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Discovering Association Rules with Graph Patterns in
Temporal Networks

Chu Huang, Qianzhen Zhang, Deke Guo�, Xiang Zhao, and Xi Wang

Abstract: Discovering regularities between entities in temporal graphs is vital for many real-world applications

(e.g., social recommendation, emergency event detection, and cyberattack event detection). This paper proposes

temporal graph association rules (TGARs) that extend traditional graph-pattern association rules in a static graph

by incorporating the unique temporal information and constraints. We introduce quality measures (e.g., support,

confidence, and diversification) to characterize meaningful TGARs that are useful and diversified. In addition, the

proposed support metric is an upper bound for alternative metrics, allowing us to guarantee a superset of patterns.

We extend conventional confidence measures in terms of maximal occurrences of TGARs. The diversification score

strikes a balance between interestingness and diversity. Although the problem is NP-hard, we develop an effective

discovery algorithm for TGARs that integrates TGARs generation and TGARs selection and shows that mining

TGARs is feasible over a temporal graph. We propose pruning strategies to filter TGARs that have low support or

cannot make top-k as early as possible. Moreover, we design an auxiliary data structure to prune the TGARs that do

not meet the constraints during the TGARs generation process to avoid conducting repeated subgraph matching for

each extension in the search space. We experimentally verify the effectiveness, efficiency, and scalability of our

algorithms in discovering diversified top-k TGARs from temporal graphs in real-life applications.
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1 Introduction

Graph-pattern association rules have been studied to
discover complex relations among entities in a static
graph[1–4]. They have a traditional form Q.ux; uy/)

q.ux; uy/, where antecedent Q.ux; uy/ is a graph
pattern in which ux and uy are two designated nodes
and consequent q.ux; uy/ is an edge labeled q from ux

to uy , on which the same search conditions as in Q are
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imposed. Specifically, Q.ux; uy/ ) q.ux; uy/ states,
“if an antecedent Q.ux; uy/ occurs, then the consequent
q.ux; uy/ is likely to occur.”

Although mining association rules has been well
studied for static graphs, little has been done on
considering the temporal constraints. The need for
mining these temporal association rules is especially
urgent since many graphs in the real world come
with temporal information and are typically called
temporal graphs[5–7]. To be more specific, this temporal
association rule states, “if an antecedent Q.ux; uy/

occurs, then the consequent q.ux; uy/ is likely to occur
in time �t .” Mining temporal graph association rules
(TGARs) in a temporal graph could be very useful for
many practical applications[8–10], two of which are listed
as follows.

Application 1: cyberattack prevention. The leakage
of personal information caused by information
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exfiltration attacks is a severe problem for cyber security.
The process of information exfiltration attack can be
described by a temporal association R1 between two
graph patterns Q1 and q1 (as illustrated in Fig. 1a),
where (1) Q1 is an information exfiltration attack, in
which a victim browses a compromised website and the
attacker controls a bot to create massive requests to the
victim, and (2) q1 describes the result. The rule states
that “if a host is involved in an information exfiltration
attack (Q1) at some time, then this host is likely to
divulge personal information within 2 min”. In this way,
once the occurrence of this attack pattern is discovered,
the preemptive measure should be invoked in a short
time to avoid possible loss.

Application 2: time-aware point of interest (POI)
recommendation. Social network users tend to behave
in a short period triggered by social influences[11]. For
example, a temporal social influence can be represented
by a temporal association R2 between two graph
patterns Q2 and q2 (see Fig. 1b), which capture social
communities and a recommendation pattern, respectively.
The rule states that “if a user u1 has a friend u2 and u1

retweets u2, and u2 checks in at point of interests (POI)
u3 (e.g., ‘British Museum’) at some time t (via, e.g.,
Facebook Place), then it is likely u1 will visit u3 in 2 h”.

Note that most rules in a temporal graph often pertain
to the same or similar people[12, 13]. Motivated by this
feature, in this paper, we focus on the problem of
mining diversified top-k TGARs, to find a set of k
TGARs corresponding to q.u; u0/ that has the largest
diversification score. We illustrate this problem by the
following example.

Example 1 Consider the temporal graph in Fig. 2a
and antecedents Q3, Q4, and Q5 shown in Fig. 3, all
pertaining to q.u1; u3/ in Fig. 1b. R3, R4, and R5 are
the temporal rules corresponding to Q3, Q4, and Q5,
respectively. Let k D 2. For diversified top-k TGARs,
the result is fR4; R5g, since R4 and R5 have the greatest
difference. Indeed, R4 and R5 find two entirely different
reasons for a user to check in at POI. In particular, in
R4, the main reason for a user to check in at a POI is
to retweet a friend who retweeted an exhibition in a
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corresponding POI and has checked in at the POI; in
R5, the reason is that the user likes the exhibition in the
corresponding POI and he (or she) retweets a friend who
also likes the exhibition and has checked in at the POI.

Efforts to support TGARs seem to enjoy some
success. In Ref. [14], Namaki et al. first extended
graph-pattern association rules with temporal constraints
over a temporal graph. They specified a time window
to describe the minimal gap between the occurrences
of two patterns Q1 and Q2. Here Q1 and Q2 have
only one common vertex. These rules cannot model
more meaningful associations among entities since:
(1) their antecedents, as pattern graphs, only consider
their matching instances at each timestamp and do
not consider the duration feature; (2) they do not
consider the diversity feature, resulting in most of
the rules being highly overlapping; and (3) they use
the number of minimal occurrences supported by the
matches of the common vertex of Q1 and Q2 as a
support metric. However, this setting will underestimate
the actual support since these rules only once consider
each match of the common vertex in Q1 and Q2 at
each timestamp. Moreover, since Q1 and Q2 have only
one common vertex, their method cannot be used to
straightforwardly mine the graph association rule with
the form Q.ux; uy/) q.ux; uy/.

To compute diversified top-k TGARs corresponding
to a particular event q.u; u0/, a straightforward solution
is to enumerate all TGARs first and then select the top-
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k TGARs via result diversification[15]. However, this
approach is costly: (1) An excessive number of TGARs
are generated; and (2) for all TGARs generated, it must
compute the diversification scores for them and pick the
top-k set, which is NP-hard. To this end, we propose an
algorithm findTopkTGARs for diversified top-k TGARs
mining that can avoid enumerating all TGARs and solve
all the limitations existing in Ref. [14]. The contributions
of this paper are as follows.
� We formulate support, confidence, and diversity

for TGARs. We define the support of a TGAR in terms
of the maximal occurrences of the antecedent and the
consequent. We prove that our proposed support metric
is an upper bound for alternative metrics, allowing us to
guarantee a superset of patterns. We extend conventional
confidence measures in terms of maximal occurrences
of TGARs. We show that the support of TGARs is anti-
monotonic. In addition, we define a diversification score
for a set of TGARs, aiming to strike a balance between
interestingness and diversity.
� We integrate pattern mining and association rule

discovery in a single process to obtain high-quality
rules. To avoid enumerating all TGARs to compute
diversified top-k TGARs corresponding to a particular
event q.u; u0/, we propose to maintain a list Lk of
diversified top-k TGARs in each round, which can
help to filter TGARs that have low support or cannot
make top-k as early as possible. Furthermore, in the
pattern mining process, we propose an auxiliary data
structure, namely, EIndex, and dynamically maintain
EIndex during pattern growth. On the basis of EIndex,
we can avoid conducting repeated subgraph matching
for each extension in the search space.
� We conduct comprehensive experiments using

three real-world datasets. The experimental results
demonstrate that our algorithm achieves high
effectiveness and efficiency. Remarkably, our algorithm
is orders of magnitude faster than the competing
baseline on all settings. We also examine one case
study on the Offshore dataset. The results show that our
algorithm is indeed able to identify many meaningful
and diversified TGARs.

2 Problem Formulation

A temporal graph G is defined as a quadruple
.V ; E ; ; T /, where V is a set of vertices, E 2 V�V�T
is a set of (directed) edges connecting two vertices in
V , each associated with a timestamp from a universe T ,
and is a label function that assigns labels to vertices

and edges. An edge e D hv; v0; ti .t 2 T / encodes
a link with label .e/ between v and v0 that exists at
timestamp t . We assume that all the timestamps in T
are sorted in chronological order, joined as an arithmetic
time sequence, i.e., t1 < t2 < � � � < tjT j

�. Figure 2a
illustrates a temporal graph G with 51 temporal edges.

Given a temporal graph G, the de-temporal graph of
G, denoted by G D .V;E; /, is a graph that ignores
all the timestamps associated with the temporal edges.
More formally, for the de-temporal graph G of G, we
have V D V and E D fhv; v0ijhv; v0; ti 2 Eg.

Definition 1 (Subgraph pattern) A subgraph pattern
Q D .VP ; EP ; P / is a de-temporal graph in which VP

and EP are the sets of vertices and edges, respectively.
Each vertex up 2 VP (respectively ep 2 EP ) has a label

P .up/ (respectively P .ep/) specifying a predicate.
Definition 2 (Temporal subgraph homomorphism)

Given a temporal graph G and a subgraph pattern Q,
Q is temporally homomorphic to a subgraph of G if
there is a mapping f : VP ! V such that: (1) 8u 2 VP ,
node u has the same label as node f .u/; and (2) if edge
hu; u0i 2 EP , then temporal edge hf .u/; f .u0/; ti 2 E ,
and edge hu; u0i has the same label as emporal edge
hf .u/; f .u0/; ti.

We call a subgraph g of G as an instance of Q if Q is
temporally homomorphic to g. For example, consider
the subgraph pattern Q in Fig. 2b and temporal graph
G in Fig. 2a. All the subgraphs of G in Fig. 2c are
instances of Q since Q is temporally homomorphic to
all of them. Furthermore, each instance g of Q has
a duration, denoted by �.g/, which is the difference
between the largest and smallest timestamps in g. We
only consider the instances formed within short duration
since the longer an instance lasts, the less interesting it
becomes[16]. We call this instance a � -instance of Q.

Definition 3 (�-instance) Given a temporal graph
G, a subgraph pattern Q, and a duration threshold � ,
a subgraph g of G is a �-instance of Q if: (1) g is an
instance of Q, and (2) �.g/ 6 � .

Example 2 Figure 2c lists three 1-instances (� D 1)
of the antecedent Q2 (Fig. 2b) in TGAR R2 (Fig. 1b) of
a temporal graph (Fig. 2a). The subgraphs in gray are
invalid instances of Q2 because of the violation of the
duration constraint.

Definition 4 (Temporal graph association rule) A

TGAR R.ux; uy ; �t/ is defined as Q.ux; uy/
�t
)

q.ux; uy/, where Q.ux; uy/ is a graph pattern in which

� Without loss of generality, we interpret each timestamp as an integer, e.g.,
the UNIX timestamps are nonnegative integers.
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ux and uy are two designated nodes, and q.ux; uy/ is an
edge labeled q from ux to uy on which the same search
conditions as in Q are imposed; and �t is a constant
that specifies a time interval.

We refer to Q and q as the antecedent and consequent
of R, respectively. The TGAR states that for all vertices
vx and vy in a temporal graph, if there exists a � -instance
g.vx; vy/ of Q.ux; uy/ with the largest timestamp t ,
then the consequent q.ux; uy/ will likely hold, within a
time window Œt; t C�t�.

Example 3 Recall the first association rule for
cyberattack prevention described in Application 1.
This rule can be described as TGAR R1.u3; u2;

�t D 2 min/: Q1.u3; u2/
2 min
) q1.u3; u2/, where its

antecedent is the pattern Q1, and its consequent is
q1.u3; u2/. Similarly, the temporal association for POI
recommendation in Application 2 can be expressed as

TGAR R2.u1; u3; �t D 2 h/: Q2.u1; u3/
2 h
) q2.u1;

u3/ with Q2 and edge hu1; u3i in Fig. 1.
Frequently used notations are summarized in Table 1.

3 Diversified TGARs Discovery Problem

We want to detect temporal event associations
by explicitly using TGARs. To this end, we
introduce support and correlation measures for TGARs
(Section 3.1), followed by the formulation of the
diversified TGARs discovery problem (Section 3.2).

3.1 Interestingness measures

Having an anti-monotonic support measure can allow
the development of methods that effectively prune the
search space; without an anti-monotonic measure, an

Table 1 Notation and description.
Notation Description
G / G Temporal graph / De-temporal graph
T Timestamps set in G

V / V Vertices set in G / Vertices set in G
E / E Temporal edges set in G / Edges set in G
Q / g Subgraph pattern / An instance of Q
� Duration threshold of g
�t Time interval threshold between Q and q

.vx ; vy/t
.vx ; vy/ exists in a g.vx ; vy/ with largest

timestamp t
k Number of returned TGARs
b Size bound of Q
ı, � Support and confidence thresholds of TGARs

Adj.ei / Adjacency list corresponding to ei 2 Q
time.hv; v0i/ Timestamps set of data edge hv; v0i during �

cand.u/ Vertices set of G to which u can be mapped

exhaustive search is unavoidable[17]. To this end, we
propose a new support metric based on the maximal
occurrence supported by the designated nodes. We first
introduce some important notions and then define the
support, confidence, and weighted-diversity-score of
TGARs.

Rule occurrence. Given a TGAR R.ux; uy ; �t/:

Q.ux; uy/
�t
) q.ux; uy/ and a vertex pair .vx; vy/ in

G, if: (1) gt 0.vx; vy/ is a �-instance of Q.ux; uy/

with the largest timestamp t 0, (2) an edge hvx; vyi in
G matches q.ux; uy/ at timestamp t , and (3) 0 6
t� t 0 6 �t , then the time window Œt 0; t � is an occurrence
of R.ux; uy ; �t/ supported by hvx; vyi that matches
q.ux; uy/ at timestamp t . For ease of exposition, we
use the notation .vx; vy/t to describe that the vertex pair
.vx; vy/ exists in a �-instance g.vx; vy/ of Q.ux; uy/

with the largest timestamp t .
Note that .vx; vy/t may exist in multiple �-instances

of Q.ux; uy/. We use a counter TN t
.vx ;vy/

to count
the number of �-instances of Q.ux; uy/ that contains
.vx; vy/t . Moreover, a time window may contain
multiple occurrences of a TGAR. We want to further
find “maximal” ones that suffice to support TGARs.

Maximal occurrence. Let Tq.vx; vy ; t / be the set
of the time window that includes all occurrences of a
TGAR in G supported by the edge hvx; vyi at timestamp
t: A maximal occurrence of TGAR R.ux; uy ; �t/

supported by an edge hvx; vyi at timestamp t is a
time window Œt 0; t � 2 Tq.vx; vy ; t / such that: (1)
TN t 0

.vx ;vy/
> 0, and (2) there exists no other time

window Œt 00; t � 2 Tq.vx; vy ; t / such that TN t 00

.vx ;vy/
> 0

and t 00 < t 0. Note that we set TN t 0

.vx ;vy/
 TN t 0

.vx ;vy/
�

1 if .vx; vy/t is used to generate the maximal occurrence.
Example 4 Consider the TGAR R2.u1; u3; �t D

2 h/ in Fig. 1b and the temporal graph in Fig. 2a.
The focus occurrences of Q2.u1; u3/ and q2.u1; u3/

are shown in Fig. 4. Now, we look for the maximal
occurrences supported by the edge hv8; v7i. (1) We
can easily obtain TN 2

.v8;v7/
D 2. In addition, Œ2; 2� 2

Tq.v8; v7; 2/ is a maximal occurrence of R2 supported
by hv8; v7i by the definition of maximal occurrence.
Therefore, TN 2

.v8;v7/
 TN 2

.v8;v7/
� 1 since .v8; v7/2

is used to generate the maximal occurrence. Time
window Œ2; 3� 2 Tq.v8; v7; 3/ and Œ3; 3� 2 Tq.v8; v7; 3/

are occurrences of R2 supported by edge hv8; v7i that
matches q.v8; v7/ at timestamp 3. Œ2; 3� 2 Tq.v8; v7; 3/

is a maximal occurrence of R2 supported by edge
hv8; v7i by the definition of maximal occurrence rather
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Fig. 4 Counting maximal occurrences.

than Œ3; 3� because of TN 2
.v8;v7/

D 1 at this moment
and 2 < 3. For Tq.v8; v7; 4/, Œ2; 4� is not the maximal
occurrence of R2 because TN 2

.v8;v7/
D 0. Therefore,

Œ3; 4� 2 Tq.v8; v7; 4/ is a maximal occurrence of
R2. In total, three maximal occurrences of R2 are
supported by the edge hv8; v7i at different timestamps.
(2) If we consider the support metric with minimal
occurrence in Ref. [14], .v8; v7/t1 is used to generate the
minimal occurrence of R2 with the matched consequent
q.v8; v7/ at timestamp t2 since there exists no time
window Œt 01; t

0
2� � Œt1; t2� (i.e., t1 < t 01 6 t

0
2 6 t2 or

t1 6 t 01 6 t 02 < t2) such that Œt 01; t
0
2� is an occurrence

of R2 supported by edge hv8; v7i. Therefore, the
minimal occurrences of R2 supported by edge hv8; v7i

at timestamp 2 and timestamp 3 are Œ2; 2� and [3, 3],
respectively.

Note that if there exist two identical occurrences of
R1 supported by different vertex pairs, we consider such
cases as different occurrences rather than a single one.
Indeed, it suggests that both vertices pairs are influenced
by the temporal association at the same time window,
which should be considered “stronger” evidence that R1

holds.
Support. Having an anti-monotonic support measure

can allow the development of methods that effectively
prune the search space; without an anti-monotonic
measure, an exhaustive search is unavoidable[17]. On
the basis of the maximal occurrences, we define the
support of TGAR R in temporal graph G, denoted by
supp.R/, as follows:

supp.R/ D
jm.R; ux; uy/j

jcand.ux; uy/j � jT j
(1)

where m.R; ux; uy/ refers to the set of temporal edges
that match q.ux; uy/ in the temporal graph G at each
timestamp, each of which can contribute to a maximal
occurrence of R, and jcand.ux; uy/j is the number of
vertex pairs .vx; vy/t such that vx (respectively vy) has
the same label as ux (respectively uy). We normalize its
size with jcand.ux; uy/j and jT j, as up to jcand.ux; uy/j

vertex pairs support a maximal occurrence of R, and
each vertex pair supports up to jT jmaximal occurrences.

We show that supp.R/ is anti-monotonic.
Lemma 1 For any temporal graph G and

any TGARs R1: Q.ux; uy/
�t
) q.ux; uy/ and R2:

Q0.ux; uy/
�t
) q.ux; uy/, supp.R1/ > supp.R2/ if

R1 � R2.
Here, we say R1 � R2 if Q.ux; uy/ � Q0.ux; uy/.

The set of vertex pairs f.vx; vy/tg in the temporal graph
G is denoted by m.Q; ux; uy/. We prove Lemma 1 as
follows.

Proof Consider TGARs R1: Q.ux; uy/
�t
) q.ux;

uy/ and R2: Q0.ux; uy/
�t
) q.ux; uy/ such that R1 �

R2. By definition of TGAR support, it suffices to show
that m.Q0; ux; uy/ � m.Q; ux; uy/. As Q � Q0, for
any vertex pair .vx; vy/ 2 m.Q

0; ux; uy/, .vx; vy/ also
exists in m.Q; ux; uy/. Otherwise, either .vx; vy/ …

m.Q; ux; uy/ or Q contains at least an edge that
is not in Q0. Both lead to a contradiction. Hence,
m.Q0; ux; uy/ 2 m.Q; ux; uy/. The anti-monotonicity
thus follows. �

Example 5 Consider TGAR R2 in Fig. 1b
and the temporal graph in Fig. 2a. The focus
occurrences of Q2.u1; u3/ and q2.u1; u3/ are shown
in Fig. 4. Since a total of 10 maximal occurrences
are contributed by vertex pairs .v8; v7/; .v2; v4/;

.v11; v10/; .v5; v4/; .v5; v7/, respectively, supp.R2/ D
3C 2C 3C 1C 1

6 � 5
D 0:33. However, if we consider

the support metric with minimal occurrence[14], a total of
nine minimal occurrences are contributed, supp.R2/ D
9

6 � 5
D 0:3 < 0:33. If we adopt the concept of minimal

occurrence in Ref. [14], it is a type of overkill that
we will underestimate the actual support. Therefore,
our proposed support metric is an upper bound for the
alternative metric is proposed by Ref. [14].

Remark. The most intuitive support measure for
TGAR R is to count the minimal occurrences supported
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by the designated nodes of R in the time window[14].
However, this setting will underestimate the actual
support since (1) for their antecedents, as pattern
graphs, only their matching instances on each timestamp
are considered, and the duration characteristics are
neglected, (2) the setting[14] only considers each match
once of the designated nodes at each timestamp, and (3)
they use the number of minimal occurrences supported
by the matches of the common vertex as a support metric,
and some possible matching pairs will be ignored.

Confidence. The confidence of TGAR R in G,
denoted as conf.R/, measures how likely a temporal
edge that matches q.ux; uy/ supports a maximal
occurrence of R and is defined as

conf.R/ D
jm.R; ux; uy/j

jm.q; ux; uy/j
(2)

where m.q; ux; uy/ is the set of temporal edges that
match q.ux; uy/ in the temporal graph G at each
timestamp.

Example 6 Consider TGAR R2 in Fig. 1b and
the temporal graph in Fig. 2a. We can verify that

m.R2; u1; u3/ D 10. Hence, conf.R2/ D
10

16
D 0:625.

Diversification. We are interested in TGARs for a
particular consequent q.ux; uy/. However, this often
generates an excessive number of rules, which often
pertain to the same or similar people[12, 13]. To find
interesting and diverse TGARs, given a set Lk of k
TGARs that pertain to the same consequent q.ux; uy/,
we define the diversification ofLk , denoted by dive.Lk/,
as follows:

dive.Lk/ D .1 � �/
X

Ri2Lk

conf.Ri /C
2�

k � 1
�

X
Ri ;Rj2Lk ;i<j

diff.Ri ; Rj / (3)

where diff.Ri ; Rj / is defined as

diff.Ri ; Rj / D 1 �
jm.Ri ; ux; uy/ \m.Rj ; ux; uy/j

jm.Ri ; ux; uy/ [m.Rj ; ux; uy/j
(4)

Here, diff.Ri ; Rj / is used to measure the difference
between two TGARs Ri and Rj in terms of the Jaccard
distance of their match set. dive.Lk/ is known as max-
sum diversification. It aims to strike a balance between
interestingness (measured by the revised Bayes Factor)
and diversity (measured by the distance diff.; /) with
a parameter � controlled by users. We normalize the

diversity metric with
2�

k � 1
since there are

k.k � 1/

2
numbers for the difference sum, while there are only k
numbers for the confidence sum.

Example 7 Consider the antecedents Q3, Q4, and
Q5 in Fig. 3, all pertaining to q2.u1; u3/ (Fig. 1b). We
can obtain R3, R4, and R5 based on Q3, Q4, and Q5,
respectively. Let � D 0:5, and Lk D fR2; R3; R4; R5g.
We have dive.Lk/ D 2:39.

3.2 Diversified mining problem

On the basis of the objective function dive.Lk/, the
diversified top-k TGARs mining problem is stated as
follows.
� Input: A temporal graph G, a predicate q.ux; uy/,

a time interval �t , support bound ı, confidence bound
� , size bound b, and parameters � , �, and k;
� Output: A set Lk of k nontrivial TGARs

pertaining to q.ux; uy/ and�t such that (1) dive.Lk/ is
maximized; and (2) for each TGARR 2 Lk , supp.R/ >
ı, jQj 6 b, and conf.R/ > � . Here, jQj is the number
of edges in the antecedent of R.

The diversified mining problem is a bi-criteria
optimization problem to discover TGARs for a particular
consequent q.ux; uy/ with high support, bounded size,
balanced interestingness, and diversity. In practice, users
can freely specify the q.ux; uy/ of interests, while
proper parameters can be estimated from query logs
or recommended by domain experts.

Example 8 We continue with Example 7. Let � D
0:5 and k D 2. The diversified top-2 TGARs in the set
fR2; R3; R4; R5g are fR4; R5g with dive.R4; R5/ D

1:375.
Hardness of problem. As shown in Ref. [15],

deciding whether there exists a set Lk of k TGARs
with dive.Lk/ > B for a given bound B is NP-hard. We
can see that the decision problem is a special case of our
problem. As a consequence, our problem is at least as
hard, hence being NP-hard.

4 Diversified TGARs Discovery Algorithms

In this section, we first present a baseline algorithm for
mining diversified TGARs, then we develop an advanced
algorithm and propose some optimization strategies.

4.1 Baseline solution

We follow the explore-decide framework to establish a
baseline for diversified TGARs discovery in a temporal
graph (Algorithm 1). In particular, this framework first
identifies a set of different single-edge patterns in the
de-temporal graph G (Line 2). Then, it explores a
candidate subgraph pattern space in a pattern generation
tree, denoted by PGT, to calculate all possible TGARs
(Lines 3–15). Finally, it returns a set Lk of k TGARs
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Algorithm 1 findAllTGARs
Input: G is the temporal graph; q.ux ; uy/ is the consequent; �t

is the time interval; �; b; ı; �; k are the parameters.
Output: the set of diversified top-k TGARs in G.

1: r  0; candidateSet q.ux ; uy/; ResultSet ∅;
2: Let E be the set of all different single-edge patterns in graph G;
3: while r 6 b do
4: r  r C 1; M ∅;
5: for pattern PR 2 candidateSet do
6: for edge e 2 E do
7: if e can be used to extend P then
8: Let ext be the extension of P with e;
9: if ext is not already generated then

10: Q ext=q; Generate rule R W Q
�t
) q;

11: if supp.R/ > ı then
12: M M [ ext;
13: if conf.R/ > � and Connnect.Q/ D

true then
14: ResultSet ResultSet [R;
15: candidateSet M;
16: Lk  computeDiversity.ResultSet/;
17: return Lk

such that dive.Lk/ is maximized (Lines 16 and 17).
In the TGARs generation process, for each pattern

PR in the candidateSet, findAllTGARs tries to extend
it with an edge of E (Lines 5–8). Here, PR is the
pattern that consists of Q.ux; uy/ and q.ux; uy/. All
applicable extensions that have not been previously
considered will be verified regarding whether they can
participate in TGARs (Lines 9–14). To exclude already
generated extensions (Line 9), the existing approach
gSpan [18] imposes a lexicographic order among the
patterns. findAllTGARs also employs this strategy
for elegant enumeration of candidate patterns. Then,
findAllTGARs generates rule R based on the extension
ext and checks whether R can satisfy the support
threshold; if so, findAllTGARs adds ext into M since
according to the antimonotone property, the rules
generated by its extensions can still be TGARs (Lines
10–12). Furthermore, findAllTGARs checks whether R
satisfies the confidence threshold and Q is a connected
graph; if so, findAllTGARs adds R into ResultSet.
Finally, findAllTGARs calculates the set of diversified
top-k TGARs via result diversification[15] (Lines 16
and 17).

Complexity. The number of all antecedents with
size bound b is denoted by N.b/. For each antecedent
Q, findTopkTGARs takes a time of O.jT j.jVjjV.Q/j//

to compute m.Q; ux; uy/, where V.Q/ is the set
of vertices in Q. Thus, findTopkTGARs takes

O.jT jN.b/.jVjjV.Q/j// to compute m.Q; ux; uy/ for
each antecedent Q. For each generated TGAR R, a
time of Q.T / is taken to identify maximal occurrences
of R. Moreover, algorithm findTopkTGARs takes in
a total space of O.N.b/jcand.ux; uy/j � jT j/. Indeed,
(1) it maintains up to jcand.ux; uy/j focus matches with
associated timestamps up to jT j for each antecedent, and
(2) there exists up to N.b/ antecedents in the search tree.

Why costly? Algorithm findAllTGARs is not scalable
enough to handle large temporal graphs because of the
following drawback:
�Drawback: Large computational cost for diversified

TGARs. FindAllTGARs will generate an excessive
number of TGARs corresponding to a consequent
q.ux; uy/. For all TGARsR generated, it has to compute
supp.R/, conf.R/, and their pairwise distances and pick
a top-k set based on dive./; the latter is an intractable
process itself.

One can do it more efficiently, with accuracy
guaranteed.

4.2 New approach

In this paper, we devise a new algorithm for diversified
top-k TGARs search, denoted by findTopkTGARs,
which can overcome the challenges introduced in
Section 4.1. In the new algorithm, we modify the TGARs
enumeration algorithm (see Lines 3–15 of Algorithm 1)
to integrate diversified top-k TGARs search into the
process of TGARs enumeration. Specifically, during
the TGARs enumeration process, we maintain a list
Lk of diversified top-k TGARs that maximize the
diversification score and update the k candidates when
new TGARs are reported. The new algorithm has the
following three advantages.
� High pruning power. By integrating diversified

top-k TGARs search into the process of TGARs
enumeration, we can develop more pruning strategies to
filter rules that have low support and cannot make top-k
TGARs as early as possible in each round of the while
loop in Algorithm 1.
� High efficiency. Our algorithm incrementally

computes top-k diversified TGARs, rather than
recomputing the diversification function dive./ starting
from scratch.
� Guaranteed result quality. Our algorithm can

achieve a guaranteed approximation ratio of 0.5 and can
be much better in practice, as verified in the experiments.

In this section, we introduce our new algorithm. In
Section 4.3, we will focus on the optimization strategy
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to compute the � -instance of the antecedent in each rule.
Algorithm findTopkTGARs. Our new algorithm

findTopkTGARs is shown in Algorithm 2. In each round
r , it first computes the newly generated TGARs and uses
a set C to keep track of all generated TGARs (Lines 1–7).

Next, it uses a max priority queue Q of size
�
k

2

�
to store

the possible diversified top-k TGARs. Each element in
Q is a pair of TGARs, and all TGARs in Q are pairwise

disjoint. If jQj <
�
k

2

�
, findTopkTGARs iteratively

selects two distinct TGARs R and R0 from ResultSet

that maximize a revised diversification function:

dive�.R;R0/ D
1 � �

k � 1
.conf.R/C conf.R0//C

2�

k � 1
diff.R;R0/ (5)

and inserts .R;R0/ into Q, until Q D
�
k

2

�
(Lines 8

and 9). To maintain Q, findTopkTGARs calls algorithm
findDiveTGARs to incrementally compute and add a
new pair .R;R0/ 2 ResultSet � C that maximizes
dive�.R;R0/ to Q (Lines 10–13). This step ensures
that a pair .R1; R2/ with minimum dive�.R1; R2/ will

Algorithm 2 findTopkTGARs
Input: G is the temporal graph; q.ux ; uy/ is the consequent; �t

is the time interval; �; b; ı; �; k are the parameters.
Output: the set of diversified top-k TGARs in G:

1: r  0; candidateSet q.ux ; uy/; C  ∅; Lk  ∅I
2: Let E be the set of all different single-edge patterns in graphGI
3: Let Q be a max priority queue of maximal size

l
k
2

m
, initially

empty;
4: while r 6 b do
5: ResultSet ∅I
6: Same as Lines 4–14 of Algorithm 1;
7: C  C [ ResultSetI
8: if jQj <

l
k
2

m
then

9: Improves Q by incorporating pairs of TGARs from
ResultSet

10: C  pruneTGARs.Q; C/I
11: for Rule R 2 ResultSet do
12: if R … Q then
13: Q findDiveTGARs.Lk ; R; C/I
14: if 1��

k�1
.conf.R/C confmax.C//C 2�

k�1
6 dive�min

then
15: M M=PRI

16: candidateSet MI
17: Insert each R in Q into Lk I
18: if k%2 ¤ 0 then
19: Remove Rmin from Lk I

20: return Lk I

be replaced by .R;R0/ if dive�.R1; R2/ < dive�.R;R0/
(Lines 3 and 4 in Algorithm 3 findDiveTGARs).

Note that (1) not all TGARs in C can make diversified
top-k TGARs, and (2) extending a TGAR R in
ResultSet may not contribute to top-k TGARs. To
this end, findTopkTGARs will filter non-promising
TGARs from C before calling algorithm findDiveTGARs
(Line 10) and filter the pattern PR generated by R from
M if extending R cannot make top-k TGARs (Lines
14 and 15). The idea is to test whether an upper bound
of marginal benefit for any TGAR pair can improve the
minimum dive�-value of Q (denoted by dive�min), which
is described as follows.

Lemma 2 Let confmax.ResultSet/ be the
maximum conf.R0/ for R0 2 ResultSet . A TGAR

R 2 C cannot contribute to Lk if
1 � �

k � 1
.conf.R/C

confmax.ResultSet//C
2�

k � 1
6 dive�min.

Proof For each R 2 C,
1 � �

k � 1
.conf.R/C confmax

.ResultSet//C
2�

k � 1
is an upper bound for its maximum

possible increment to the dive�-value of Q. �
Lemma 3 Let confmax.C/ be the maximum

conf.R0/ for each R0 2 C. Extending a TGAR R 2

ResultSet does not contribute to Lk if
1 � �

k � 1
.conf.R/C

confmax.C//C
2�

k � 1
6 dive�min.

Proof Intuitively, conf.R/ is anti-monotonic with
any R0 expanded from R. As a result, conf.R/ is
an upper bound of the confidence for all the possible
TGARs grown from R. confmax.C/ is monotonically
decreasing with the increase in rounds. Hence, we can
safely terminate the expansion of R if it does not satisfy
the constraint of Lemma 3. �

Finally, after the while loop, findTopkTGARs inserts
R and R0 into Lk for each TGAR pair .R;R0/ 2

Algorithm 3 findDiveTGARs
Input: Lk is the set of diversified top-k TGARs; Rule R 2

ResultSet and R … Q; C is the set that tracks all generated
TGARs.

Output: the updated set Lk of diversified top-k TGARs in G.
1: for pattern R0 2 C do
2: if R0 … Q then
3: if .R1; R2/ in Q has the minimum dive� value and

dive�.R1; R2/ < dive�.R;R0/ then
4: Replace .R1; R2/ by .R;R0/;

5: return Lk I
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Q and returns Lk as the set of diversified top-k
TGARs (Lines 17–20). In particular, if k is an odd
number, findTopkTGARs removesRi with the minimumP

Rj2Lk ;j¤i dive�.Ri ; Rj / from Lk (Lines 18 and 19).
The following Lemma shows the quality of the

result for the diversified top-k TGARs computed using
Algorithm 2.

Lemma 4 Given a temporal graph G, a consequent
pattern q.ux; uy/, and an integer k, suppose L�

k
is

the optimal diversified top-k TGARs, and Lk is the
diversified top-k cliques returned by Algorithm 2. We

have
dive.Lk/

dive.L�
k
/
> 0:5.

Proof We use induction on k to prove Lemma 4. (1)
Lemma 4 is trivially true when k D 2. (2) Suppose
that k > 2. Algorithm findDiveTGARs is essentially
the max-sum dispersion problem in Ref. [15], which
maximizes the sum of pairwise distances for a set of data
points. Since the approximation-preserving reduction
in Ref. [15] has approximation ratio 2, Algorithm 2
produces a 2-approximation of the diversified top-k
TGARs in G. �

Algorithm analysis. Obviously, Algorithm 2 can
achieve a tighter bound than Algorithm 1 since
dive�min � ı. This result significantly reduces the search
space since it can filter rules that cannot make top-k
TGARs in the early stage in each round. Moreover, the
cost of reduction takes in a total time of O.b � jCj/,
where in each round, a linear scan of ResultSet and C
is required to identify redundant TGARs.

To realize the algorithm framework findTopkTGARs
in Algorithm 2, we still need to solve the following issue:
� Repeated subgraph matching. In the exploring

process, whenever an antecedent Q is produced, we
need to re-execute temporal subgraph homomorphism
calculation for Q over the overall temporal graph G to
calculate m.Q; ux; uy/, which can be detrimental.

4.3 Optimization strategy

To avoid repeated calculations, we construct an auxiliary
data structure called EIndex to represent partial solutions
in a compact form. On the basis of the auxiliary data
structure, whenever an extension Q0 of an antecedent Q
is produced, we can join the new, inserted edge with the
materialized results stored in Q to update the auxiliary
data structure and then return m.Q0; ux; uy/ according
to the updated intermediate results.

EIndex structure. Given an antecedent Q that is
extended by q.ux; uy/, EIndex is defined as follows: (1)
Each vertex u of EIndex has a candidate set, denoted by
cand.u/, that stores all vertices of G to which u can be
mapped. (2) There is an edge between v 2 cand.u/ and
v0 2 cand.u0/ if and only if hv; v0i exists in G. (3) Each
edge records its corresponding timestamps during T ,
each of which may participate in any �-instances of Q.
For example, the level-2 part of PGT illustrated in Fig. 5
shows the EIndex constructed for the antecedent Q2 in
Fig. 2b over the temporal graph in Fig. 2a. Note that
EIndex will be updated in the pattern extension process.

Next, we propose how to initialize EIndex and
maintain EIndex efficiently in the exploring process and
how to verify each candidate’s temporal pattern.

Algorithm calculateVertexPair. Algorithm
calculateVertexPair initializes EIndex as two candidate
sets cand.ux/ and cand.uy/. Then, for each Qi in
level-i (1 6 i 6 b), i.e., jQi j D i , calculateVertexPair
relies on an incremental maintain strategy to efficiently
maintain EIndex for the extended edge ei D hu; u

0i in
the current level. First, we obtain the adjacency list
corresponding to ei , i.e., Adj.ei /, in EIndex as follows.
� Case 1. If u0 is the newly introduced vertex, we

check, for each vertex v in cand.u/, whether there is
an edge hv; v0i matching hu; u0i and existing in G; if so,
we add v0 into cand.u0/ and record the corresponding
timestamps of hv; v0i.

Partial   PGT

Level 2
v2 v5

<u1, u2>

<v2, v5>: 2, 3, 4, 5

<v5, v2>: 3, 4, 5

<v5, v8>: 4
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v2 v5 v8 v11

v4 v7 v10

v3 v6
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Fig. 5 Sample pattern generation tree and EIndex.



Chu Huang et al.: Discovering Association Rules with Graph Patterns in Temporal Networks 353

� Case 2. If u and u0 already exist in Qi , we use
the same manner to construct the adjacency list Adj.ei /

corresponding to cand.u0/ and cand.u/ and then record
the timestamps of each edge in Adj.ei /.

Since the support of a rule R is calculated by the �-
instance of Q, it is safe to prune the invalid timestamps
of each edge hv; v0i in Adj.ei / because of the duration
constraint. Note that there is an extension order EO
for all edges of Qi according to the subgraph pattern
generation tree PGT. Let ei :N denote the set of edges
before ei inEO that are adjacent to ei , and time.hv; v0i/
denote the timestamps of hv; v0i in G. Intuitively, for
each edge hv; v0i in Adj.ei /, a timestamp t is in
time.hv; v0i/ only if for each edge e0 2 ei :N , there
is a candidate edge in Adj.e0/ that is joinable with
hv; v0i and has a timestamp t 0 such that jt 0 � t j 6 � .
To satisfy this requirement, we maintain a counter
N t
hv;v0i

for each timestamp t in time.hv; v0i/ to count
the number of neighbors of ei before ei in EO that
have a candidate with timestamp t 0 joinable with hv; v0i
such that jt 0 � t j 6 � ; and NE records the number of
edges in ei :N . time.hv; v0i/ is the set of timestamps
satisfying N t

hv;v0i
D NE. If time.hv; v0i/ D ∅, then

edge hv; v0i will be removed from Adj.ei /. Furthermore,
vertex v (respectively v0) will be removed from cand.u/
(respectively cand.u0/) if v (respectively v0) has no
neighbor in the candidate set of one neighbor of u
(respectively u0); and the corresponding adjacency list of
v (respectively v0) will also be deleted from EIndex.
After that, we set N t

hv;v0i
D 0 for all data edges in

EIndex that have a positive count.
Lemma 5 A data edge hv; v0i in Adj.ei / with

timestamp t has a joinable neighbor with timestamp
t 0 in Adj.e0/ s.t. jt 0 � t j 6 � for every e0 2 ei :N if and
only if N t

hv;v0i
D NE.

Lemma 6 Let v:cnt denote the number of query
neighbors of u that have a candidate v0 adjacent to v
and d.u/ denote the degree of u. A data vertex v has a
neighbor in cand.u0/ for every neighbor u0 of u if and
only if v:cnt D d.u/.

CalculateVertexPair then prunes the adjacency lists
for other pattern edges of Qi according to the reverse
order of EO , i.e., EO . In detail, for each edge e 2 EO ,
calculateVertexPair applies Lemma 5; a timestamp t of
a data edge hv; v0i 2 Adj.e/ is pruned if N t

hv;v0i
¤ NE.

Next, calculateVertexPair applies Lemma 6; a data vertex
v 2 cand.u/ and its corresponding adjacency list are
pruned if v:cnt ¤ d.u/. Note that the above pruning
process only considers the edges after e in EO that

are adjacent to e to prune the adjacency lists. Thus, a
data edge hv; v0i 2 Adj.e/ might not have any joinable
neighbor in Adj.e0/, where e0 is the neighbor of e
before e in EO . As a result, calculateVertexPair uses the
extension order EO for further refining the adjacency
lists of pattern edges. The expansion process terminates
if Adj.e/ D ∅ (e 2 Qi ).

Example 9 Consider the sample pattern generation
tree in Fig. 5. Let � D 1. When processing the
antecedent Q6 in level 3, we first obtain the adjacency
list corresponding to the extension edge hu2; u4i.
Here, we have EO D fhu1; u2i; hu2; u3i; hu2; u4ig.
When processing edge hv8; v6i in Adj.hu2; u4i/, we
have N 1

hv8;v6i
D 1. Since NE D 2, we remove 1

from time.hv8; v6i/. Similarly, we remove 2 from
time(hv8; v6i). Next, we prune the adjacent lists of
the pattern edges in Q6 according to the EO and EO ,
respectively. By applying Lemma 5, all timestamps in
time.hv11; v10i/ and time.hv11; v8i/ will be removed.
By applying Lemma 6, v11 is removed from cand.u2/

since v11 has no neighbor in cand.u4/. In level 3, Q7

will not be extended since Adj.hu3; u5i/ D ∅.
After updating the EIndex for each antecedent Qi

in level-i (1 6 i 6 b), calculateVertexPair calculates
m.Qi ; ux; uy/ to compute the corresponding measures.
That is, for each vertex pair .vx; vy/ where vx 2

cand.ux/ and vy 2 cand.uy/, calculateVertexPair
adopts the well-known BackTracking algorithm to
calculate all the �-instances of Qi and then obtains the
largest timestamps of each � -instance. Additionally, we
use the counter TN t

.vx ;vy/
to count the number of the

�-instances of Qi that contain .vx; vy/t . To minimize
the number of recursive calls for subgraph matching,
we determine a good matching order based on the cost
model proposed in Ref. [19].

Complexity. Let Qi be an antecedent in the PGT
tree at level-i . CalculateVertexPair first takes a time
of O.jE j � jQi j/ to update the auxiliary data structure
EIndex corresponding to Qi . Let d be the maximum
number of edges in EIndex connected with one vertex
in cand.ux/ or cand.uy/. CalculateVertexPair takes
a time of O.jcand0.ux; uy/j � d jQi j/ to calculate
m.Qi ; ux; uy/. Here, cand0.ux; uy/ represents the
different vertex pairs .vx; vy/, where vx 2 cand.ux/

and vy 2 cand.uy/.

5 Experiment

In this section, we report and analyze experimental
results. All the algorithms were implemented in JAVA
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and run on a PC with an Intel i7 3.50 GHz CPU and
32 GB memory. Every quantitative test was repeated five
times, and the average was reported.

Dataset. We use three real-life temporal networks:
�Offshore� is a social network of offshore entities and

financial activities. It records 8:39�105 offshore entities
(e.g., countries and companies), 3:6 � 106 relationships
for offshore entities (e.g., close and establish), and
433 labels containing 40 years of offshore entities and
financial activities, including 12 139 active days.
�Citation� is a citation network about paper citation

relationships. It contains 4:3 � 106 entities (e.g., papers
and authors), 2:17 � 107 edges (e.g., published at and
citation), and 273 labels (e.g., keywords) covering 80
years of information about the publication of the paper.
�MovieLens‘ is a movie recommendation network

of rating data from multiple users for multiple movies.
It records 1:0 � 107 ratings for 1:0 � 104 movies by
7:1 � 104 users. In addition to users and movies, the
temporal graph also includes 20 other labels that show
the category of each movie (e.g., romance and drama),
and it has 1413 h of interactions.

The statistics of the three datasets are summarized in
Table 2.

Algorithm. We implement and compare three
algorithms:
�findAllTGARs: our baseline method for mining top-

k TGARs;
�findTopkTGARs: our advanced algorithm for finding

top-k TGARs; and
�findTopkTGARsC: findTopkTGARs equipped with

the proposed algorithm calculateVertexPair.
Parameter setting. We vary four parameters in our

experiments, namely k (the top-k value), b (the size
bound of Q), ı (the support threshold), and � (the
confidence threshold). k is selected from 5 to 25 with a
default of 15; b, 2 to 5 with a default value of 4; ı, 0.05 to
0.21 with a default value of 0.13; and � , 0.5 to 0.8 with
a default value of 0.6. We fix � D 3 (duration threshold
of instances), �t D 5 (time window) and � D 0:5 (for
diversification) for all datasets. We found that TGARs

Table 2 Graph datasets.
Dataset jVj jE j jT j Time scale

Offshore 839 228 3 627 186 12 000 day
MovieLens 71 532 10 157 412 1413 hour

Citation 4 334 671 21 753 011 80 year

� https://offshoreleaks.icij.org/pages/database.
� https://www.aminer.org/citation.
‘ https://grouplens.org/datasets/movielens.

mined in real-life datasets with infrequent edge labels
usually denote unrelated facts. Therefore, we use the 15
most frequent edge patterns (with vertex and edge labels)
to assign the triple pattern q.ux; uy/ to grow TGARs in
all datasets. Unless otherwise specified, when varying a
certain parameter, the values of the other parameters are
set to their default values.

EXP-1: efficiency testing. In the first set of tests, we
compare the efficiency of algorithm findTopkTGARsC

and its competitors under the default parameter settings
and then report the running time of different algorithms
with varying parameters.

EXP-1.1 Figure 6 shows the running time of
findTopkTGARsC and its competitors on different
datasets with default parameters. Similar results can
be observed under other parameter settings. From
Fig. 6, we see that findTopkTGARsC is much faster
than its competitors. For example, on MovieLens,
findTopkTGARsC takes approximately 20 min to
calculate diversified top-k TGARs for all consequents
q.ux; uy/, while other algorithms cannot obtain
results in 3 h. We also find that, on each dataset,
the time decreases sharply from findAllTGARs
to findTopkTGARs. In particular, findTopkTGARsC

outperforms findTopkTGARs by up to 2.1 fold, and
findTopkTGARs outperforms findAllTGARs by 5.2 fold
over Citation. This is because findTopkTGARs enforces
a new threshold dive�min with dive�min � ı, which
helps to filter rules that cannot make top-k TGARs
in the early stage in each round. findTopkTGARsC

maintains a concise auxiliary data structure that can
help to avoid repeated subgraph matching. These results
indicate that our proposed algorithms findTopkTGARs
and calculateVertexPair can help shrink the search space
dramatically as the mining process progresses.

EXP-1.2 Figure 7 shows the running time of
findTopkTGARs and findTopkTGARsC with varying
parameters on Offshore and Citation datasets. Note that,
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Fig. 6 Running time with default parameters.
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Fig. 7 Efficiency of varying parameters.

when varying a parameter, we keep other parameters at
their default value. The results on the other datasets are
consistent. In particular, we observe that (1) the increase
in ı can decrease the running time of findTopkTGARs
and findTopkTGARsC; (2) the increase in b can
increase the running time of findTopkTGARs and
findTopkTGARsC; (3) the increase in k has little
impact on the running time of findTopkTGARs and
findTopkTGARsC; (4) the increase in � can decrease the
running time of findTopkTGARs and findTopkTGARsC

(not shown). The reason could be that for a larger ı and
� , the TGARs in ResultSet and C will be smaller, and
it takes less time to verify each pair of TGARs from
ResultSet � C. The increase in b will increase the
number of the while loop and thus increase the time.
Parameter k has little impact on the running time since
we will keep track of .R;R0/ in Q with dive�min in each
round, and incrementally update Q by comparing each
pair of TGARs from ResultSet � C with .R;R0/.

EXP-2: effectiveness testing. Since algorithm
findTopkTGARs uses an approximate method to find the
diversified top-k TGARs, there may exist inconsistency
compared to the ground truth. That is, the TGARs
in Lk returned by findTopkTGARs may not exist in
that returned by findAllTGARs. As a result, we define

the Precision to evaluate the quality of the proposed
algorithm.
� Precision: For the set Lk calculated by

findTopkTGARs, the Precision is defined as
jLk \ L

�
k
j

jLkj
,

where L�
k

is the set calculated by algorithm
findAllTGARs.

Figure 8 shows the values of Precision with varying
parameters on the Citation and MovieLens datasets.
Note that, when varying a parameter, we keep other
parameters at their default value. The Precision is more
than 80% on average with different parameters on
both datasets, which justifies the effectiveness of the
findTopkTGARs algorithm. In particular, the Precision
is 100% when k D 2.

EXP-3: scalability. Figure 9 shows the scalability
of algorithm findTopkTGARsC on the Offshore and
Citation datasets. Similar results are observed on the
other datasets. We generate ten temporal subgraphs by
randomly picking 10%�100% of the temporal edges or
10%�100% of the timestamps and evaluate the running
time of findTopkTGARsC on those subgraphs. As
shown in Fig. 9, the running time increases smoothly
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with the increasing number of E or increasing size of
jT j, which suggests that findTopkTGARsC is scalable
when handling large temporal networks.

EXP-4: case study. To demonstrate the effectiveness
of algorithm findTopkTGARsC and its application, we
perform a case study, as shown in Fig. 10, from Offshore.

Figure 10 shows a TGAR R.u2; u3; �t D 5 years/:

Q8.u2; u3/
5 years
) q8.u2; u3/ with parameters (b D 4,

� D 3, ı D 0:13, � D 0:6, and �t D 5 years), which
identifies a temporal association among offshore entities
that indicates a business shifting operation. It states
that (1) if two companies u2 and u5 share the same
shareholder, (2) company u5 is active in “Panama”, and
(3) company u2 is active in “BVI”, then company u2 will
change jurisdiction from “British Virgin Islands (BVI)”
to “Panama” in 5 years. Interestingly, R corresponds to
the fact that when BVI cracks down on the bearer shares,
many companies move bearer share clients to Panama.

If the same threshold of support is set, interesting
rules, such as the one above, will be ignored using the
concept of “minimal occurrence[14]” since the TGAR’s
support metric is a subset of our support metric.

Summary. We summarize the major results as
follows:
� FindTopkTGARs can significantly reduce the

search space, which brings about empirically a 6 fold
speedup compared to the baseline method;
� By adding our proposed incremental subgraph

matching technique into the bounding framework, we
can avoid repeated subgraph matching in the exploring
phase, which brings about empirically a 3 fold speedup
over findTopkTGARs.

6 Related Work

The following section discusses related work in four
directions.

Temporal graph analysis. Our work is related to
the studies on temporal graph analysis. Huang et al.[20]

investigated the minimum spanning tree problem in
temporal graphs. Yang et al.[5] studied the problem
of mining a set of diversified temporal subgraph
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Fig. 10 Real-life TGAR.

patterns from a temporal graph. Ma et al.[6] proposed
a data-driven approach to finding dense subgraphs in
large temporal networks with T timestamps. Namaki
et al.[14] first extended graph-pattern association rules
with temporal constraints over a temporal graph.
However, they did not consider the diversity feature
such that most of the rules are highly overlapping. Li
et al.[7] investigated the problem of finding persistent
communities in a temporal network. Chu et al.[21] found
density bursting subgraphs online in a temporal weighted
graph consisting of a potentially endless stream of
updates. Wen et al.[22] proposed a new reachability
model that is called span-reachability and is designed
to relax the time order dependency and identify the
relationship between entities in a given period. Ma
et al.[23] investigated temporal bounded simulation on
temporal graphs. To the best of our knowledge, our work
is the first to research the problem of mining the top-k
most diversified TGARs from a temporal graph.

Graph association rules. The studies of graph
association rules related to our work are Refs. [1,
3, 24, 25]. Fan et al.[1] proposed association rules
that are extended with graph patterns over static
graphs. To detect data inconsistency, (conditional)
functional dependencies are extended[25] to specify value
dependencies on clustered values via path patterns
and graph patterns. Wang et al.[3] extended the work
in Ref. [1] and proposed generalized graph-pattern
association rules to capture complex social relations.

Close to our work is Ref. [14] that proposed and
studied the graph temporal association rules mining
problem. Namaki et al.[14] studied the problem of
mining b-maximal graph temporal association rules
(GTARs) over a temporal graph, rather than studying the
most diversified top-k problem, leading to the mining
of many similar rules. Furthermore, the antecedents
and consequents of GTARs have only one common
vertex, and the antecedents of GTARs only consider
their matching instances at each timestamp and do not
consider the duration feature. Moreover, the definition of
the support metric in this work underestimates the actual
support since it only considers each match once of the
common vertex in antecedents and consequents at each
timestamp and use the number of minimal occurrences.

Temporal subgraph matching. Many temporal
queries have been studied to detect events over dynamic
networks. An event is denoted as a match of the query.
These queries include subgraph isomorphism[26, 27],
continuous patterns[28] that incrementally find subgraph
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matches over evolving graphs, and durable queries[27]

that isomorphism matches that last for the longest period.
Mining algorithms are also introduced to discover
communication motifs in dynamic networks[16, 29].
Subsequence mining has been leveraged to identify
patterns over sequence representation of temporal
graphs[16]. Motifs in temporal networks as induced
subgraphs on sequences of temporal ordered edges
are discovered over unlabeled networks[29], and fast
algorithms for specific 3-nodes and 3-edges patterns are
proposed to mine topologically frequent motifs. These
tasks do not consider events captured by temporal graph
patterns and use mining models that are very different
from TGARs discovery.

Frequent subgraph pattern mining. The studies of
frequent subgraph pattern mining are related to our work.
Kuramochi and Karypis[30] proposed an algorithm for
exact mining of all frequent subgraphs in a given static
graph that enumerates all the isomorphisms of the given
graph and relies on the maximum-independent set (MIS)
metric whose computation is NP-complete. Elseidy
et al.[31] proposed an apriori-like algorithm for exact
mining of all frequent subgraphs based on the MIS
metric from a given static graph. Apart from the
exact mining algorithms, a line of work focused on
approximate mining of frequent subgraphs in a given
static graph. Kuramochi and Karypis[32] proposed a
heuristic approach that largely prunes the search space
but discovers only a small subset of frequent subgraphs
without provable guarantees. Chen et al.[33] used
an approximate version of the MIS metric, allowing
approximate matches during the pruning.

7 Conclusion

We have proposed TGARs and viable support,
confidence, and diversification measures for the
discovery of diversified top-k TGARs. Compared
with graph rules introduced in Ref. [1], the TGARs
can model temporal information and constraints over
temporal graphs. We show the impracticality of
computing all TGARs corresponding to a particular
event q.u; u0/ before computing the diversified top-
k TGARs. Therefore, we devise a new algorithm to
maintain a list Lk of diversified top-k TGARs in each
round during the rule generation process. Our algorithm
can achieve a guaranteed approximation ratio. We further
construct an auxiliary data structure, namely, EIndex,
and dynamically maintain EIndex during pattern growth.

On the basis of EIndex, we can avoid conducting
repeated subgraph matching in the exploring process.
We conduct extensive performance studies on large real
graphs to demonstrate the efficiency and effectiveness of
our approach. We also find that TGARs can be used for
activity prediction, among other applications.

We are exploring other quality metrics for TGARs,
and experimenting with larger-scale real-world graphs.
Another topic is to develop fast online discovery of
TGARs over graph streams.
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