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Study on Robot Grasping System of SSVEP-BCI Based on
Augmented Reality Stimulus
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Abstract: Although notable progress has been made in the study of Steady-State Visual Evoked Potential (SSVEP)-

based Brain-Computer Interface (BCI), several factors that limit the practical applications of BCIs still exist. One of

these factors is the importability of the stimulator. In this study, Augmented Reality (AR) technology was introduced to

present the visual stimuli of SSVEP-BCI, while the robot grasping experiment was designed to verify the applicability

of the AR-BCI system. The offline experiment was designed to determine the best stimulus time, while the online

experiment was used to complete the robot grasping task. The offline experiment revealed that better information

transfer rate performance could be achieved when the stimulation time is 2 s. Results of the online experiment indicate

that all 12 subjects could control the robot to complete the robot grasping task, which indicates the applicability of

the AR-SSVEP-humanoid robot (NAO) system. This study verified the reliability of the AR-BCI system and indicated

the applicability of the AR-SSVEP-NAO system in robot grasping tasks.

Key words: Steady-State Visual Evoked Potential (SSVEP); Brain-Computer Interface (BCI); Augmented Reality
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1 Introduction

Brain-Computer Interface (BCI) is a technology that
detects the brain’s intentions and converts them into
computer instructions. In a typical BCI paradigm,
Steady-State Visual Evoked Potential (SSVEP)-BCI is
preferred by scholars due to its remarkable advantages
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of better Information Transfer Rate (ITR), larger Signal-
to-Noise Ratio (SNR), easier quantification, and less
training[1–5]. SSVEP is regarded as a periodic electrical
signal that is evoked by a visual stimulus at a specific
frequency and is mainly distributed in the occipital
region[6]. In traditional SSVEP-BCIs, all the targets
flicker with different frequencies, and the gazed target is
determined by identifying the SSVEP frequency[7, 8]. In
recent studies, advanced coding and decoding methods
have been applied to improve the performance of BCIs.

Although notable improvements have been made in
the performance of BCIs, several factors that limit the
applicability of BCIs still exist. One of these factors
is the importability of the visual stimulation device.
In traditional SSVEP-BCIs, a Liquid Crystal Display
(LCD) screen is used to present visual stimulation, and
subjects are required to sit flat in front of the stimulation
interface and switch their eyes between the stimulator
and the test environment. However, given the limitation
added by the inclusion of the screen, the SSVEP system
was considered a non-portable system. As a result, many
researchers began to look for strategies to eliminate
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the fixed visual stimulators. Fortunately, it was found
that combining Augmented Reality (AR) devices with
brain-computer interfaces can reduce the complexity of
the system and further improve the ease of usage and
applicability of the system[9, 10]. AR combines reality
with the virtual world in such a manner that subjects
could interact with the virtual world to achieve a sensory
experience that transcends reality.

In this study, we designed an AR-BCI system to
improve the importability problem of the stimulators
in BCIs, in which AR provided a visual stimulation
of SSVEP and presented a virtual visual stimulation
interface to the subjects. In fact, studies on AR-BCIs
have been conducted, and some valuable results have
been obtained. For instance, scholars[11] designed an
AR-BCI system that captured the AR mark using a robot
camera and transmitted it to the screen for the control
of a desk lamp. In addition, researchers wore a camera
to capture and identify the AR mark and generate a BCI
visual stimulation control panel to control a desk lamp
or television[12]. For instance, Horii et al.[13] mapped the
captured realistic scene and SSVEP visual stimulation to
the human eyes using a head-mounted displayer. Wang
et al.[14] verified that holographic glasses were able to
induce stable SSVEP signals, and the accuracy was
83.85% for the data length of 1 s. The aforementioned
studies verified the applicability of AR-BCI; however,
more complex application scenarios need to be further
explored.

Humanoid robots can help people complete tasks
intelligently in a complex environment[15, 16]. This made
the study of humanoid robot applications based on brain-
computer interfaces very important[17]. For instance,
Spataro et al.[18] designed a BCI system to control the
robot to grab a glass of water in order to assist those
suffering from serious diseases rather than relying on
caregivers. Chae et al.[19] used the Motor Imagery (MI)-
based BCI system to create the robot’s navigation in the
indoor maze. Duan et al.[20] designed a hybrid BCI
system that uses three SSVEP commands to control
the robot to walk as well as one MI command that
controls the robot to grab colored objects. While most of
these previous studies were based on the traditional BCI
systems, studies on the application of AR-BCI-based
robots are sparse.

In this study, we designed an AR-SSVEP-
humanoid robot (NAO) system to investigate the
applicability of BCIs. The AR-SSVEP maps the
collected electroencephalography (EEG) signals into

instructions to control external devices to complete
tasks. The multi-sensor fusion NAO was introduced
to verify the reliability of the AR-BCI system. Using
the designed AR-SSVEP-NAO system, subjects were
required to control the external equipment (NAO) to
complete complex grasping and placement tasks. The
applicability of the system was verified by the offline
and online experiments.

2 Materials and Methods

2.1 Subjects

Twelve healthy subjects (4 females and 8 males;
age range: 21–27 years) with normal or corrected-
to-normal vision participated in this study. All the
subjects participated in both the offline and online
experiments. After understanding the experimental
process and precautions, each of the subjects signed
informed consent prior to the commencement of the
experiment and received monetary compensation for
participating in the study. This study was approved by
the Research Ethics Committee of Tsinghua University.

2.2 Visual stimuli in AR

In this study, we used HoloLens as the AR equipment
to present visual stimuli. The HoloLens was a
wireless head-mounted augmented reality glass from
Microsoft. The Holographic Processing Unit (HPU) was
a customized dedicated chip integrated into the small-
volume glass, which could combine the real environment
with virtual objects to give the wearer access to a peculiar
world environment.

The visual stimuli in the AR were produced by
Unity3D and Visual Studio 2017 and fixed in front of
the subjects to ensure that the experimental scene was
observed and noticed. Eight targets were presented in
the visual stimuli interface with the stimuli frequencies
of 8 Hz (R1), 9.5 Hz (B2), 11 Hz (P3), 8.5 Hz (Le4),
10 Hz (Fo5), 11.5 Hz (Ri6), 9 Hz (P7), and 10.5 Hz
(S8), respectively. In the online experiment, each
target corresponded to a specific operation command.
Specifically, R1, B2, and P3 represented the recognition
and tracking of the red, blue, and purple balls,
respectively. Le4, Ri6, and Fo5 indicated a 45ı left
turn, 45ı right turn, and forward command, respectively.
P7 encoded the command to put the captured ball into
the designated area, and S8 encoded the command to
stop the current action. The eight stimuli blocks on the
visual stimuli interface were not uniformly distributed
(see Fig. 1). They were arranged in three rows, in
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Fig. 1 Spatial distributions of AR stimulus.

which the first and second rows contained three stimuli
blocks, and the third row contained two stimuli blocks.
During the experiments, the visual stimulus interface
was mainly presented on top of the robot, and the design
of the stimuli interface was mainly to ensure a more
convenient and easy way of controlling the robot.

2.3 Data acquisition

The Neuracle EEG Recorder (Neuracle, Inc.) was used
to acquire EEG data at the sampling rate of 1000 Hz.
The data were down-sampled to 250 Hz and band-pass
filtered from 1 to 100 Hz. EEG data were recorded at
the nine electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1,
Oz, and O2) in the occipital region, and the reference
electrode was located at the vertex. All electrodes were
placed according to the international 10–20 EEG system.
Electrode impedances were kept below 10 k�. The
recorded EEG data were uploaded to PC via WIFI using
a wireless amplifier, and a photoelectric sensor was
used to synchronize the visual stimuli and EEG data.
During the experiment, the synchronizer sent a trigger to
the EEG recording software, which in turn marked the
trigger on the collected EEG data.

2.4 NAO robot system

The external equipment used for this research was
the humanoid robot NAO. NAO was developed by
Aldebaran Robotics and is widely used in competitions,
education, and scientific research. NAO had 25 action
freedoms in the whole body, with three touch sensors
on top of the head and two complementary metal-
oxide semiconductor cameras on the head and mouth.
NAO uses monocular vision and the cameras cannot
be called simultaneously. We designed two online tasks
for the robot: walking in a certain area and tracking and
grabbing a target object. Afterward, we placed the object
in the designated position.

Figure 2 reveals the online experiment environment.
The experimental area was the rectangular region with
the black line border. The size of the rectangular was

Fig. 2 Experimental environment.

250 cm � 150 cm, and the distance between the balls or
robot and the nearest two sidelines was 25 cm. Subjects
were required to control the robot to grasp three balls
(blue, purple, and red) on the ground to the designated
area. The three balls (having a diameter of 5 cm each)
were placed at the three corners of the rectangular area,
and the robot was placed at the fourth corner. First,
the robot recognized the captured ball in its visual
field and measured the distance using the monocular
measurement model. Second, the robot continuously
adjusted its posture to track the target and approach the
target as well as squat down and recognize the target
again. Third, the coordinates of the ball relative to the
camera were converted into coordinates relative to the
robot. Using robot kinematics, the end effector of the
arm was controlled to the desired position for grasping.
After grasping the ball, subjects were instructed to
control the robot to approach the placement area and
drop the ball. In each experiment, the robot needs to grab
each of the three balls and put them in the placement
area.

2.5 System communications

The communication between the wireless amplifier, PC,
NAO, and synchronizer was done under the same local
area network (LAN). The data acquisition system and the
NAO system worked on the same PC and were developed
with MATLAB and Python, respectively. TCP/IP was
used to transmit data between programs. EEG data were
processed in MATLAB, and the results were sent to
Python and further converted into different tasks of the
robot. The running time and transmitted data of the robot
system were recorded by Python.

2.6 Data analysis

Considering a latency delay in the visual system, in the
classification algorithms, a 140 ms delay was selected
according to a previous study[4].

The Filter Bank Canonical Correlation Analysis
(FBCCA) classification algorithm was used to identify
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the observed flicking target. In the processing of FBCCA,
SSVEP is decomposed into sub-band components by
filter banks; and then the conventional CCA analysis was
performed. For details of the algorithm, see Ref. [6].

3 Offline Experiment

3.1 Experimental settings

The offline experiment included the systems of AR
and BCI only (i.e., excluding the NAO system).
The equipment used included: AR glasses, 64-lead
EEG cap, Neuracle wireless amplifier, wireless router,
synchronizer, and Window10 laptop. All the equipment
worked under the same LAN. The AR glass was used as
a visual stimulator to evoke EEG. The EEG cap was used
to collect EEG data. The wireless amplifier amplified
and transmitted the EEG data to the PC. A photoelectric
sensor was used to synchronize the trigger and EEG.

Subjects need to wear the AR equipment to complete
the offline experiment (see Fig. 3), in which the stimuli
interfaces contained eight targets, as shown in Fig. 1.
The brightness of the stimulation interface was adjusted
to the maximum to reduce the influence of light in
the environment. The offline experiment contained six
blocks, which included 24 trials, while each of the 8
targets randomly appeared thrice. The prompt sounds
“1”, “2”, “3”, “4”, “5”, “6”, “7”, and “8” were used
to remind subjects about the target they should focus
on. The prompt sound (1 s) was followed by a response
time (0.5 s), and the SSVEP visual stimuli (5 s) were
presented. At the end of each SSVEP stimulation,
another prompt of “Di” was used to remind the subjects
of the end of the trial. The subjects were allowed to rest

Fig. 3 A subject wearing the AR equipment.

until the beginning of the next trial. The subjects were
given the liberty to decide the rest time based on their
situation.

3.2 Results

Figure 4 reveals the accuracy of each subject in the
offline experiment. The EEG data of all 12 subjects were
analyzed. The EEG data were first segmented according
to the triggers and then preprocessed and processed
by the FBCCA algorithm. All accuracies increased
with the time length (data length) and tended to have
a stable value. The results reveal that all the subjects
achieved high accuracy using AR as a visual stimulator
of SSVEP. For instance, when the time length was 5 s,
the accuracies of all 12 subjects reached more than 95%,
and the accuracies of 8 subjects reached 100%.

The averaged accuracy and ITR were also presented,
as shown in Fig. 5. Figure 5a presented the relationship
between the averaged accuracy and time length, which
showed similar results with Fig. 4. Figure 5b showed the

Fig. 4 Accuracy for each subject in the offline experiment.
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Fig. 5 Average performance of all 12 subjects. (a) Accuracy and (b) ITR.

changes of ITR with time. The values of ITR reached
a maximum (30.32 bits/min) when the stimuli time
was 2 s, and the corresponding accuracy was 94.05%.
When the stimulation time was short (<2 s), the value
of ITR increased with the stimulation time. When the
stimulation time is long enough (>2 s), the classification
accuracy tends to be stable, and the value of ITR
decreases with the stimulation time.

The offline experiment verified the stability of the BCI
system, indicating that better ITR performance could be
achieved when the stimulation time is 2 s. Next, the NAO
robot was involved in verifying the performance of BCI
in the online system.

4 Online Experiment

4.1 Experimental settings

The online experiment was divided into two parts,
the random prompt experiment and the autonomous
selection experiment, which included and excluded the
robot, respectively. The time length of visual stimuli was
set to 2 s, which corresponded to the maximum ITR in
the offline experiment.

In the random prompt experiment, PC gave the prompt
sounds “1”, “2”, “3”, “4”, “5”, “6”, “7”, and “8”
randomly to remind subjects of which target to gaze.
After the voice prompt, there was a response time
that lasted 0.5 s. At the end of the SSVEP stimuli, the
reminder prompt sound “Di” is produced. If the subject
chooses the right choice, a feedback prompt sound of
“Da” would be produced. Each block contained eight
trials, and each target appeared once randomly in a
block. Each trial lasts 5 s, including rest time (3 s) and
stimulation time (2 s). The random prompt experiment
contained three blocks, which sum up to a total of 24

trials.
In the autonomous selection experiment, subjects

controlled the NAO robot to track and grab the target
until all three balls were placed in the designated
region. The virtual interface was combined with the
real environment, and subjects did not need to constantly
adjust the head to observe the environment and interface
(Fig. 6). Once one block was completed, the robot was
allowed to rest for 5 min to cool its motor. Each subject
was required to complete a total of three blocks of the
experiment, and the system running time and detailed
instructions were recorded by the PC terminal.

4.2 Results

Figure 7 shows the results of the random prompt
experiment. According to the results, excellent
performance has been achieved. The average accuracy of
the 12 subjects was 95.83%˙5.10%, while the average
ITR was 32.21˙4.35 bits/min. Notably, six subjects
achieved an accuracy of 100% among the 12 subjects,
and only one subject achieved an accuracy lower than
90%.

Figure 8 shows the results of the autonomous
selection experiment. The average execution time was
689.2˙30.63 s, and the average number of instructions

Fig. 6 AR controlling perspective.
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Fig. 7 Results of the random prompt.

Fig. 8 Results of the autonomous selection.

was 27.4˙3.56. It can be seen from Fig. 8 that the
average control time of some subjects was longer and
that there was a higher number of instructions. The
experimental task of the online system was complex, and
the subjects needed to focus on the stimulus interface.
If the fixation was wrong, the subjects are required to
re-select the flashing target to complete the subsequent
tasks. The results indicate that all 12 subjects could
control the robot to complete the grasping task and that
the applicability of the system has been verified by the
online experiment.

5 Discussion

The practical applications of the brain-computer
interface are restricted by several factors. The search for
suitable application scenarios for BCI has long been
a challenge encountered by scientists in the field of
neuroscience. To deal with the non-portability of the
traditional BCI stimulators, this study introduced AR
technology into the BCI system in order to make the BCI

system more flexible. The experimental results of robot
grasping verified the applicability of the combination of
AR technology and BCI, in which all subjects are able to
use the AR-SSVEP-NAO system to complete complex
grasping tasks. The conclusions of this paper provide a
new insight development of future portable BCI systems.

Although positive results were obtained, the system
still needs to be improved in the following aspects: First,
subjects only made decisions based on the scene within
the field of vision. In order to improve the application
scopes of the scenes, an external camera could be
connected and transmitted to the PC so that the subjects
could observe the scene remotely, thus improving the
practicability and convenience of the system. Second, the
intelligence of robots needs to be improved. In this study,
the robot used a monocular vision for target recognition,
which resulted in a recognition accuracy that is not as
good as that of a binocular vision. With binocular vision,
the robot could obtain the three-dimensional coordinates
of the object. Third, the background anti-interference
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ability of the AR equipment HoloLens needs to be
improved so as to improve the performance of the AR-
BCI. These perspectives of the AR equipment need to
be improved, considering that the subjects could not
see the current interface when moving in a large range.
In addition, the AR equipment was heavy and difficult
to use for a long time, and this consequently made the
subjects tired during the experiment.

6 Conclusion

In the traditional SSVEP-BCIs, subjects received visual
stimuli from fixed stimulators, such as LCD screens,
which made the BCI system non-portable. In this study,
augmented reality technology was introduced to present
the visual stimuli of SSVEP-BCI, and the robot grasping
experiment was designed to verify the applicability of the
AR-BCI system. The offline experiment was designed
to determine the best stimuli time, and it was found
that a better ITR performance could be achieved when
the stimulation time is 2 s. The online experiment was
used to complete the robot grasping task, and the results
indicate that all 12 subjects could control the robot to
complete the robot grasping task. This study verified the
applicability of the AR-BCI system and indicated the
feasibility of the use of the AR-SSVEP-NAO system in
the robot grasping tasks.
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