
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/15 pp330–343
DOI: 10 .26599 /TST.2022 .9010001
Volume 28, Number 2, Apri l 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Loop Subgraph-Level Greedy Mapping Algorithm
for Grid Coarse-Grained Reconfigurable Array

Naijin Chen�, Fei Cheng�, Chenghao Han, Jianhui Jiang, and Xiaoqing Wen

Abstract: To solve the problem of grid coarse-grained reconfigurable array task mapping under multiple constraints,

we propose a Loop Subgraph-Level Greedy Mapping (LSLGM) algorithm using parallelism and processing element

fragmentation. Under the constraint of a reconfigurable array, the LSLGM algorithm schedules node from a ready

queue to the current reconfigurable cell array block. After mapping a node, its successor’s indegree value will be

dynamically updated. If its successor’s indegree is zero, it will be directly scheduled to the ready queue; otherwise,

the predecessor must be dynamically checked. If the predecessor cannot be mapped, it will be scheduled to a

blocking queue. To dynamically adjust the ready node scheduling order, the scheduling function is constructed by

exploiting factors, such as node number, node level, and node dependency. Compared with the loop subgraph-level

mapping algorithm, experimental results show that the total cycles of the LSLGM algorithm decreases by an average

of 33.0% (PEA4�4) and 33.9% (PEA7�7). Compared with the epimorphism map algorithm, the total cycles of the

LSLGM algorithm decrease by an average of 38.1% (PEA4�4) and 39.0% (PEA7�7). The feasibility of LSLGM is

verified.

Key words: Grid Coarse-Grained Reconfigurable Array (GCGRA); mapping; loop subgraph; scheduling

1 Introduction

Grid coarse-grained reconfigurable computing systems
exhibit the characteristics of low power consumption,
dynamic online configuration, etc. They have been
applied to the Internet of things[1], acceleration[2], and
other fields. Field Programmable Gate Array (FPGA)
is a typical representative of fine-grained reconfigurable
architecture, which demonstrates obvious advantages
�Naijin Chen, Fei Cheng, and Chenghao Han are with School

of Computer and Information Science, Anhui Polytechnic
University, Wuhu 241000, China. E-mail: chennaijin@ict.ac.cn;
f957189105, 1048551181g@qq.com.
� Jianhui Jiang is with School of Software Engineering, Tongji

University, Shanghai 201804, China. E-mail: jhjiang@tongji.
edu.cn.
�Xiaoqing Wen is with Department of Computer Science and

Networks, Kyushu Institute of Technology, Fukuoka 820-8502,
Japan. E-mail: wen@cse.kyutech.ac.jp.
�To whom correspondence should be addressed.

Manuscript received: 2021-10-29; revised: 2021-12-27;
accepted: 2022-01-24

in the bit-level calculation. However, FPGA has a
long configuration time and power consumption while
dealing with arithmetic and logic operations with bit
width. Under this background, various Coarse-Grained
Reconfigurable Architecture (CGRA) models have been
proposed[3, 4].

Thus, CGRA has become an international research
hotspot. Many related research results are found. A
compiler mapping simulator is a paramount aspect of
the CGRA research[5, 6].

The Processing Element Array (PEA) of Grid Coarse-
Grained Reconfigurable Architecture (GCGRA) exhibits
the characteristics of simple interconnection, less wiring,
low power consumption, etc. PEA can finish basic
arithmetic and logic operations, such as monocular,
binocular, and trinocular, and it can accomplish complex
arithmetic and logic operations. Because the loop of
computing-intensive tasks has numerous running times,
it can be transformed into intermediate representations,
such as a Data Flow Graph (DFG). According to the

Naijin Chen et al.: Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array 331

interconnection, area, and other constraints of PEA, the
nodes of DFG are mapped onto one or several PEAs
using an algorithm. As such, the execution efficiency of
critical loop tasks is significantly improved. The DFG
mapping problem is the key issue to be solved by the
CGRA compilation simulator, which has been proven to
be an NP-hard problem[3–6].

As for different computing platforms, various
mapping scheduling algorithms have been proposed[7–15].
Owing to the characteristics of GCGRA flexible
configuration in Processing Element (PE), it attracted
considerable attention. Several scheduling algorithms
have been proposed based on GCGRA platforms[10–13].
However, the existing algorithms exhibit the following
defects.

(1) Because the grid PEA mapping algorithm places
too much emphasis on reducing cycle start intervals, the
number of PEs is not fully utilized.

(2) The communication cost between grid PEA blocks
is high. In this study, we consider resolving these defects.
Its contributions are as follows:

(a) The operation mechanism and formal definition
associated with temporal mapping are given, and Verilog
Hardware Description Language (HDL) is used to
simulate the delays of 4-bit signed addition, subtraction,
and multiplication.

(b) A Loop Subgraph-Level Greedy Mapping
(LSLGM) algorithm for grid PEA is designed and
implemented. The LSLGM algorithm considers the
interconnection constraints of grid PEA, parallelism
of operation nodes, usage of hardware PE fragments,
etc.

The remainder of this article is organized as
follows. In Section 2, related works are introduced.
In Section 3, we introduce the cluster architecture
of CGRA and sequential logic simulation of three
operations. In Section 4, we define the problems
associated with temporal mapping. In Section 5,
we introduce experimental motivation and develop
Loop Subgraph-Level Mapping (LSLM) and LSLGM
algorithms. In Section 6, we demonstrate the efficiency
of our approach on several indexes and analyze our
experimental results. Finally, we conclude this study
in Section 7.

2 Related Work

CGRA is a multicore system. The programmable register
bits in CGRA are wide, and the power consumption is
low. At present, CGRA has become a research hotspot.

Many related research results exist, which are described
from two aspects below.

Typical studies related to non-GCGRA structures are
described as follows:

Liu et al.[5] described the current research status of
existing CGRA from the perspectives of programming,
computing, and execution. In addition, the parallel
computing, virtualization, and storage efficiency of
CGRA are analyzed. For the mapping problem of
parallelizable CGRA, a depth greedy mapping algorithm
has been designed to minimize the communication
costs between row configuration blocks[6]. Aiming
at solving the mapping scheduling problem of row
parallel reconfigurable array in processing multitree
DFG, a Row-Column Pruning Mapping (RCPM)
algorithm was proposed[7]. Compared with the place
and route algorithm, the average execution total
delays of RCPM reduced by 15.7% (RCA4�4) and
18.4% (RCA5�5). Compared with the split-push
kernel mapping algorithm, the average execution total
delays of RCPM decreased by 30.0% (RCA4�4) and
29.8% (RCA5�5). Chen and Feng[8] evaluated the
interconnection delay of PEA with routing, row-
column bus, and point-to-point relationships. The
experimental results showed that the PEA with point-
to-point interconnection obtained less interconnection
delay. From the perspective of cyclic acceleration,
Balasubramanian and Shrivastava[9] proposed a compute-
intensive loop acceleration by randomized Iterative
Modulo Scheduling (IMS), optimized mapping method
to remove invalid mappings, and achieved improved
effective scheduling results.

Typical studies related to GCGRA structures are as
follows.

Lee et al.[10] introduced the transient fault recovery
time structural model of CGRA and proposed a three-
mode redundancy fault tolerance model for error
detection and correction of CGRA. They analyzed the
maximum recovery time of faults. A multiobjective
optimization Genetic Mapping (GenMap) was designed.
Compared with the traditional mapping algorithm, the
energy consumption of GenMap reduced by 12.1%–
46.8%[11]. The partition mapping module of the
CGRA compiler was restricted by repeated computing
resources, universal formal description, etc. Hamzeh
et al.[12] proposed the EPImorphism Mapping (EPIMap)
algorithm. EPIMap exhibits a less compilation time
than edge-centric modulo scheduling. The discussion
focused on two main defects of the existing CGRA.

332 Tsinghua Science and Technology, April 2023, 28(2): 330–343

One was the issue of effectively using PE register files,
and the other was large compilation time. A heuristic
mapping algorithm has been proposed considering PE
internal registers[13]. This mapping algorithm optimizes
the compiler performance.

3 CGRA PEA Cluster (PEAC) and Delay
Solution of Partial Operations

3.1 CGRA PEAC

A general PEAC architecture based on CGRA is shown
in detail (see Fig. 1). This architecture includes the Main
Processor (MP), Main Memory (MM), high bus, Direct
Memory Access (DMA), and Reconfigurable Processing
Unit (RPU). To alleviate the speed contradiction among
MP, MM, and RPU and to optimize the performance
of storage and computation for computer systems,

the data or instruction cache module can be added
among MP, MM, and RPU. The RPU comprises
several configuration controllers, reconfigurable PEAs,
interconnected resources, etc. PEA architectures can be
homogeneous or heterogeneous. Each PEA includes
several homogeneous or heterogeneous PEs, data or
instruction memory, and other components. They are
shown in detail in Fig. 2.

3.2 Target mapping structure

To facilitate research, we only consider the mapping of
a single grid PEA. The internal structure of grid PEA
and PE is shown in Fig. 2. The grid PEA demonstrates
the following two properties. First, after the calculation
task is mapped successfully, it can be executed on PE.
One PE can handle fixed-point operations, and two PEs
can handle floating-point mantissa and exponent. In this

Fig. 1 PEAC architecture of CGRA.

Fig. 2 Internal structure of grid PEA and PE.

Naijin Chen et al.: Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array 333

study, we consider only isomorphic PE and fixed-point
operations. Second, the interconnection mode between
PEs is point-to-point. It can form pipeline or nonpipeline
operations inside and outside PEA blocks.

Our research is based on four preconditions.
(1) Fixed-point operations of operands are studied,

and a loop DFG of a program is extracted.
(2) Temporal mapping methods of operation level

will be studied, and the temporal mapping algorithm
is evaluated by one PEA.

(3) As some computing-intensive tasks exhibit
dependencies between one cycle and others, a loop single
subgraph is mapped in proper order.

(4) Storage and fetch data are collected in a
synchronous state.

3.3 Delay solution of partial operations

In general, the participating operands have 4 bits or
more, which is called coarse granularity. We study
the operation based on a coarse-grained array, so
it is uniformly agreed that the operands have 4 bits.
Verilog HDL is employed to solve the operation
delays of source code signed addition, subtraction, and
multiplication. Experiments show that the delays of 4-
bit signed addition and subtraction are 2 cycles, and the
delay of multiplication is 6 cycles. The conventional
configuration and other arithmetic logic operation delays
are unified into one cycle, and the number of PE
occupied by each operation is 1 cycle.

Consider the Signed-4-bit Source Code Multiplication

(SSCM) operation delay solution as an example, the
delay of SSCM is obtained by 4 times addition, 4 times
shift, and symbol bit processing of operation results.
Figure 3 shows that the delay is 6 cycles.

In Algorithm 1, Step 1 initializes the partial product
and assigns the absolute values of the multiplicand and
multiplier. Step 2 shows that the end of the multiplier is
0, the partial product adds 0, and then the partial product
and multiplier are moved right by 1 bit. If the end of the
multiplier is 1, the partial product adds X , and then the
partial product and multiplier are moved right by 1 bit.
Step 3 indicates symbol bit calculation. Step 4 is the end
of SSCM.

4 Problem Definition

The key to GCGRA acceleration is minimizing the
execution delay of each PEA and its reuse time.
Therefore, under the area constraint of a PEA, to
obtain a higher speedup, the critical loop of computing-
intensive exhibits a smaller computing delay (i.e., SSD).
If a PEA has more reusable time of reconfigurable
hardware (i.e., M), the hardware configuration cost will
increase, which will affect the acceleration of GCGRA.
The optimization objectives of GCGRA include the
following two points:

(1) Pursuing the minimization of SSD. (2)
Minimization of M .

The relevant definitions of the mapping problem are
as follows.

Definition 1 (Calculation pattern): Let PEA be a

Fig. 3 Sequential waveforms of 4-bit signed multiplication.

334 Tsinghua Science and Technology, April 2023, 28(2): 330–343

Algorithm 1 SSCM
Input: X [4:0], Y [4:0]
Output: Delay of SSCM

Step 1:
MULŒ8 W 0�D000000000IXŒ8 W 0�D000000000IY Œ3 W 0�D
Y Œ3 W 0�I XŒ7 W 4�DX [3:0]; MULŒ3 W 0�DY [3:0];
Step 2:
for (i D 1 to 4/ do

if (MULŒ0� DD 1) then
MUL[8:0]=MUL[8:0]+ X [8:0];

end if
MUL�1; MUL[8]=0;

end for
Step 3:
if (X [4]˚Y [4]) then
MUL[8]=1;

else
MUL[8]=0;

end if
Step 4: end SSCM.

set of isomorphic or heterogeneous PE units, the function
f : PE!PE is called a monadic operator, the function f :
PE×PE!PE is called a binary operator, the function
f : PE×PE×PE!PE is called a triple operator, and
the function f : PE×PE×� � �×PE!PE is called a
multivariate operator.

Definition 2 (Computing delay SSD): A loop DFG
can be represented as a quadruples G D .V;E;W;

D/[14], set of vertices V D fvi jvi is an ordered operator,
1 6 i 6 ng; set of edges E D feij jeij D hvi ; vj i; 1 6
i; j 6 ng; set of weight W D fwi j the area of
hardware resources occupied by vi ; 1 6 i 6 ng; D
represents a set of delays, di 2 D represents the delay
of the vi operation node. A two-dimensional (row
×col) PEA is a quadruple, PEAD .PE; I;O;EL/

[15],
where PE D fPE.1;1/;PE.1;2/; : : : ;PE.m;n/g is a finite

set. Temporal mapping of G D .V;E;W;D/ f!PEA D
.PE; I;O;EL/ is monomorphism. Let V D fv1; v2;

: : : ; vng, P D fP1; P2; : : : ; PM g is the mapping set of

V ,
M[

iD1
Pi D V and Pi \ Pj D �.i ¤ j /.

The calculation definition of SSD is as follows:
(1) Suppose there are two nonintersecting directed

cyclic subDFGs, let V1 D fv1; v2; : : : ; vmg, V2 D
fvm; vmC1; : : : ; vkg, V1 � V , V2 � V , V 0 D V1 [
V2, V 0 � V , V1 and V2 have mapped onto a Pi

simultaneously, i 2 Œ1;M �. In the set V1, if several
directed paths exist from v1 to vm, let the longest path
of [v1,vm] is R1, it has a maximum delay , which can
be expressed as delay(R1). In the set V2, if several
directed paths exist from vm to vk , let R2 represent the
longest paths exist from vm to vk with the maximum

delay, which can be expressed as delay(R2), then
SSD D max(delay(R1), delay(R2)).

(2) Let directed cyclic subDFGs with two
intersections, V1 D fv1; v2; : : : ; vmg and V2 D fvm;

vmC1; : : : ; vkg, V1 � V , V2 � V , V 0 D V1 [V2, V 0 �
V , V1 and V2 are mapped to a certain Pj concurrently,
j 2 Œ1;M �, in set V 0 , if several directed paths exist
from vertex v1 to vertex vk , let Rmax represent the
longest paths from v1 to vk with the maximum
delay, which can be expressed as delay(Rmax), then
SSD D delay(Rmax).

Definition 3 (Mesh PEA area): The interconnection
relationship of the execution PEA is point-to-point, and
each row or column’s PEs meet certain requirements,
then the mesh PEA area can be expressed as ARPU D
row � col:

Definition 4 (Hardware fragment PE): Under the
constraints of coarse-grained reconfigurable array area,
interconnection mode, and other elements, it is generated
in the process of dynamically dividing the loop DFG by
a mapping algorithm. It demonstrates the characteristics
of configuration, computation, and data transmission,
and its area is the number of remaining execution PEs.

Definition 5 (TTOTAL of loop DFG): As the
grid PEA is point-to-point interconnection, the
interconnection delay inner PEA block is approximately
0. The total cycles of a DFG consumed by one PEA
execution can be expressed as TTOTAL D Tcon C Tin C
Tout C Tc, where Tcon represents the configuration time.
Configuration time includes PE operator or routing
configuration time (about 1 cycle), configuration time
for one PEA, and control word configuration time
for dynamic connection switching (about 17 cycles);
Tin represents the input time for loop DFG; Tout

represents the output time for loop DFG; Tc represents
the calculation time for loop DFG. In summary:
TTOTAL D Tcon C Tin C Tout C Tc D .˛ � CCON C
� � M/ C ˇ � .N1 C Norg1/ C � .N2 C Norg2/ C
ı � SSD; ˛; �; ˇ; ; ı are correction coefficients, and
their values are determined by different CGRAs and
interconnection modes, the unified agreement is ˛ D
1; � D 17; ˇ D D 1; and ı D 1. The meanings of
CCON; N1; N2; Norg1; Norg2;M; SSD, and other symbols
are consistent with those in Ref. [6].

Regulation 1 For a computationally intensive task,
the original input times (i.e., Norg1) and original
output times (i.e., Norg2) of DFG are fixed values.
For comparison, we uniformly stipulate that the data
communication costs between one PEA and others are

Naijin Chen et al.: Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array 335

calculated according to the number of nonoriginal inputs
(i.e., N1) and nonoriginal outputs (i.e., N2) .

Regulation 2 Considering the dependency of loop
subgraphs, we partition multiple loop subgraphs in a
sequential mapping manner, loop subgraphs are mapped
onto PEAs sequentially.

5 Experimental Motivation and LSLGM
Algorithm Design

5.1 Experimental motivation

Our experimental motivation includes the following two
points:

(1) The LSLGM algorithm is designed and
implemented based on a class of grid PEA architecture,
which considers the execution delay of the operations
and the times of using PEA or other indexes.

(2) The optimizations of communication costs
between one PEA and others are considered.

5.2 LSLGM algorithm design

The scheduling of starting point for LSLGM is PE (0, 0),
and the nodes of DFG are mapped onto PEA by row in
first. The LSLGM algorithm has considered grid PEA
parallelism and delays of equalization, etc. The relevant
strategies are as follows.

Strategy 1 Considering maximizing the number of
parallel execution nodes of grid PEA.

LSLM scans the ready nodes of subDFGs by level in
proper order. Priority is given to nodes with smaller
levels in the same case, and nodes that meet the
requirements are mapped to a level on the PEA. Thus,
the number of mapped parallel nodes in the PEA can be
maximized to reduce SSD. From the above, Strategy 1
focuses on optimizing SSD.

Strategy 2 Dynamically considering the delays of
equalization for the mapping nodes.

The specific methods for Strategy 2 are as follows.
(1) Based on Strategy 1, nodes with current level 0

are arranged in the ready queue by layer mapping; also,
current level nodes with an indegree of 0 are arranged in
the ready queue, and the delays of nodes are calculated.
Nodes with larger delays are scheduled and mapped onto
PEA due to high priority, and the same delay nodes are
placed in the same row of PEA as far as possible.

(2) After mapping a node, the indegree of its direct
successor will be updated. If the indegree of a node’s
direct successor is 0, it is directly partitioned in the ready
queue.

The first row is full, and it is placed in the second row
to minimize SSD. When the first row is full, the second
row will be mapped in turn. As such, a small execution
delay in PEA will be obtained.

Example 1 The delay equalization mapping node is
shown in Fig. 4. The target architecture is grid PEA1�2

(see Fig. 4a). A critical loop subgraph is being mapped
(see Fig. 4b). Regarding mapping methods, Scheme
1 adopts level mapping. Figure 4e shows the mapping
result. Scheme 2 adopts equalization mapping. Figure
4g shows the mapping result. The mapping parameters
of the two schemes show that Scheme 1 has M D 4 and
SSD D 24; Scheme 2 hasM D 4 and SSD D 16. The SSD

for equalization mapping has been reduced by 8 cycles.
The results show that the advantages of equalization
mapping are obvious.

From above, Strategy 2 further optimized the node
execution delay SSD in PEA based on Strategy 1.

Strategy 3 Considering communication cost
optimization between one PEA and others and effectively
using reconfigurable hardware fragments.

Under the condition of ensuring SSD minimization,
if a node, which does not meet the requirements, is
encountered in DFG mapping, it will stop scheduling.
However, the remaining hardware area may also meet
the requirements of the ready node behind the current
node. As such, numerous hardware fragments will be
generated.

First, LSLGM dynamically tracks the process of DFG
partitioning. When the nodes in LSLGM blocks that
do not meet the requirements, it searches for nodes that
meet the requirements and maps them onto the current
PEA. Thus, the optimization of M is obtained. Second,
under the condition of ensuring SSD minimization, the
successor of the currently block nodes is mapped as soon
as possible. As a result, the optimization of N1 and N2

is achieved.
From above, Strategy 3 further optimized the

communication costs between blocks N1 and N2 and
the number of M:

According to Strategy 1, we implemented the LSLM
by Algorithm 2. The purpose of the LSLM algorithm
is to minimize SSD. A single-objective optimization
scheduling function y.vi / is constructed by LSLM. The
scheduling is performed using y.vi /, and the operations
with the greatest function value exhibit a high priority
by arrangement. The function form is as follows:

y.vi / D num.vi /C high.vi / (1)
where num.vi / denotes node number of vi , and
high.vi / denotes the level number of node high vi in

336 Tsinghua Science and Technology, April 2023, 28(2): 330–343

(a) Mapping target array (b) DFG in mapping (c) DFG partition of mapping Scheme 1 (d) DFG partition of mapping Scheme 2

(e) Mapping Scheme 1

(f) Execution delay for each PEA in Scheme 1

(g) Mapping Scheme 2

(h) Execution delay for each PEA in Scheme 2

Fig. 4 Illustration of the equalization time for mapping nodes.

DFG.
In Algorithm 2, Step 1 reads the loop subgraph data

table and initializes variables in LSLM. Step 2 scans
the entire data table, calculates the weights of the ready
nodes, and sorts them according to Eq. (1). The time
complexity is O.n/, where n represents the number
of nodes. Steps 3 and 4 scan the entire data table and
select the computing-ready nodes with high priority for
mapping in turn. When a node is mapped, the indegree
of the successor node decreases by 1. Step 5 shows that
if a PEA is full or not but the node cannot be mapped
according to the hardware constraints, the PEA and
related variables are initialized, then return to Step 3.
The time complexity is about O.n/. Step 6 indicates
that if all DFG nodes are mapped, which will jump

out of the loop. Step 7 shows that six parameters such
as M;N1; N2; SSD; CCON; and TTOTAL are calculated by
corresponding functions. Step 8 is the end of LSLM.
In summary, the time complexity of the LSLM is about
O.n/.

According to Strategies 1, 2, and 3, the LSLGM
algorithm was designed and implemented. The purpose
of the LSLGM algorithm is to optimize SSD,M ,N1,N2,
and other indicators; the LSLGM algorithm constructs a
multiobjective optimization scheduling function h.vi /.
The scheduling mapping is performed using h.vi /. The
operation with the greatest value exhibits high priority.
The function form is as follows:
h.vi / D num.vi /Chigh.vi /Cdelay.vi /Cp.vi jvj /

(2)

Naijin Chen et al.: Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array 337

Algorithm 2 LSLM
Input: loop subDFG
Output: Configuration information, M; N1; N2; SSD; CCON;

and TTOTAL

Constraint: ARPU=16 or 49, illegal data dependencies are not
allowed, GCGRA

Step 1:
Read loop subDFG table(); initialize PEA matrix and variables,
M D 0;N1D 0;N2D 0; SSDD 0; CCOND 0; TTOTALD 0; and
nD0;

Step 2:
for 1 (vi D 1 to node number) do

Compute the node weight values by y.vi / and sort them;
end for 1

Step 3:
for 2 (vi D 1 to node number) do

Step 4:
Select the minimum value of y.vi / and IindegreeŒvi �:id D
0I PEA[matrix-row][numŒmatrix-row��:id D NnodeŒvi �:idI
NnodeŒvi �:flag D 1I n++; num[matrix-row]++; vi successor
Iindegree(Ssucc.vi // � 1;

Step 5:
if(a PEA is filled with nodes jj a PEA is not filled with nodes
but cannot map by hardware constraint)
Change PEA block; clear PEA to zero, initializate variables,
and update ready queue by y.vi /;
Compute M;N1; N2; SSD; CCON; and TTOTAL by
Cal parameter(); matrix-row D 0I numŒmatrix-row� D 0I
go to Step 3;

Step 6:
if (nDnode number) break;

end for 2
Step 7:
M;N1; N2; SSD; CCON are got by M. /; N1. /; N2. /; SSD. /;

CCON. /, respectively; TTOTAL is obtained by delays();
Step 8: end LSLM.

where delay.vi / represents the delay of vi . After
vi ’s direct predecessor node vj is mapped completely,
p.vi jvj / represents the probability when vi has become
a ready node. After LSLGM has obtained a smaller
SSD and smaller communication costs between PEAs, it
optimizes M , N1, N2, and other indicators using greedy
mapping in the process of scheduling.

LSLGM is designed and implemented by Strategies 1,
2, and 3, which is described as follows (Algorithm 3).

In Algorithm 3, Step 1 reads the loop subgraph
data table and initializes variables in LSLGM. Step 2
scans the entire data table, calculates the weights of
ready nodes according to Eq. (2), and sorts them; the
time complexity is about O.n/, where n represents the
number of DFG nodes. Step 3 scans the entire data table
and PEA array if the ready node is mapped to end this

8 Tsinghua Science and Technology, 2022, (): 512–525

Algorithm 3 LSLGM
Input: loop subDFG
Output: M;N1; N2; SSD; CCON; and TTOTAL
Constraint: ARPU=16 or 49, illegal data dependencies are not

allowed, GCGRA
Step 1:

Read loop subDFG table(); initialize PEA matrix and
variables M D 0; N1 D 0; N2 D 0; SSD D 0; CCON D 0;
TTOTAL D 0; and n D 0;

Step 2:
for 1 (vi =1 to node number) do

Compute the node weight values by h.vi / and sort them;
end for 1

Step 3:
for 2 (vi D 1 to node number) do

if 1 (ready node is mapped) continue;
end if 1
end for 2
for 3 (i=0 to PEA row) do

for 4 (j=0 to PEA col) do
if 2 (Current PEA has placement positions) then

Select the minimum value of y.vi / and
Iindegree[vi].id=0; As for up, down, left, and
right of current PEA, ready nodes are placed
by place(�p;� i;� j); mapped node vi successor
Iindegree(Ssucc(vi))–1;
else break;

end if 2
end for 4

end for 3
Step 4:

if 3 (Same level nodes are mapped) then
Scan loop subDFG table to search for the next level ready
nodes of DFG;

end if 3
if 4 (The next level ready nodes exhibit predecessor nodes)
then

if 5 (Predecessor nodes have mapped) Map ready nodes
to current PEA by place (�p;� i;� j); mapped node vi

successor Ii ndegree (Ssucc (vi // � 1I break;
else continue

end if 5
else
Ready nodes are placed by place (�p;� i;� j); mapped node
vi successor Ii ndegree (Ssucc (vi))–1;
break

end if 4
Step 5:

if 6 (A PEA is filled with nodes jj a PEA is not filled with nodes,
but it cannot map by hardware constraint) then

Change PEA block; clear PEA to zero, initialize variables,
update ready queue by y.vi /;
Compute M; N1; N2; SSD; CCON; and TTOTAL by Cal
parameter(); mat rix-row=0; and num Œmat rix-row�=0;
goto Step 3;

end if 6
Step 6:

if 7 (n=node number)
break;

end if 7
Step 7:
M;N1; N2; SSD; CCON are got by M. /;N1. /; N2. /; SSD. /;
CCON. /, respectively; TTOTAL is obtained by delays();

Step 8: end LSLGM.

338 Tsinghua Science and Technology, April 2023, 28(2): 330–343

time cycle. If the current PEA is empty, the mapping
will be terminated; otherwise, the high priority and
ready nodes are selected to map. Each node is mapped,
and the indegree of the successor node decreases
by 1. Step 4 indicates that the current layer nodes
have been mapped; then, Step 4 found the next ready
node. If this ready node exhibits no precursor, it will
be mapped directly. If the precursor of the current
ready node has been placed in the current PEA or
the front PEA and the PEA has a legal vacancy,
the current ready node will be mapped at once;
otherwise, the scheduling will be ended. The time
complexity is about O.n/. Step 5 illustrates that if a
PEA is full or not but the ready node cannot be mapped
according to the hardware constraints, PEA and related
variables are initialized, and it is returned to Step 3.
The time complexity is about O.1/. If all nodes of
the loop DFGs are mapped completely in Step 6, this
cycle will be ended. The time complexity is about
O.n � PEA row � PEA col/. PEA row and PEA col
represent the number of rows and columns in one PEA,
respectively. Step 7 is the end of LSLGM.

In summary, the time complexity of LSLGM is about
O.n � PEA row � PEA col/.

Example 2 To illustrate the mapping effect of
LSLGM, the following examples are considered. A loop
code is converted into a DFG. As shown in Figs. 5a
and 5b, a loop subDFG contains 32 original inputs, 4
original outputs, 28 operation nodes, 24 nonoriginal
edges, 16 addition operations, and 12 multiplication
operations. The partition results of LSLM and LSLGM
are shown in Figs. 5c and 5d. The LSLM and LSLGM
mapping scheduling results are shown in Figs. 5f and 5g.
The comparison of LSLM and LSLGM mapping results
are shown in Table 1. The results show that LSLGM
exhibits better optimization.

6 Experiment and Comparison Analysis

6.1 Benchmarks

To compare different mapping algorithms, we designed
two types of benchmark programs.

(1) Binary image algebra or logic operations (all
of them are expanded by 4 times): Binary Image
ADDITION (BIAD), Binary Image AND (BIA), Binary
Image NOT (BIN), and Binary Image XOR (BIX).

(2) An example of loop 4 (LOOP4) times expansion,
Matrix Multiplication 4 (MM4) expansion, FDCT3,
FDCT4, EWF3, and EWF4[7]. Table 2 shows these

benchmarks. The latency and amount of resources used
for various operations have been explained previously;
10 benchmarks were used. The number of operands
are listed in Table 2 (“add” represents addition, “sub”
represents subtraction, “mul” represents multiplication,
“as” represents assignment, “fe” represents fetch content,
“aj” represents assignment judge, “ju” represents judge,
“gr” represents greater than, “le” represents less than,
“eq” represents equal, “and” represents and operation,
and “ej” represents equal judge).

6.2 Experimental analysis and comparison

To facilitate comparison, we used the BIAD, BIA, BIN,
BIX, LOOP4, MM4, FDCT3, FDCT4, EWF3, and
EWF4 benchmark programs (Table 2). The ARPU values
are 16 (PEA4�4) and 49 (PEA7�7) at random. For
different ARPU values, LSLGM, LSLM, and EPIMap
are tested by a set of benchmarks. Five indexes (i.e., M ,
N1,N2, SSD, and CCON) are considered in this study. We
implemented LSLM, LSLGM, and EPIMap in C++.

6.2.1 Comparison of LSLM, LSLGM, and EPIMap
(1) Comparing M of LSLM, LSLGM, and EPIMap
for GCGRA

From Fig. 6, when ARPUD16 and ARPUD49,
compared with LSLM and EPIMap, LSLGM acquired
all optimizations of M . The reason is that LSLGM
adopts greedy thinking and puts all nodes that meet the
mapping conditions as soon as possible.

(2) Comparing N1 and N2 of LSLM, LSLGM, and
EPIMap for GCGRA

From Figs. 7 and 8, when ARPU D 16 and ARPU D 49;
compared with LSLM, except for LOOP4 and FDCT4,
LSLGM exhibits comprehensive optimization in terms
of N1 and N2. N1 and N2 indexes obtained by LSLGM
are better than those by EPIMap because EPIMap mainly
pursues the minimum II (initiation interval); hence, N1

and N2 values are not well-considered.
(3) Comparing SSD of LSLM, LSLGM, and

EPIMap for GCGRA
From Fig. 9, when ARPU D 16 and ARPU D 49,

LSLGM considers multiple index optimization and is
inferior to LSLM and EPIMap in SSD because LSLM
focuses on optimizing the row parallelism of nodes, and
EPIMap focuses on optimizing the loop II of computing
nodes, which decreases SSD.

(4) Comparing CCON of LSLM, LSLGM, and
EPIMap for GCGRA

From Fig. 10, when ARPU D 16 and ARPU D 49,
LSLM and EPIMap consider the optimization of SSD,

Naijin Chen et al.: Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array 339

(a) Loop code (b) Loop 4 times for unrolling of DFG

(c) Loop subDFG partition (d) Loop subDFG greedy partition

(e) Mapping results of LSLM (PEA4�4)

(f) Mapping results of LSLGM (PEA4�4)

Fig. 5 Example of loop code unrolling.

340 Tsinghua Science and Technology, April 2023, 28(2): 330–343

Table 1 Mapping parameter comparison of LSLM and LSLGM.
Algorithm M N1 N2 SSD CCON TTOTAL (clock cycle)

LSLM 16 24 24 80 300 428
LSLGM 8 16 16 48 164 244

Table 2 Number of operations of benchmarks.
Benchmark total add sub mul as fe aj ju gr le eq and ej

BIAD 76 28 – 12 12 12 8 – 4 – – – –
BIA 108 24 – 24 – 24 16 8 8 – – 4 –
BIN 56 12 – 12 – 12 12 – 4 – – – 4
BIX 104 28 – 24 – 24 16 4 8 – – – –

LOOP4 28 12 – 16 – – – – – – – – –
MM4 112 48 – 64 – – – – – – – – –

FDCT3 126 39 39 48 – – – – – – – – –
FDCT4 168 52 52 64 – – – – – – – – –
EWF3 102 84 – 18 – – – – – – – – –
EWF4 136 112 – 24 – – – – – – – – –

(a) ARPU = 16 (b) ARPU = 49

Fig. 6 Comparison of M on LSLM, LSLGM, and EPIMap.

(a) ARPU = 16 (b) ARPU = 49

Fig. 7 Comparison of N1 on LSLM, LSLGM, and EPIMap.

(a) ARPU = 16 (b) ARPU = 49

Fig. 8 Comparison of N2 on LSLM, LSLGM, and EPIMap.

Naijin Chen et al.: Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array 341

(a) ARPU = 16 (b) ARPU = 49

Fig. 9 Comparison of SSD on LSLM, LSLGM, and EPIMap.

(a) ARPU = 16 (b) ARPU = 49

Fig. 10 Comparison of CCON on LSLM, LSLGM, and EPIMap.

which increases M: The PEA fixed-configuration
costs are increased by M: Therefore, compared with
LSLM and EPIMap, LSLGM has optimized for CCON:

(5) Comparing TTOTAL of LSLM, LSLGM, and
EPIMap for GCGRA

From Table 3, when ARPU D 16 and ARPU D 49,
compared with LSLM, owing to insufficient
consideration of the data access mechanism between
PEAs by LSLM, LSLM’s TTOTAL is larger. LSLGM
achieved an overall optimization of 33.0% (ARPUD16)
and 33.9% (ARPUD49) of TTOTAL. Owing to subgraph
mapping, the area of reconfigurable processing
unit has little effect on the TTOTAL for the three
algorithms except BIAD. The overall performance

of LSLGM is better than that of EPIMap because
EPIMap exhibits a larger SSD and CCON. The
average improvement percentages of TTOTAL obtained
by LSLGM are 38.1% (ARPU D 16/ and 39.0% (ARPU D
49/: From Table 3, based on ten benchmarks, compared
with LSLM, the percentage of LSLGM improvement
is represented by �1%; compared with EPIMap, the
percentage of LSLGM improvement is represented by
�2%:

6.2.2 Applications of LSLGM
Compared with LSLM and EPIMap, LSLGM obtains
better optimization in terms ofM ,N1, andN2. However,
the value of SSD obtained by LSLGM is worse than
that of EPIMap. Because the number of modules and

Table 3 Comparison of mapping TTOTAL on LSLM, EPIMap, LSLGM at ARPU = 16 and 49.

Benchmark
LSLM LSLGM EPIMap �1 .%/ �2 .%/

ARPUD16 ARPUD49 ARPUD16 ARPUD49 ARPUD16 ARPUD49 ARPUD16 ARPUD49 ARPUD16 ARPUD49
BIAD 828 828 480 400 840 840 –42.0 –51.7 –42.9 –52.4
BIA 1532 1532 808 808 1560 1560 –47.3 –47.3 –48.2 –48.2
BIN 924 924 464 464 1100 1100 –50.0 –50.0 464 –57.8
BIX 1524 1524 808 808 1564 1564 –47.0 –47.0 –48.3 –48.3

LOOP4 428 428 244 244 428 428 –43.0 –43.0 –43.0 –43.0
MM4 1584 1584 912 912 1680 1680 –42.4 –42.4 –45.7 –45.7

FDCT3 936 936 921 921 1041 1041 –1.6 –1.6 –11.5 –11.5
FDCT4 1248 1248 1228 1228 1388 1388 –1.6 –1.6 –11.5 –11.5
EWF3 1164 1164 846 846 1320 1320 –27.3 –27.3 –35.9 –35.9
EWF4 1552 1552 1128 1128 1760 1760 –27.3 –27.3 –35.9 –35.9

Average – – – – – – –33.0 –33.9 –38.1 –39.0

342 Tsinghua Science and Technology, April 2023, 28(2): 330–343

the communication costs between PEAs are reduced,
the parallelism between operations in each mapping
module is not optimal. Therefore, LSLGM is suitable for
the small-space storage or fetch costs and few partition
modules.

7 Conclusion

In this study, an LSLGM algorithm considering the data
communication cost, calculation delay, and number of
configuration blocks is proposed. LSLGM, LSLM, and
EPIMap are tested and compared via a set of benchmark
programs. The experimental results show that LSLGM
demonstrates advantages inM ,N1, andN2 optimization.
LSLGM is feasible in reducing N1, N2, and TTOTAL

based on GCGRAs.

Acknowledgment

This research was supported by the Natural Science
Foundation of Anhui Province (No. 1808085MF203) and
the Natural Science Foundation of China (Nos. 61972438
and 61432017).

References

[1] M. Brandalero, L. Carro, A. C. S. Beck, and M. Shafique,
Multi-target adaptive reconfigurable acceleration for low-
power IoT processing, IEEE Trans. Comput., vol. 70, no. 1,
pp. 83–98, 2021.

[2] I. Bae, B. Harris, H. Min, and B. Egger, Auto-
tuning CNNs for coarse-grained reconfigurable array-based
accelerators, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2301–
2310, 2018.

[3] J. M. P. Cardoso, P. C. Diniz, and M. Weinhardt, Compiling
for reconfigurable computing: A survey, ACM Comput.
Surv., vol. 42, no. 4, p. 13, 2010.

[4] G. Charitopoulos, D. N. Pnevmatikatos, and G. Gaydadjiev,
MC-DeF: Creating customized CGRAs for dataflow
applications, ACM Trans. Archit. Code Optim., vol. 18,
no. 3, p. 26, 2021.

[5] L. B. Liu, J. F. Zhu, Z. S. Li, Y. N. Lu, Y. D. Deng, J.
Han, S. Y. Yin, and S. J. Wei, A survey of coarse-grained
reconfigurable architecture and design: Taxonomy,
challenges, and applications, ACM Comput. Surv., vol. 52,

no. 6, p. 118, 2020.
[6] N. J. Chen, Z. Wang, R. X. He, J. H. Jiang, F. Cheng,

and C. H. Han, Efficient scheduling mapping algorithm
for row parallel coarse-grained reconfigurable architecture,
Tsinghua Science and Technology, vol. 26, no. 5, pp. 724–
735, 2021.

[7] N. J. Chen and J. H. Jiang, Mapping algorithm of coarse
grained reconfigurable cell array for multi-branch tree data
flow graph, (in Chinese), J . Comput. -Aided Des. Comput.
Graphics, vol. 28, no. 7, pp. 1180–1187, 2016.

[8] N. J. Chen and Z. Y. Feng, Interconnect delay performance
evaluation for non-crossing level and row operands parallel
RCA, (in Chinese), J . Tianjin Univ. (Sci. Technol.), vol. 50,
no. 4, pp. 429–436, 2017.

[9] M. Balasubramanian and A. Shrivastava, CRIMSON:
Compute-intensive loop acceleration by randomized
iterative modulo scheduling and optimized mapping on
CGRAs, IEEE Trans. Comput. -Aided Des. Integr. Circuits
Syst., vol. 39, no. 11, pp. 3300–3310, 2020.

[10] G. Lee, E. Cetin, and O. Diessel, Fault recovery time
analysis for coarse-grained reconfigurable architectures,
ACM Trans. Embedded Comput. Syst., vol. 17, no. 2, p.
42, 2018.

[11] T. Kojima, N. A. V. Doan, and H. Amano, GenMap:
A genetic algorithmic approach for optimizing spatial
mapping of coarse-grained reconfigurable architectures,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 11, pp. 2383–2396, 2020.

[12] M. Hamzeh, A. Shrivastava, and S. Vrudhula, EPIMap:
Using Epimorphism to map applications on CGRAs, in
Proc. 2012 DAC Design Automation Conf., San Francisco,
CA, USA, 2012, pp. 1280–1287.

[13] M. Hamzeh, A. Shrivastava, and S. Vrudhula, REGIMap:
Register-aware application mapping on Coarse-Grained
Reconfigurable Architectures (CGRAs), in Proc.50th

ACM/EDAC/IEEE Design Automation Conf. (DAC), Austin,
TX, USA, 2013, pp. 1–10.

[14] N. J. Chen, J. H. Jiang, X. Chen, Z. Zhou, and Y. Xu, An
improved level partitioning algorithm considering minimum
execution delay and resource restraints, (in Chinese), Acta
Electron. Sin., vol. 40, no. 5, pp. 1055–1066, 2012.

[15] N. J. Chen, Z. Y. Feng, and J. H. Jiang, Bypass node
non-redundant adding algorithm for crossing-level data
transmission in two-dimension reconfigurable cell array,
(in Chinese), J . Commun., vol. 36, no. 4, p. 2015132, 2015.

Naijin Chen received the PhD degree in
computer science and technology from
Tongji University, Shanghai, China in 2013.
He obtained the postdoctoral certificate
from Tianjin University, Tianjin, China in
2016. He is a member of China Computer
Federation. He is currently a professor at
Anhui Polytechnic University, Wuhu, China.

His current research interests include reconfigurable computing
and compiling, fault tolerant computing, reliability evaluation of
high-level circuits, approximate computing, formal verification,
semantic big data representation and reasoning, and pattern
recognition and image processing.

Jianhui Jiang received the PhD degree in
traffic information engineering and control
from Shanghai Tiedao University (in April
2000, it was merged to Tongji University),
China in 1999. Since 2011, he has been the
associate dean at the School of Software
Engineering, Tongji University. He is a
professor and PhD supervisor at Tongji

University. He is a senior member of China Computer Federation.
His main research interests include reconfigurable computing and
compiling, dependable systems and networks, software reliability
engineering, and VLSI test and fault tolerance.

Naijin Chen et al.: Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array 343

Fei Cheng received the BS degree from
Anhui Polytechnic University, Wuhu, China
in 2019. He is now a master student
at School of Computer and Information
Science, Anhui Polytechnic University,
Wuhu, China. His current research interests
include reconfigurable computing and
compiling, formal verification, fault tolerant

computing, semantic big data representation and reasoning, and
pattern recognition and image processing.

Chenghao Han received the BS degree
from Suzhou University, Suzhou, China
in 2020. He is now a master student at
School of Computer and Information
Science, Anhui Polytechnic University,
Wuhu, China. His current research interests
include reconfigurable computing and
compiling, formal verification, and fault

tolerant computing.

Xiaoqing Wen received the BEng degree
from Tsinghua University, China in
1986, the MEng degree from Hiroshima
University, Japan in 1990, and the PhD
degree from Osaka University, Japan in
1993. From 1993 to 1997, he was an
assistant professor at Akita University,
Japan. He was a visiting researcher at

University of Wisconsin, Madison, USA from Oct. 1995 to Mar.
1996. He joined SynTest Technologies, Inc., USA in 1998, and
served as its chief technology officer until 2003. In 2004, he joined
Kyushu Institute of Technology, Japan, where he is currently a
professor at Department of Computer Science and Networks. His
research interests include VLSI test, diagnosis, and testable design.
He co-authored and co-edited two books: VLSI Test Principles
and Architectures: Design for Testability (Morgan Kaufmann,
2006) and Power-Aware Testing and Test Strategies for Low Power
Devices (Springer, 2009). He also holds 42 U.S. patents and 14
Japan patents on VLSI testing. He is a fellow of the IEEE, a senior
member of the IEICE, a senior member of the IPSJ, and a member
of the REAJ.

