 000

CHF 20 000 20 000 20 000

Table 6 Information of unbalanced datasets for intra-
patient experiments.

Diagnostic type
Number of datasets

D E F
Normal 35 000 35 000 35 000
CAD – 35 000/N1 35 000/N1

MI – – 35 000/N2

CHF 35 000/N3 35 000/N3 35 000/N3

Table 7 Information of training datasets for inter-patient
experiments.

Diagnostic type Training ID
Number of datasets
G H I

Normal

16265, 16272, 16420,
16773, 16795, 17052,
18177, 19088, 19093,
19830

25 000 25 000 25 000

CAD
I01, I20, I35, I39, I44,
I45, I72

– 17 500 17 500

MI
033, 140, 152, 193,
211, 268

– – 15 000

CHF
chf01, chf02, chf04,
chf09, chf10, chf12

15 000 15 000 15 000

Table 8 Information of test datasets for inter-patient
experiments.

Diagnostic type Training ID
Number of datasets
G H I

Normal
16273, 16483, 16539,
16786, 17453, 18184,
19140

17 500 17 500 17 500

CAD I21, I22, I38, I58, I73 – 15 000 15000
MI 56, 149, 205, 231, 283 – – 15 000

CHF
chf03, chf06, chf08,
chf14

10 000 10 000 10 000

we must compose unbalanced Datasets D–F to validate
the performance of the model in handling unbalanced
datasets. In particular, retaining the normal ECG points
unchanged in Datasets D–F, we scaled the representation
of ECG data points for CAD, MI, and CHF. Proportion
N (N1; N2; and N3) denotes the proportion of imbalances,
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and N is an integer greater than 1. Datasets G–I have the
same number of ECG datasets for each normal and patient
ECG signal. This results are shown in Tables 5–8.

4 Method

4.1 Data input

In this paper, the ECG signals from two leads are used
as input to verify the diagnostic rate of multi-lead data
for diseases. The input data are presented as follows:

X D Œx1;1; x1;2; : : : ; x1;M ; x2;1; x2;2; : : : ; x2;N � (1)

4.2 CR-Former model

In this paper, the required processing method is shown
in Fig. 2. We do not need to perform signal processing
operations such as denoising of ECG signals, but we
must segment ECG signals from two leads and input
them into the model. The details are shown as follows.
4.2.1 Feature extraction
(1) CResnet feature extractor

In addressing the large feature dimensionality of
the input data, this paper used CNN to process high-
dimensional data to construct a one-dimensional
convolutional pooling layer. The data were
dimensionally reduced to ensure that most of the
key features are present. The number of layers in the
convolutional network was too deep, which leads to
low processing results. Appropriate addition of residual
structure can deepen the network and improve the
classification results when the convolutional layers were
effectively expanded.

The original ResNet network was proposed by He
et al.[52] to address deep layers of convolutional neural
networks leading to gradient explosion. This approach
caused the network not to converge easily, making
it prone to network computation errors. The basic
structure of Resnet is shown in Fig. 3, noting that its
overall structure consists of a convolutional and pooling
layer, four residual blocks, and a fully connected layer.
First, the data were fed through a convolutional and
pooling layer, which applies convolutional operations
for feature extraction and pooling operations for feature
reduction. Then, in the ResNet residual block structure,
each residual block had the same size convolutional
kernels, and it consisted of a different number of
convolutional layers, with the same number of channels
of convolutional kernels in each residual block. In
the structure, the input features in each residual block
were halved, whereas the number of filter channels in

Fig. 3 Diagram of basic structure of ResNet.

Fig. 2 Flow chart of severe cardiovascular diseases classification.
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Fig. 4 Diagram of basic structure of ResNet residual block.
Conv means convolution.

the convolutional layer was doubled. Finally, a global
averaging pooling operation was performed, and the
fully connected layer was concatenated to produce
results.

The structure of each residual block is shown in Fig. 4.
This structure is the core idea proposed by He et al.[52].
Equations (2) and (3) are mathematical representations
of the residual units.

yi D h.xl/ C F.xi ; Wi / (2)

xiC1 D f .yi / (3)

where xi and xiC1 denote the input and output of the
i-th residual unit, respectively; f denotes the residual
function, which represents the learned residuals. Each
residual unit contains multiple convolutional layers,
batch normalization layers[53], and the ReLU function.
Notably, the batch normalization layers can prevent
gradient disappearance or explosion problems because
of the excessive number of layers. h.Xi / D Xi denotes
constant mapping, and f denotes the ReLU activation
function after the final summation of residuals. Based on

Eq. (4), we can derive the learning characteristics from
a shallow layer i to a deep layer l .

xl D xi C
l 1X

kD1

F .xk; Wk/ (4)

The great advantage of the Resnet network structure
is the residual structure. The residual connectivity of
this structure allows the input of the previous layer to
be added to the residual features, enriching the input
features of the next layer. This paper combines the
advantages of dimensionality reduction of convolutional
neural networks and feature fusion of Resnet residual
networks. A CResnet feature extractor is constructed to
enrich the key features.

(2) Transformer feature extractor
After the primary feature extraction using the CResnet

feature extractor, we proceeded with the secondary
feature extraction using the Transformer feature
extractor. The Transformer model has parallelizability
and global dependency for processing sequence data.
In addition, the model can focus on the mutual part
of clinical problems[54], particularly for the processing
of ECG signal features. In the construction of the
transformer feature extractor, the encoder part of the
transformer model must be considered because of the
direct predictive nature of ECG signals for the specific
unit structure (Fig. 5).

(i) Input embedding: Based on the transformer

Fig. 5 Diagram of structure of transformer model encoder
unit.
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model’s reference in the numerical domain of each
word mapping in machine translation, we used the
ECG feature values extracted by the CResnet feature
extractor as the size dmodel of the input dimension after
tiling. We must obtain the position encoding of each
point and overlay it with the embedding information
to obtain the specific information of each point with
location information. Position embedding (PE) can
be characterized by the periodicity of the sine and
cosine functions to obtain the sequence length relative
position information, which is encoded by the following
equations:

PE.pos; 2i/ D sin
 
pos=10 0002i=dmodel

�
(5)

PE.pos; 2i C 1/ D cos
 
pos=10 0002i=dmodel

�
(6)

As shown in the above-mentioned Eqs. (5) and (6),
the location function embedding period varies from 2 

to 10 000 � 2  orders of magnitude, and each location
can obtain different combinations of values of sin and
cos functions with different periods in the embedding
dimension, yielding unique location texture information.
Such combinations result in position dependencies and
temporal information.

(ii) Multi-headed attention: Multi-headed attention
can describe the complete relationship of multiple
dependencies, focusing on representational information
at different locations. Assuming that the input matrix for
the transformer encoder unit is Y2Rdmodel�dmodel , we can
represent the query matrix, key matrix, and value matrix
as Q, K, and V, respectively, which are equivalent to Y.
By performing the partitioning operation on each matrix,
we obtained Qi D QWQ

i , Ki D KWK
i , and Vi D VWV

i ,
where WQ

i 2 Rdmodel�dk (the parameter matrix of query
matrix Q), WK

i 2Rdmodel�dk (the parameter matrix of key
matrix K), WV

i 2 Rdmodel �dk (the parameter matrix of
value matrix V). Each head was calculated in accordance
with Eq. (7).

Headi D soft max
�

Qi KT
ip

dk

�
Vi (7)

The attention query was calculated and mapped to its
own key value matrix to obtain the similarity among
the points. Then, the Softmax function was applied to
calculate the weights, and the corresponding weights
were updated for each point to obtain the attention matrix
for each head. Multiple heads performed different linear
mappings separately to further control the attention
weights of multiple messages, and each calculated head
was concatenated to map the corresponding results. This
process is shown in Eq. (8):

Z D Concat.head1; head2; : : : ; headl/Wı (8)

where Wı 2 Rdmodel � dmodel (the parameter matrix for
concating of multi-headed attention matrices).

(iii) Residual linking: The original input location
embedding was added to the specific information of
the location weights after the multi-headed attention
operation to obtain more accurate information about the
interdependent attention mechanism. It also prevented
over-fitting caused by an excessive number of layers, as
shown in Eq. (9).

X D Y C Z (9)

(iv) Forward propagation: Two fully connected
layers were used. The middle layer was a linear
correction unit, which reduced the original feature
information.

4.2.2 Model composition
The basic architecture of our proposed CR-Former
model is illustrated in Fig. 6. In this paper, the input
of the model is ECG signal segments. The ECG
signals were moderately reduced in dimensionality by
passing through two convolutional layers, two batch
normalization layers, two ReLU activation layers, and
two maximum pooling layers. Then, we constructed
residual block structures based on the residual structure
of the ResNet model. We also applied four residual
blocks. After each residual operation, the dimension size
remained the same, but the number of channels changed.
A maximum pooling operation was applied after each
residual operation, which allowed the construction
of a deeper model to extract more critical features.
After the last residual operation, we applied a global
average pooling operation and perform tiling of data
features. We fed the features extracted by the CResnet
feature extractor into the transformer encoder unit and
performed the same transformer encoder operation three
times. Finally, a fully connected layer and a softmax
function layer were used to obtain the corresponding
classification results for heart failure-related diseases.
The specific model parameters are shown in Table 9.

5 Model Evaluation

5.1 10-fold cross-validation

In this paper, we use 10-fold cross-validation for intra-
patient experimental validation[55]. In each epoch, we
randomly selected 10% of the data as the test data and
90% of the data as the training validation data. Within
this 90% training validation set, we used 80% of the
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Fig. 6 Diagram of basic architecture of proposed CR-
Former model.

data as the training dataset and the remaining 20% as
the validation set. The specific 10-fold cross-validation
scheme is shown in Fig. 7.

5.2 Evaluation indicators

We applied the confusion matrix to obtain the results.
Then, widely prevalent evaluation metrics (accuracy Acc,
specificity Spe, sensitivity Sen, precision Pp, F1 score,
overall accuracy (OA) were calculated on the basis of
the confusion matrix results to assess the performance
of classifications, as follows:

Acc D
TP C TN

TP C FP C TN C FN
� 100% (10)

Spe D
TN

TN C FP
� 100% (11)

Sen D
TP

TP C FN
� 100% (12)

Pp D
TP

TP C FP
� 100% (13)

F1 D 2 �
Pp � Sen

Pp C Sen

� 100% (14)

OA D
Correctly classified instances

Total number of instances
� 100% (15)

where the confusion matrix records the number of
true positives, false positives, true negatives, and
false negatives, and OA is the proportion of correct
classifications to all classifications, true positive (TP),
false positive (FP), true negative (TN), and false negative
(FN) are defined as follows: True positive (TP) is a
class where the prediction is positive and the actual is
also positive, false positive (FP) is a class where the
prediction is positive and the actual is negative, true
negative (TN) is a class where the prediction is negative
and the actual is positive, and false negative (FN) is a
class where the prediction is negative and the actual is
also negative. Accuracy (Acc) is the proportion of correct
classifications of the current class to the current class.
Specificity (Spe) is the proportion of samples that are
judged to be in the negative category out of those that
are actually in the negative category. Sensitivity (Sen)
is the proportion of the sample that is judged to be in
the positive category out of those that are actually in the
positive category. F1 score is the weighted average of
the precision and recall rates. The maximum value of
this score is 1 and the minimum value is 0.

6 Results

6.1 Experimental deployment

We conducted the experiment on a computer server with
a 9th generation Core i7-9800X CPU, 16 GB of running
memory, and four GeForce 20 RTX 2070 GPUs from
NVIDIA. In this study, we described other details of
some of the parameters of the experiments. In this study,
Xavier initialization was used to initialize the weights of
the model[56]. The cross-entropy function was used as
the loss function of the network on the balanced dataset,
and the focal loss function was used as the loss function
on the unbalanced dataset. Using the Adam optimization
algorithm, the learning rate was adjusted to 2 � 10 5

to achieve a fast data convergence process. During the
iterative process of the model, 50 batches were used
for each iteration of the operation. These parameter
functions were adjusted to achieve the best results.

6.2 Results of input data length comparison

A small amount of ECG signals processed in a single
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Table 9 Parameters of CR-Former model.
Layer Operation Filter size Number of filters Stride length Numbe of heads dinner Output size

0 Input – – – – – 1000 � 1
1 Conv1D 16 4 1 – – 985 � 4
2 Batch normalization – – – – – 985 � 4
3 Max pooling 2 4 2 – – 492 � 4
4 Conv1D 8 6 1 – – 485 � 6
5 Batch normalization – – – – – 485 � 6
6 Max pooling 2 6 2 – – 242 � 6
7 ResNet1 8 8 1 – – 242 � 8
8 ResNet2 16 10 1 – – 242 � 10
9 Max pooling 2 10 2 – – 121 � 10

10 ResNet3 16 12 1 – – 121� 12
11 Max pooling 2 12 2 – – 60 � 12
12 ResNet4 4 14 1 – – 30 � 14
13 Average pooling 2 14 2 – – 30 � 14

View – – – – – 420
14 Transformer encoding – – – 5 248 420
15 Transformer encoding – – – 5 248 420
16 Transformer encoding – – – 5 248 420
17 Full connecting – – – – – 248
18 Softmax – – – – – 4

Fig. 7 Training and test methods for 10-fold cross-validation.

session may result in the model capturing fewer key
features, and a larger amount of ECG signals processed
in a single session will result in many distracting
factors. Thus, inaccurate features may be captured. In
this paper, we used different initial signal lengths to
systematically show their importance to the performance
of the model. If we select a large input feature, then
the hyperparameters in the Transformer feature extractor
in this model will increase dramatically and cause the
model to run slowly. Therefore, a length of 500 to 3000
was selected for our experiments. Tables 10 and 11 show
the experimental results with different signal lengths for
the four classifications of severe cardiovascular diseases.
The highest values of accuracy and F1 scores were
obtained for each classification with an initial signal
length of 1000, indicating that a single signal with an
initial length of 1000 is suitable for the model.

6.3 Results of intra-patient experiments

6.3.1 Results of intra-patient balanced datasets
The experimental results for two-, three-, and four-
classification diagnoses for the intra-patient balanced

Table 10 Experimental results (accuracy) of different signal
lengths for the four disease classifications.

Disease
classification

Accuracy (%)
500 1000 1500 2000 3000

Normal 99.80 99.88 99.76 99.78 99.71
MI 99.72 99.82 99.68 99.70 99.66

CAD 99.74 99.82 99.70 99.68 99.66
CHF 99.78 99.86 99.72 99.70 99.68

Table 11 Experimental results (F1 score) of different signal
lengths for the four disease classifications.

Disease
classification

F1 score (%)
500 1000 1500 2000 3000

Normal 99.68 99.76 99.64 99.65 99.58
MI 99.54 99.66 99.52 99.54 99.50

CAD 99.51 99.64 99.47 99.49 99.44
CHF 99.64 99.71 99.62 99.58 99.54

datasets are shown in Fig. 8. The accuracy of
each classification exceeds 99.8%. The accuracy,
sensitivity,specificity, and F1 score for identifying
CHF in the two-classification diagnosis (Fig. 8a) are
99.94%, 99.92%, 99.95%, and 99.93%, respectively,
with all metrics exceeding 99.9%. The sensitivity,
precision, specificity, and F1 scores for identifying CAD
(Fig. 8b) are 99.79%, 99.75%, 99.88%, and 99.77%,
respectively. As for identifying CHF, the sensitivity,
precision, specificity and F1 scores reaches 99.85%,
99.82%, 99.91%, and 99.83%. Figures 8c and 8d show
the confusion matrix and experimental results among
normal, CAD, MI, and CHF. In Fig. 8d, the lowest value
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Fig. 8 Results of the multi-class diagnosis experiments on intra-patient balanced datasets.

of 99.55% and the highest value of 99.93% are found for
all evaluation indicators, with an overall indicator value
of around 99.6%. Thus, the model proposed in this paper
shows excellent performance in differentiating among
normal, CAD, MI, and CHF for two-, three-, and four-
classification diagnoses in intra-patient experiments.

6.3.2 Results of intra-patient unbalanced datasets
In this paper, the specific N1; N2; and N3 assigned
experimental groups are shown in Table 12. In addition,
the experimental results of the intra-patient unbalanced
dataset are shown in Table 13. In Table 13, the values
for all metrics exceed 99%, and they do not fluctuate
by more than 1% in the experiments for different
balanced indices. The maximum and minimum values
of the F1 score are 99.93% (Group 4) and 99.83%

Table 12 Proportional distribution of intra-patient
unbalanced datasets of the five groups for experiments.

Ni

Value of Ni

Group 1 Group 2 Group 3 Group 4 Group 5
N1 2 5 7 10 14
N2 5 7 10 14 20
N3 10 14 5 2 7

(Groups 1 and 2) for the two-classification diagnostic
Dataset D. The maximum and minimum value of the
F1 score is 99.75% (Group 3) and 99.70% (Group
2) for the three-classification diagnostic Dataset E,
respectively. In particular, in the four-classification
diagnostic Dataset F for severe cardiovascular diseases,
the diagnostic CAD results have a maximum and
minimum sensitivity of 99.52% (Group 1) and 99.23%

Table 13 Experimental results of intra-patient unbalanced datasets of the five groups for experiments.
(%)

Group 1 Group 2 Group 3 Group 4 Group 5
Sen Pp Spe F1 Sen Pp Spe F1 Sen Pp Spe F1 Sen Pp Spe F1 Sen Pp Spe F1

D CHF 99.74 99.91 99.93 99.83 99.72 99.89 99.94 99.83 99.87 99.92 99.94 99.91 99.92 99.94 99.94 99.93 99.84 99.93 99.92 99.88
E CAD 99.71 99.84 99.78 99.47 99.56 99.77 99.84 99.70 99.74 99.78 99.76 99.75 99.65 99.76 99.82 99.73 99.54 99.72 99.90 99.72

F
CAD 99.52 99.68 99.54 99.53 99.46 99.73 99.57 99.51 99.48 99.75 99.55 99.51 99.34 99.78 99.70 99.52 99.23 99.72 99.68 99.45
MI 99.66 99.64 99.48 99.57 99.61 99.56 99.52 99.56 99.59 99.66 99.54 99.56 99.46 99.60 99.54 99.49 99.32 99.62 99.72 99.52
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(Group 5) and a maximum and minimum F1 score of
99.53% (Group 1) and 99.45% (Group 5), respectively.
In addition, the diagnostic MI results have a maximum
and minimum sensitivity of 99.66% (Group 1) and
99.32% (Group 5) and a maximum and minimum F1
score of 99.57% (Group 1) and 99.49% (Group 4),
respectively. The above-mentioned results indicate that
the model proposed in this paper can handle unbalanced
data well, and it has an accurate and stable performance
in distinguishing normal, CAD, MI, and CHF in two-,
three-, and four-classification diagnoses.

6.4 Results of inter-patient experiments

Figure 9 shows the inter-patient experimental results
of two-, three-, and four-classification diagnoses of
severe cardiovascular diseases. Figure 9a shows that
all indicators exceed 99.5%, 94.2%, and 90% for two-,
three-, and four-classification diagnoses, respectively. In
particular, the sensitivity, specificity, and F1 scores of
the method are 99.74%, 99.84%, and 99.79% for the
two-classification diagnosis of CHF; 99.12%, 96.81%,
and 97.95% for the three-classification diagnosis of
CHF; and 99.12%, 96.81%, and 97.95% for the four-

classification diagnosis of CHF, respectively. In addition,
the sensitivity, specificity, and F1 scores of the method
are 97.48%, 97.89%, and 93.96%, respectively. By
contrast, the sensitivity, specificity, and F1 scores of the
method for the diagnosis of CAD are 96.03%, 97.72%,
and 94.74%, respectively. Furthermore, the overall
accuracy (OA) in the four-classification diagnostic
experiment is 94.97%, with only 5.03% of heartbeats
being incorrectly classified. Therefore, based on the
above-mentioned results, the model can obtain excellent
inter-patient experimental results for two-, three-, and
four-classification diagnoses of severe cardiovascular
diseases.

6.5 Results of multi-level noise interference signals

We added multilevel noise interference to the ECG signal
to verify the noise robustness of the model proposed
in this paper. Figure 10 shows the waveforms of the
normal, CAD, MI, and CHF ECG signals with added
noise used in this paper. The figure shows the ECG
signal waveforms acquired from two different leads, and
all signal noise is added by using MATLAB. As can
be seen from the signal curves in Fig. 10, noise has a

Fig. 9 Experimental results of the inter-patient datasets of two-, three-, and four-classification diagonses of diseases.
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large effect on signal interference. In particular, the ECG
signal waveform is severely disturbed at signal-to-noise
ratios (SNR) below 18 dB. Figure 11 and Table 14 show
the experimental results for Sets A, B, C, G, H, and I
with different SNRs of noise interference. Based on the
results shown in Fig. 11 and Table 14, the OA obtained

decreases with the increase of the SNR for the same
categories. A large difference in the OA values for an
SNR of 6 dB and 0 dB is found, with a minimum and
maximum difference of 5.15% and 9.9%, respectively.
This data difference indicates that the noise has a large
impact on the ECG signal waveform at SNR of 0 dB,

Fig. 10 ECG signals under different signal-to-noise ratios (a) 1 dB; (b) 24 dB; (c) 18 dB; (d) 12 dB; (e) 6 dB; (f) 0 dB. Each row
is different from top to bottom. Green, purple, blue, and red curves indicate normal heartbeat, CAD heartbeat, MI heartbeat,
and CHF heartbeat, respectively.
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Fig. 11 Results (OA) of ECG signals under noise interference with different signal-to-noise ratios. (a) Balanced datasets (A, B,
and C); (b) unbalanced datasets (G, H, and I).

Table 14 Results (OA) of ECG signal processing under noise
interference with different SNR for the six datasets.

(%)

SNR (dB)
OA

A B C G H I
1 99.94 99.83 99.69 99.21 98.21 94.97
24 99.92 99.60 99.14 99.01 96.52 93.43
18 99.89 99.52 98.23 98.94 94.23 92.31
12 99.43 97.46 96.76 98.16 92.17 88.79
6 99.24 96.24 94.32 97.64 87.88 85.89
0 98.22 86.73 84.42 96.11 81.46 80.44

which seriously affects judgment performance. In all
experiments where the SNR is greater than or equal
to 6 dB, the experimental result of OA is greater than
90% in 90% of the cases. However, the experimental
results on Datasets H and I with an SNR of 0 dB
exceed 80%. The above-mentioned results indicate that
the model has good noise robustness in experiments
with two-, three-, and four-classification diagnoses in
distinguishing normal, CAD, MI, and CHF.

6.6 Results of traditional models

In the paper, we use datasets C and I. We followed
the input size of the model proposed in the paper.
The performance of several traditional models and
current popular models was also evaluated. The other
model architectures used are consistent with the
model architectures shown in the original paper. The
experimental results are shown in Tables 15 and 16.
The evaluation metrics include the average metrics
diagnosed for each specific classification. All models
achieved classification metric results exceeding 97%
on intra-patient experimental datasets. In addition,
the classification metrics on inter-patient experimental
datasets achieved excellent performance for the currently
available models, although the performance varied

Table 15 Experimental results compared with traditional
models (intra-patient datasets).

(%)
Model Acc Sen Pp Spe F1

VGG 16[57] 97.76 98.32 97.84 97.78 98.05
ResNet 18[52] 98.72 98.23 98.46 98.64 98.43
ResNet 34[52] 98.74 98.26 99.48 98.60 98.42
ResNet 50[52] 98.70 98.17 98.24 98.56 98.36

CNN-LSTM[46] 98.81 99.54 98.97 98.21 98.87
Transformer[50] 99.82 99.74 99.76 99.82 99.72

Proposed 99.84 99.68 99.71 99.90 99.69

Table 16 Experimental results compared with traditional
models (inter-patient datasets).

(%)
Model Acc Sen Pp Spe F1

VGG 16[57] 80.03 62.48 70.21 87.21 78.94
ResNet 18[52] 91.46 78.43 82.54 92.96 84.77
ResNet 34[52] 92.34 79.46 84.68 94.38 86.34
ResNet 50[52] 90.21 77.85 78.37 91.79 82.98

CNN-LSTM[46] 93.14 89.37 92.34 94.63 92.46
Transformer[50] 94.57 91.64 94.79 95.93 93.75

Proposed 97.48 93.54 96.30 97.89 94.87

relatively and widely. In the CNN-LSTM model[46],
transformer model[50], and the model proposed in the
paper, almost all inter-patient classification metrics
exceeded 90%. In particular, the overall performance
metrics of the current CNN-LSTM model[46] and the
transformer model[50] are higher than those of the
traditional models based on the experimental results of
intra-patient datasets. The accuracy, sensitivity, positive
predictive value, specificity, and F1 scores of the
model presented in this paper were 99.84%, 99.68%,
99.71%, 99.90%, and 99.69%, respectively, of which
the accuracy and specificity values are the highest,
followed by the F1 score and sensitivity and positive
prediction values. The model proposed in this paper
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still outperformed other traditional and popular models
in intra-patient experiments. Based on the experimental
results of inter-patient datasets, all evaluation metrics of
the proposed model are the highest, followed by those
of the transformer model[50]. Therefore, our proposed
model can utilize the CNN, Resnet residual network, and
transformer model to obtain excellent results.

7 Discussion

In this paper, a great breakthrough is achieved
by our proposed model with regard to intra-patient
four-classification experiments and inter-patient four-
classification experiments in severe cardiovascular
diseases. The comparative results are shown in Tables 17
and 18.

The results of these experiments are compared with
the latest results in the relevant literature. We found
that all performance evaluation metrics of the model
proposed in this paper are the highest in intra-patient
and inter-patient experiments. In addition, the model
proposed in this paper can accurately detect severe
cardiovascular diseases using actual ECG signals.

The construction of the CR-Former model uses the
information retention benefits of the residual structure
of the ResNet network, allowing for the construction
of high-level networks and the expansion of a certain
amount of key information features. The network also
utilizes the multi-headed attention mechanism in the
transformer encoder, which allows all information to
be interconnected and noticed. Despite its excellent
performance, the model has some drawbacks. First, the
model is built with several layers, which can result in
excessive computational power and high computational
complexity of the model, thereby accelerating computer

Table 17 Comparison results of multi-diagnostic studies
(intra-patient datasets).

(%)
Author Year Acc Sen Pp Spe

Fujita et al.[44] 2017 97.98 99.61 – 94.84
Acharya et al.[45] 2017 99.55 99.93 – 99.24

Lih et al.[46] 2020 98.51 99.30 – 97.89
Gong et al.[47] 2020 99.74 98.67 99.09 99.83

Proposed – 99.84 99.68 99.71 99.90

Table 18 Comparison results of multi-diagnostic studies
(inter-patient datasets).

(%)
Author Year Acc Sen Pp Spe

Zhang et al.[47] 2020 96.92 89.18 92.17 97.77
Proposed – 97.48 93.54 96.30 97.89

wear and tear over long periods of time. Second, the
model takes a long time to diagnose. There are situations
where we need to diagnose the condition quickly to buy
the doctor’s time for resuscitation.

8 Conclusion

The development of an integrated multi-classification
diagnostic system for severe cardiovascular diseases
is essential to rapidly save the lives of critically ill
patients. It is also necessary for artificial intelligence
in medicine. In this paper, we propose a new model
that consists of a short-layered 1D CNN, a multilayer
Resnet-network-structured block layer constructed using
the structure and properties of the ResNet network,
a transformer feature extraction layer consisting of
three transformer model encoders, a softmax classifier,
and a focal loss function. We applied a 10-fold cross-
validation approach. In within-patient experiments, we
applied Sets A, B, and C. The mean accuracies obtained
are 99.94%, 99.88%, and 99.84%. In experiments on
multilevel imbalanced datasets D (two-classification
CHF diagnosis), E (three-classification CAD diagnosis),
and F (four-classification CAD and MI diagnosis), the
mean accuracies are 99.82%, 99.64%, 99.41%, and
99.53%, respectively. In inter-patient experiments, the
average accuracies obtained for experiments conducted
on datasets G, H, and I are 99.93%, 98.60%, and
97.48%, respectively. Therefore, the model produces
excellent results for two-, three-, and four-classification
diagnoses in inter-patient experiments. Good results are
achieved for experimental classification diagnosis in
mixed multilevel noise data, thereby demonstrating the
model’s extreme noise robustness. The model presented
in this paper shows great application potential in the
multi-classification diagnosis of cardiovascular diseases
in a practical clinical environment.

In future work, we must work toward creating more
concise and sensitive systems for the classification
of severe cardiovascular diseases. In addressing the
shortcomings of the model mentioned in this paper,
the complexity of the algorithm must be optimized to
save computer memory. In addition, we must perform
feature extraction of dual-lead information and enhance
the comprehensiveness of the information by using
more leads to extract more relevant features. We
can build fewer network layers to save training and
classification time. Moreover, we must find more
actual ECG signal data from hospitals to validate the
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generalization capability of the model. Hence, we
can determine whether the model can still have more
accurate results when using ECG signals obtained in
different environments for diagnosis.
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