
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 05/18 pp47–58
DOI: 10 .26599 /TST.2021 .9010078
Volume 28, Number 1, February 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

SPIDER: Speeding up Side-Channel Vulnerability Detection via
Test Suite Reduction

Fei Yan, Rushan Wu, Liqiang Zhang�, and Yue Cao

Abstract: Side-channel attacks allow adversaries to infer sensitive information, such as cryptographic keys or private

user data, by monitoring unintentional information leaks of running programs. Prior side-channel detection methods

can identify numerous potential vulnerabilities in cryptographic implementations with a small amount of execution

traces due to the high diffusion of secret inputs in crypto primitives. However, because non-cryptographic programs

cover different paths under various sensitive inputs, extending existing tools for identifying information leaks to

non-cryptographic applications suffers from either insufficient path coverage or redundant testing. To address these

limitations, we propose a new dynamic analysis framework named SPIDER that uses fuzzing, execution profiling,

and clustering for a high path coverage and test suite reduction, and then speeds up the dynamic analysis of

side-channel vulnerability detection in non-cryptographic programs. We analyze eight non-cryptographic programs

and ten cryptographic algorithms under SPIDER in a fully automated way, and our results confirm the effectiveness

of test suite reduction and the vulnerability detection accuracy of the whole framework.

Key words: side-channel detection; test suite reduction; dynamic analysis

1 Introduction

Side-channel attacks infer sensitive information, such
as cryptographic keys or private user data, by
monitoring non-functional information during program
execution. A variety of side-channel attacks target
cryptographic implementations[1–3] owing to the
valuable information they contain. Particularly, software-
based micro-architectural side-channel attacks (e.g.,
cache attacks[4–6], Dynamic Random Access Memory
(DRAM) attacks[7], and controlled-channel attacks[8])
have received extensive attention from researchers and
developers because they can be launched from the
software without the need of physical access. Currently,
a lot of these software-based attacks exploit side-

� Fei Yan, Rushan Wu, Liqiang Zhang, and Yue Cao are
with Key Laboratory of Aerospace Information Security and
Trusted Computing, Ministry of Education, School of Cyber
Science and Engineering, Wuhan University, Wuhan 430072,
China. E-mail: yanfei@whu.edu.cn; rushanwu@whu.edu.cn;
Zhanglq@whu.edu.cn; yue.cao@whu.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2021-10-01; accepted: 2021-10-13

channel information leakage to recover secret keys of
cryptographic primitives[9, 10].

To address this issue, leakage detection tools that
allow developers to identify side-channel vulnerabilities
have been proposed. Such tools can be classified
into static and dynamic approaches. Most static
analysis tools target cache attacks and use abstract
interpretation[11–13]. Although these tools try to
accurately quantify information leakages, they provide
an over-approximation of leakage[12]. By contrast,
dynamic approaches[14, 15] focus on concrete program
executions to reduce false positives. Various dynamic
approaches in detecting side-channel leakages have been
proposed[16, 17]. DATA[16] collects and cross-compares
execution traces of various inputs of target cryptographic
algorithms. Abacus[18] utilizes one execution trace and
applies symbolic execution to generate constraints, and
then estimates the number of leaked bits for each leakage
site. The two techniques perform well on cryptographic
implementations with just a subset of inputs or even one
input. This is because, in the case of cryptographic
algorithms, crypto primitives heavily diffuse secret

48 Tsinghua Science and Technology, February 2023, 28(1): 47–58

inputs during processing, so testing a subset of inputs
is enough to encounter information leaks with a high
probability[16]. However, previous techniques cannot
be easily applied to non-cryptographic applications,
which have multiple program paths, because testing
just a subset of inputs may not reach a perfect path
coverage and may lose detection accuracy. Although
a few tools target side-channel vulnerabilities in non-
cryptographic applications[19], they mainly focus on
timing side-channels, which are quite different from our
target of address-based side-channels.

Based on this observation, we aim to explore
principles and techniques that automatically identify
side-channel vulnerabilities in general programs that
allow an adversary who can observe execution traces
of the control flow of a program to infer sensitive
information. To achieve our goal, we designed tool
that can tackle the following challenges: The first
challenge is how to generate enough valid sensitive
inputs of target programs to reach a high path coverage.
Current static approaches, such as symbolic execution,
are easily trapped into path explosion and require source
codes sometimes. The second challenge is how to
reduce the size of the input set while maintaining the
vulnerability detection capability. Several redundant
test cases exist, and testing all inputs and generating all
execution traces under these inputs are time consuming
and cause little enhancement on the results of the side-
channel vulnerability detection. The third challenge
is how to refine detection objects that possibly have
side-channel vulnerabilities. Previous tools hardly focus
on the size of traces generated, leading to a waste of
memory space for the storage of unimportant data. In
this paper, we address these challenges and identify side-
channel vulnerabilities in non-cryptographic programs.
More specifically, we built a tool named SPIDER
by leveraging fuzzing techniques to generate input
sets for an arbitrary program, integrating execution
profiling of basic blocks and clustering techniques to
realize test suite reduction, extracting target functions
according to cluster results finely, and identifying
side-channel vulnerabilities using trace diffing. We
tested SPIDER with eight non-cryptographic programs
and ten cryptographic algorithms and successfully
discovered numerous side-channel leakage points for
these programs with reduced consumption of time and
memory space. To summarize, the contributions of this
study are as follows:
�We target non-cryptographic programs containing

sensitive information and introduce fuzzing, execution
profiling, and clustering for speeding up the dynamic
analysis of side-channel vulnerabilities.
� We propose a novel approach reducing the test

suite while maintaining the accuracy of side-channel
vulnerability detection. We model the execution profiles
as program features and use the hierarchical clustering
method for input classification.
�We perform a comprehensive analysis of sensitive

side-channel vulnerabilities for real-world programs
more than only cryptographic algorithms. The detailed
report on leakages including corresponding trigger
inputs, source locations, and call stacks, can help
developers locate and fix vulnerabilities.

2 Background

2.1 Address-based side channels

Side channels leak sensitive information through
nonfunctional behaviors caused by shared hardware
resources in modern computer systems, such as the CPU
cache[4, 20, 21], page table[8], and DRAM[7]. If a program
jumps to different target addresses in branches or
accesses different memory addresses when it processes
different sensitive inputs, then it may be vulnerable
to address-based side-channel attacks. As shown in
Fig. 1, function dA get corrupted input() has a “for”
loop that enumerates every element of array x and calls
function binomial() if the element is not 0. The program
executes different patterns of control transfers when it
processes different sensitive inputs, indicating that it may
be vulnerable to side channel attacks.

Different side channels can be exploited to retrieve
information at various granularities. Generally, cache
side channels can extract secret information at the
granularity of the cache line, whereas controlled side
channels[8, 22] can observe sensitive information at the
granularity of the memory page.

2.2 Test suite reduction

Test suite reduction is one of the most important
techniques in the software testing domain. The goal

void dA_get_corrupted_input (dA* this, int* x, int* tilde_x, double p)
{

int i;
 for (i=0; i<this−> n_visible; i++){
 if (x[i] == 0) {

tilde_x[i] = 0;
} else {

 tilde_x[i] = binomial(1, p);
 }

 }
}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Fig. 1 Sensitive input-dependent control-flow transfers.

Fei Yan et al.: SPIDER: Speeding up Side-Channel Vulnerability Detection via Test Suite Reduction 49

of test suite reduction is to find a reduced test suite by
permanently eliminating redundant test cases according
to certain criteria while keeping their fault detection
capability similar to the original test suite. Several
reduction techniques have been proposed, such as
requirement based, coverage based, genetic algorithm,
clustering, and fuzzy logic. We focus on the clustering
technique used in test suite reduction. In Ref. [23],
the authors used the data mining approach of the
clustering technique in software testing to reduce
the test suite. In Ref. [24], previous research was
enhanced, and the number of function execution and
the sequence of functions were taken into consideration.
Clustering techniques select test cases using coverage-
and distribution-based techniques. They produce small
representative sets of test cases, saving time and cost of
software testing.

3 Overview

3.1 Threat model

We consider a powerful adversary who attempts
to retrieve secret information from side-channel
observations. We assume that an adversary shares the
same hardware platform with the target and side-channel
observations collected by the adversary are noise free.
The target program is deterministic, and the adversary
has access to the binary executable of the target program.
The adversary has no direct access to the target’s memory
or cache, but it can probe its memory or cache at each
program point. Moreover, the adversary does not only
learn the sequence of the addresses of instructions but
also the address of the operands that are accessed by
each instruction. Such a threat model can cover most
memory-based and cache-based side-channel attacks.

Not all of the side channels are of our focus in
this study. In particular, we focus on side-channel
vulnerabilities due to secret-dependent control flows.
Side channels caused by different data access patterns
are currently out of scope.

3.2 Methodology

The key objective of this work is to automatically

identify side-channel vulnerabilities in non-
cryptographic programs processing sensitive
information. Prior studies in side-channel detection
mainly consider cryptographic implementations, and
because of the high diffusion of secret keys in the
program, a few execution traces have already enabled
them to reach their goal. On the one hand, unlike
cryptographic programs, perfect detection accuracy
cannot be easily achieved by just testing a subset of
inputs in non-cryptographic but sensitive programs. On
the other hand, testing the whole input space containing
many redundant test cases is impossible and not much
use for detection accuracy improvement. For example,
DATA[16] only takes three inputs in the case of testing
symmetric algorithms, whereas in practice, we need
to use fuzzing to generate 366 inputs of the Hunspell
program of our benchmark to reach a high path coverage.
In addition, trace generation and comparison without
test suite reduction would take up more than 33 hours in
the Hunspell program, which is 3x slower than our tool.
Therefore, we aim to speed up the dynamic analysis
of side-channel vulnerabilities while maintaining
vulnerability detection capabilities through test suite
reduction.

As depicted in Fig. 2, we first fed the target program
into the fuzzing engine for high path coverage. Next,
we collected execution profiles on the top of Dynamic
Binary Instrumentation (DBI), modeled the execution
profile of basic blocks as feature vectors, and utilized the
clustering technique for the test suite reduction. Based
on the clustering results, we extracted sensitive functions
for subsequent monitoring. Finally, we conducted trace
generation and leakage detection under the reduced input
set and target functions.

4 Design

In this section, we illustrate how to detect side-channel
vulnerabilities in non-cryptographic programs through
execution profiling and the clustering technique. We use
the code snippet shown in Fig. 3 as a running example.
This program takes three types of sensitive inputs: a < 5,
5 6 a < 8, or a > 8. Accordingly, the program outputs

Target

Program

Fuzzer

Generating

 Inputs

DBI

Recording

Execution

Profile

Clustering

DBI

Recording

Traces

Detecting

Vulnerabilities

Leakage

Report

Fig. 2 Overview of SPIDER.

50 Tsinghua Science and Technology, February 2023, 28(1): 47–58

int func (int a)
{

int r;
if (a < 5), r = 0;
else if (a < 8), r = 1;
else r = 2;
return r;

}
int main (int argc, char** argv){

int a, res;
a = atoi (argv[1]);
 res = func (a);
printf (“Result is %d\n”, res);
return 0;

}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

Fig. 3 Code snippet of our running example.

three types of results: 0, 1, or 2.

4.1 Input generation

Because our approach uses dynamic analysis, it is
important to generate various concrete inputs that cover
as many input spaces as possible for high path coverage.
Sometimes, the exact type of input cannot be easily
determined. Such a problem is a concerning issue
in software testing, and many existing vulnerability
tools contribute to solving such a challenge. The
American Fuzzy Lop (AFL)[25] tool generates various
inputs through diverse mutation strategies and gray-
box evolutionary search algorithms for path coverage
enhancement. We used the AFL tool for our purpose in
the first step when designing our approach. We point out
that a user-constructed input set with high path coverage
is also acceptable.

In particular, we used the AFL to execute target
programs multiple times before starting our analysis.
The input generated by the AFL is called If uzz . When
fuzzing cannot further explore the program path or
reach the predefined timeout, we terminated the input
generation stage. During this execution stage, we
collected as many program inputs as possible, which
form a sufficiently large input set. In our simple example,
If uzz includes the entire set of integers.

4.2 Test suite reduction

There are many redundant inputs with no use for result
enhancement in the last phase, and we eliminated such
inputs to save the time and cost of testing. This goal
coincides with the idea of the test suite reduction in
software testing. We first define our problem below:

Given a test suite named If uzz , and a set of test
requirements, R1, R2, . . . , Rn, that must be satisfied to
provide the desired test coverage of the program, can we
find a reduced suite called Ireduced containing minimal

test cases from If uzz that satisfies all test requirements
Ri at least once?

The problem can be abstracted as a classification
problem or an equivalence class division problem.
We intend to apply machine learning techniques
for classification. We first need to construct vectors
representing program features under different inputs
and classify them reasonably. A program is composed
of multiple basic blocks, namely, the single-entrance,
single-exit sequences of instructions. As shown in
Fig. 4, in our example program, the basic block
information and execution profiles are quite different
under different types of inputs. When two inputs belong
to different groups, they jump to different branch
target addresses and therefore execute different basic
blocks. This condition indicates that the program may be
vulnerable to side-channel attacks. Hence, we consider
the execution sequence of basic blocks as the feature
of each input in If uzz and collect execution profiles
ri on the top of the DBI framework, i.e., Intel Pin[26].
We executed the target program on each input in If uzz

and logged the start address and end address of basic
blocks, execution sequence of basic blocks, and function
calls and returns. The execution profiles of our example
program are shown in Column 2 of Table 1. As Tabel 1
shows, inputs of the same type have the same execution
profiles. We just display six inputs of the example
program for a clear explanation. Essentially, during
our experience, there are a lot of inputs, not just the
six inputs we show in Table 1. For example, in our
benchmark, there are 185 inputs in the case of the dA
program of just 81 KB size after fuzzing.

To map observations to vectors with the same
dimensions, we first traversed all execution profiles and

BBL_0−3

BBL_4 BBL_9

BBL_5 BBL_10 BBL_11

BBL_6−8

a≥5a < 5

a < 8 a≥8

Fig. 4 Execution profile of three types of input.

Fei Yan et al.: SPIDER: Speeding up Side-Channel Vulnerability Detection via Test Suite Reduction 51

Table 1 Test suite reduction of example program.
Input under test Basic block sequence Vector representation Clustering result

a D 0
fBBL 0, BBL 1, BBL 2, BBL 3, BBL 4,

BBL 5, BBL 6, BBL 7, BBL 8g
f1,1,1,1,1,1,1,1,1,0,0,0g 0

a D 1
fBBL 0, BBL 1, BBL 2, BBL 3, BBL 4,

BBL 5, BBL 6, BBL 7, BBL 8g
f1,1,1,1,1,1,1,1,1,0,0,0g 0

a D 6
fBBL 0, BBL 1, BBL 2, BBL 3, BBL 9,
BBL 10, BBL 5, BBL 6, BBL 7, BBL 8g

f1,1,1,1,0,1,1,1,1,1,1,0g 1

a D 7
fBBL 0, BBL 1, BBL 2, BBL 3, BBL 9,
BBL 10, BBL 5, BBL 6, BBL 7, BBL 8g

f1,1,1,1,0,1,1,1,1,1,1,0g 1

a D 9
fBBL 0, BBL 1, BBL 2, BBL 3, BBL 9,

BBL 11, BBL 6, BBL 7, BBL 8g
f1,1,1,1,0,0,1,1,1,1,0,1g 2

a D 10
fBBL 0, BBL 1, BBL 2, BBL 3, BBL 9,

BBL 11, BBL 6, BBL 7, BBL 8g
f1,1,1,1,0,0,1,1,1,1,0,1g 2

constructed a complete list of basic blocks. Then, we
represented observations collected under each input as
a vector vi , where each element indicates the number
of times the corresponding basic block executed. The
vector representation of our example program is shown
in Column 3 of Table 1.

After we successfully constructed vectors representing
the execution profile under every input, we correctly
classified them using a clustering algorithm. Because we
could not decide how many clusters would be generated,
we utilized the hierarchical clustering algorithm[27]. We
considered the L1 norm distance with the tolerance
� D 1.

We designed an algorithm (Algorithm 1) to illustrate
the above process. Specifically, we first obtained all
executed basic blocks by traversing all execution profile
ri and constructed a complete basic block set s. We use
the function insert. / to insert the new record vector of
basic blocks into the set s and the function unique. /
to remove duplicate elements from the set. Then, we
traversed ri again to construct vi for every input by
counting the number of executions of basic blocks. We
use the function f ind. / to determine the index of
record vector in the set s. Finally, we passed the vectors
to the clustering algorithm and derived the label of every
input. The clustering result of our example program is
shown in Column 4 of Table 1. Inputs in each class have
the same execution profiles, so we formed the minimal
test suite Ireduced by gathering one of the inputs in each
class.

4.3 Target function extraction

In this section, we describe how unnecessary information

Algorithm 1 Clustering based on execution profile feature
Input: the record vector of basic blocks executed under every

input in jIf uzz j, r0, r1, : : : , rn�1; cluster bound K;
distanced d ; and tolerance �

Output: the label of every input in jIf uzz j, l0, l1, : : : , ln�1

1: s D f0g, r D f0g, i D 0, j D 0;
2: while i < n do
3: r D ri ;
4: s D s:insert.s:end./; r:begin./; r:end.//;
5: i CC;
6: end while
7: s D unique.s/;
8: m D jsj;
9: v0Œm�; v1Œm�; : : : ; vn�1Œm� D f0g;

10: while j < n do
11: k D 0;
12: while k < jrj j do
13: idx D f ind.s; rj Œk�/;
14: vj Œidx�CC;
15: k CC;
16: end while
17: j CC;
18: end while
19: V D .v0; v1; : : : ; vn�1/;
20: .l0; l1; : : : ; ln�1/= clustering.V;K; d; �/;
21: return l0, l1, : : : , ln�1.

can be filtered during trace generation and also describe
how the size of traces with each given input in Ireduced

which can be reduced.
Based on the clustering results in Section 4.2, we

only focused on specific sensitive functions that explain
different cluster results. We cross-compared vis between
clusters and found basic blocks that differ in vis.
The target program executes different basic blocks
when it jumps to different branch target addresses

52 Tsinghua Science and Technology, February 2023, 28(1): 47–58

under different types of inputs. Hence, the functions
containing these basic blocks are susceptible to side-
channel vulnerabilities.

Because we logged the information of basic blocks
and function calls during the feature vector construction
presented in Section 4.2, we can easily track the
functions that the basic blocks belong to and construct
a function list of possible side-channel vulnerabilities.
Given that not only one basic block points to a function,
we only recorded the function name once. Moreover,
in the case of function nesting, we traced back to the
initial call function, providing accurate information on
the control flow transfers of the target program. In our
example, the program executes different basic blocks
under the input of labels 0 and 1. It executes BBL 4
under the input of label 0, while it executes BBL 9
and BBL 10 under the input of label 1. Based on the
difference of basic blocks executed, we can narrow our
detection range to a function named func. / in Fig. 3.
The algorithm is illustrated in Algorithm 2. The set C
is a set that contains the call stack of the target sensitive
functions. The variable cs temporarily stores the call
stack. We obtain a list of target sensitive functions by

Algorithm 2 Extracting list of target sensitive functions
Input: the execution trace under one input in jIreduced j, t ;

the address of basic blocks that may exist vulnerabilities,
b0; b1; : : : ; bn�1

Output: the list of sensitive functions f l
1: C D ∅, cs D f0g, i D 0, f l D 0;
2: while i < jt j do
3: if isCal l.t Œi �/ then
4: cs D cs:push back.t Œi �:addr/;
5: else if isRet.t Œi �/ then
6: cs D cs:pop back./;
7: else
8: j D 0;
9: while j < n do

10: if t Œi �:addrDDbj ^f ind.cs; C /DDfalse then
11: C D C [cs;
12: end if
13: j CC;
14: end while
15: end if
16: i CC;
17: end while
18: k D 0;
19: while k < jC j do
20: f lŒk� D C Œk�:back./;
21: k CC;
22: end while
23: f l D unique.f l/;
24: return f l .

simulating the process of function calls.

4.4 Trace generation

We executed the program under every input in Ireduced

on Intel Pin and stored the necessary information in a
trace file. We recorded the start address and the end
address of basic blocks, instruction and target address of
branches, and address of function calls and returns for
control flow transfers construction. Then, we collected
traces of two inputs with the same label to verify whether
inputs also influence the number of loops.

To execute the program in a noise-free environment,
we first disabled Address Space Layout Randomization
(ASLR) and kept public inputs to the program fixed.
We then passed inputs in Ireduced generated in Section
4.2 and target function name extracted in Section 4.3
to the target program, and executed the program in
instrumented mode, recording data that we need for
later analysis. We ignored the deviation caused by the
recording time because it is too small compared to the
trace analysis.

We considered the func. / function in Fig. 3, assuming
that line numbers are equal to the code addresses. The
execution with two different inputs, a0 D 0 and a1 D 6,
yields two traces t0 and t1,
t0 D Œ.1; 4/; (4, 4); (4, 5); .7; 8/�,
t1 D Œ.1; 4/; (4, 5); (5, 5); (5, 6); .7; 8/�.
There are two differences in the traces; both are

marked bold. As shown in Fig. 3, the differences occur
as if in Line 4 branches to Line 4 or 5, depending on
the input a, and causes assignment operations in Lines 4
and 5 to be performed either on the variable r .

In Fig. 3, a control flow leak is characterized by its
branch point, where the control flow diverges, and its
merge point, where branches coalesce again. In this
example, the branch point is at Line 4 and the merge
point at Line 7, when the function returns.

4.5 Leakage detection

Clearly, traces do not always have the same length. We
need to align traces for more precision and determine
control flow differences. We cross-compared every
element in every two traces. Basic blocks are the same
when their start address and end address are identical,
such as .1; 4/ in t0 and t1 in Section 4.4. In this case,
we moved to the next element of two traces. A branch
point was located when the target address differs, and the
correct merge point was determined by the first identical
address in the intersection of the following address
sequences between two traces. When a branch point

Fei Yan et al.: SPIDER: Speeding up Side-Channel Vulnerability Detection via Test Suite Reduction 53

appeared, we continuously moved to the next element in
both traces until we successfully found its merge point.
The branch point in the sample program is .4; 4/ or .4; 5/
in t0 and t1, and the merge point is .7; 8/ in t0 and t1.
We constantly re-aligned traces in the same way until
the end of traces.

There is a problem when applying the trace alignment
algorithm of DATA[16] for solving context sensitivity.
They determine function returns using INS IsRet./

API provided by Intel Pin, which also contains the
interrupt return (iret). The calling depth drops below
zero when the interrupt return happens, and then the
process of finding the merge point will trap into a dead
loop. Due to the differences in the characteristics of
programs, this problem is not apparent in the case of
cryptographic programs, but it will have a significant
impact on non-cryptographic programs. We solved this
problem by pushing the loop forward when the calling
depth of two traces dropped below zero.

All discovered branch points are considered possible
side-channel vulnerabilities. Apart from each pair
of branch point and merge point, function calls
in the context, source code location, and input
pair, which can trigger the vulnerabilities, are also
reported. Consequently, developers can fix their program
selectively according to the report.

5 Implementation

SPIDER consists of 2512 lines of code in C++, 352
lines of code in Python, and 270 lines of code in
a shell script. We implemented our input generation
through the AFL tool and greatly reduced the size
of the test suite with the help of the algorithm we
designed and the clustering algorithm. We implemented
trace collection on the top of the Intel Pin framework
for analyzing x86 binaries. To reduce their size, we
utilized cluster results to extract target functions that may
have side-channel vulnerabilities and only monitored
these functions for detecting control flow leakages. We
implemented leakage detection, which condenses all
findings into leakage reports, including pairs of inputs
that can reproduce the leakage, source location of
leakage, and call stacks. We wrote a shell script to
connect every step.

6 Evaluation

In this section, we present our evaluation results. We
built the source program into a 64-bit x86 Linux

executable with GCC 7.5. All our evaluations were
performed in Ubuntu 18.04, running on the top of Intel
i5-1135G7 CPU, with 16 GB RAM.

6.1 Experimental setup

Benchmark selection. The core idea of SPIDER
is to speed up the dynamic analysis of side
channel vulnerabilities in non-cryptographic programs
without loss of accuracy. To verify the effectiveness
of our approach, we used the same benchmark
with ANABLEPS[28], which contains various non-
cryptographic programs with sensitive information. In
addition, we checked our approach on 10 finalists
of the NIST lightweight cryptography standardization
project[29] for further confirmation.

6.2 Experimental results

6.2.1 Effectiveness of the test suite reduction
We generated If uzz , the original input set of the testing
program, after running the AFL tool for 24 h. Then, we
combined execution profiling and clustering techniques
to reduce the test suite and obtain a small input set named
Ireduced . To verify the effectiveness of the test suite
reduction in our approach, we compared our work with
ANABLEPS[28]. ANABLEPS generates inputs with the
help of Driller[30], another fuzzing tool. The choice of
fuzzing tool has little influence on the generation of
original inputs, and we focus on how much our approach
can influence the reduction of the test suite.

We extracted the data of the input size and trace size in
ANABLEPS. As the size of the original input set is quite
different between SPIDER and ANABLEPS and only
the total size of all traces is given in ANABLEPS, we
calculated the average trace size for precise comparison.

Specifically, we compared the test suite size and
averaged the trace size of each testing program, and
the results are shown in Fig. 5. As shown in Fig. 5a,
SPIDER can drastically reduce the size of the input set,
ranging from 31.8% to 98.8%. This finding proves the
effectiveness of the test suite reduction. In addition, we
compared the average trace size of the two approaches
and summarized our results in Fig. 5b. Clearly, the trace
size of SPIDER is smaller than that of ANABLEPS,
and is reduced by 3.6% to 92.9%, which proves the
effectiveness of the test suite reduction and target
function extraction. They both help filter out several
unnecessary pieces of information and hence reduce
the size of the trace. Hence, our approach reduces
the size of the test suite and traces successfully and

54 Tsinghua Science and Technology, February 2023, 28(1): 47–58

 0

 100

 200

 300

 400

dA Sd
A

DBN RB
M LR So

rt
PN

G

Hun
spe
ll

Fr
ee
typ
e

Bio
-ra
inb
ow

Qrco
de

ge
n

GT

Te
st

 s
ui

te
 s

iz
e

Original input
Reduced input

Pe
rm
uta

tio
n

(a) Comparison of test suite size

 0

 0.5

 1.0

 1.5

2.0

 2.5

Tr
ac

e
siz

e
(G

B)

Anableps
SPIDER

dA Sd
A

DBN RB
M

So
rt

Pe
rm
uta

tio
nLR

PN
G

Hun
spe
ll

Fr
ee
typ
e

Bio
-ra
inb
ow

Qrco
de

ge
n

GT

(b) Comparison of trace size

Fig. 5 Comparison of the test suite size and trace size.

efficiently, which speeds up the trace generation and
leakage detection.

6.2.2 Capabilities of side-channel vulnerability
detection

In this section, we try to confirm that although the size
of the input set is reduced through our design, there
is no drop in the accuracy of detecting side channel
vulnerabilities. We first tested our approach on NIST
finalists[29], which are all lightweight cryptographic
algorithms designed for constrained environments.

Because test vector generators were provided, we
utilized their design to generate the original input set
of 100 inputs for every algorithm and conduct our
experience. As a result, except Grain128-AHEAD, all
inputs of the nine finalists of the NIST lightweight
cryptography standardization project were clustered into
one class after the test suite reduction. Moreover, except
Grain128-AHEAD, nine finalists are resistant to side
channels, in line with results in two tools tested in Ref. [31].
We then presented a detailed explanation of side-channel
vulnerabilities in Grain128-AHEAD found by SPIDER.

The vulnerable code snippet of Grain128-AHEAD
is shown in Fig. 6. During the generation of the

int crypto_aead_encrypt ()
{

for (unsigned long long i = 0; i < mlen; i++) {

for (int j = 0; j < 16; j++) {

…
if (j % 2 == 0) {…}
else {
 if (data.message[ac_cnt++] == 1)
 {accumulate(&grain); }

 …
 }}}
 …
}

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

Fig. 6 Vulnerable code snippet of Grain128-AHEAD.

keystream for the message (i.e., plaintext), the function
accumulate() is called when the bit of “message” is equal
to 1. Hence, if an adversary can observe the execution
profile of accumulate(), then it could recover every bit
of “message”. The result of accumulate() is later used
for appending MAC to a ciphertext.

We then tested our approach on ANABLEPS’s
benchmark and presented the results in Table 2. Because
the detection level of ANABLEPS differs from ours,
we confirm the details of the leakages reported in our
approach with a manual check. The results in Table 2
show the possibility of side-channel vulnerabilities, and
the exploitability of vulnerabilities remains for future
works.

6.2.3 Performance overhead
We also measured the performance of our approach
and reported the execution time for each of the key
components of our approach in Table 3. Moreover,
we configured the AFL tool to run 24 h for all of the
benchmarks in the input generation phase for high path
coverage. As shown in Column 4 of Table 3, the test
suite reduction phase takes little time and plays a great

Table 2 Evaluation results.
Benchmark program Functionality under test Number of leaks

Deep learning

dA 6
SdA 3
DBN 3
RBM 2
LR 1

gsl
Sort 2

Permutation 1
Hunspell Spell checking 148

PNG Image render 2
Freetype Character render 463

Bio-rainbow Bioinfo clustering 94
Qrcodegen Generate QR Code 165

Genometools bed to gff3 convertion 265

Fei Yan et al.: SPIDER: Speeding up Side-Channel Vulnerability Detection via Test Suite Reduction 55

Table 3 Performance overhead.
Benchmark

program
Functionality

under test
Input

generation (h)
Test suite

reduction (min)
Trace

gneration (min)
Leakage

detection (min)

Deep learning

dA 24 1.35 0.07 0.03
SdA 24 18.78 1.17 3.85
DBN 24 1.02 0.15 0.25
RBM 24 0.28 0.08 0.10
LR 24 0.13 0.03 0.02

gsl
Sort 24 2.90 0.05 0.02

Permutation 24 3.03 0.05 0.02
Hunspell Spell checking 24 16.70 167.43 650.77

PNG Image render 24 0.42 1.10 0.05
Freetype Character render 24 2.05 225.15 295.30

Bio-rainbow Bioinfo clustering 24 3.33 167.18 185.97
Qrcodegen Generate QR Code 24 3.07 3.02 15.53

Genometools bed to gff3 convertion 24 5.60 656.67 306.72

role in saving the cost and time of the later analysis.

7 Related Work

Currently, approaches in detecting side-channel
vulnerabilities consist of static and dynamic
approaches.

(1) Static approach
CacheAudit[12] uses abstract domains to compute an

over-approximation of cache side channel information
leakage upper bound. While a zero leakage bound
reveals the absence of address-based side channels, a
non-zero leakage bound could introduce false positives
due to abstractions made on the data of the program.
CacheS[13] improves CacheAudit with new abstract
domains that only track secret-related code. CaSym[11]

introduces a static cache-aware symbolic reasoning
technique to cover multiple paths in a target program.
All approaches mentioned above only work on small
code snippets, making it difficult to be widely applied
in larger applications, such as the benchmark programs
used in our work.

(2) Dynamic approach
Diffuzz[19] modifies the fuzzing engine to find the

maximum timing difference in non-cryptographic
applications during program execution, but it only
detects timing side channels instead of address-based
side channels we focus on. CacheD[32] combines
dynamic trace recording with a static analysis for
avoiding false positives. However, it only tracks one
execution trace, missing leakage in other execution
paths. Moreover, CacheD cannot detect secret-dependent
control flows. Stacco[14], MicroWalk[17], and DATA[16]

detect side-channel vulnerabilities in a similar way, but

their focus of detection is different. Stacco manually
generates various inputs to the SSL libraries and
uses Intel Pin tools to detect vulnerabilities in
SSL/TSL implementations. MicroWalk introduces
mutual information between sensitive inputs and
execution traces for side-channel leakage quantification.
DATA detects address-based side-channel vulnerabilities
by comparing different execution traces under various
inputs. ANABLEPS[28] uses Intel PT to generate
execution traces with huge sizes for detecting side-
channel vulnerabilities in enclave binaries. Abacus[18]

utilizes symbolic execution and Monte Carlo sampling to
estimate the number of leaked bits for each leakage site,
but it only relies on one trace for modeling constraints.
They both set up their own vulnerability judging
rules, which are one of the necessary stages in other
vulnerability detection frameworks[33, 34]. Obviously,
current dynamic approaches mainly focus on address-
based side channels in cryptography algorithms, and
a few execution traces are enough for vulnerability
detection. Existing dynamic approaches do not extend
the side-channel analysis of crypto libraries into non-
crypto software well yet.

Hardware and software side-channel mitigations have
been proposed. Hardware countermeasures, including
partitioning hardware resources[35], randomizing
cache access[36–38], and modifying micro-architectural
components[39], require changes to complex processors
and are complex to adopt. On the contrary, software
approaches are usually easy to implement, and they
modify key-dependent control flow at the source code
level[40, 41], at the compiler level[42], and at runtime[43].
Our side-channel detection method can locate possible

56 Tsinghua Science and Technology, February 2023, 28(1): 47–58

vulnerabilities and help subsequent side-channel
mitigation.

8 Conclusion

In conclusion, we designed and implemented a
software tool for automatically detecting side-channel
vulnerabilities in non-cryptographic programs with
sensitive information. Our tool is the first side-channel
vulnerability analysis tool that introduces fuzzing,
execution profiling, and clustering technique for test
suite reduction. With our tool, we have discovered
numerous side-channel leaks in our test programs. Our
tool can be used by software developers to check for
side-channel vulnerabilities in the program they write.

There are still some potentially promising directions
for future work. The current design only considers side-
channel vulnerabilities due to sensitive input-dependent
control flows. Leakages due to sensitive input-dependent
data accesses are currently out of scope. One of the
future works is to extend SPIDER in the handling
of these vulnerabilities. Although the combination of
execution profiling and clustering performs well in our
tool, there are still some kinds of techniques for test suite
reduction applied in software engineering. Moreover,
comparing the impact of various approaches for test suite
reduction on our tool and discovering better algorithms
remains for our future work. Another direction is to
extend the fuzzer with clustering techniques that can
directly reduce test cases during the input generation.

Acknowledgment

This work was supported in part by the National
Natural Science Foundation of China (Nos. 61272452
and 61872430), the National Key Basic Research
and Development (973) Program of China (No.
2014CB340601), the Key R&D Program of Hubei
Province (No. 2020BAA003), and the Prospective Applied
Research Program of Suzhou City (No. SYG201845).

References

[1] D. J. Bernstein, Cache-timing attacks on AES, http://
cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[2] P. C. Kocher, Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems, in Proc. of the
16th Annu. Int. Cryptology Conf., Santa Barbara, CA, USA,
1996, pp. 104–113.

[3] E. Tromer, D. A. Osvik, and A. Shamir, Efficient cache
attacks on AES, and countermeasures, J . Cryptol., vol. 23,
no. 1, pp. 37–71, 2010.

[4] Y. Yarom and K. Falkner, FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack, in Proc.

23rd USENIX Conf. Security Symp., San Diego, CA, USA,
2014, pp. 719–732.

[5] D. Gullasch, E. Bangerter, and S. Krenn, Cache games–
bringing access-based cache attacks on AES to practice,
in Proc. of 2011 IEEE Symp. Security and Privacy,
Oakland, CA, USA, 2011, pp. 490–505.

[6] D. Gruss, R. Spreitzer, and S. Mangard, Cache template
attacks: Automating attacks on inclusive last-level caches,
in Proc. 24th USENIX Conf. Security Symp., Washington,
DC, USA, 2015, pp. 897–912.

[7] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
DRAMA: Exploiting DRAM addressing for cross–CPU
attacks, in Proc. 25th USENIX Conf. Security Symp., Austin,
TX, USA, 2016, pp. 565–581.

[8] Y. Z. Xu, W. D. Cui, and M. Peinado, Controlled-channel
attacks: Deterministic side channels for untrusted operating
systems, in Proc. of 2015 IEEE Symp. Security and Privacy,
San Jose, CA, USA, 2015, pp. 640–656.

[9] G. Irazoqui, T. Eisenbarth, and B. Sunar, S$A: A shared
cache attack that works across cores and defies VM
sandboxing–and its application to AES, in Proc. of 2015
IEEE Symp. Security and Privacy, San Jose, CA, USA,
2015, pp. 591–604.

[10] C. P. Garcı́a, B. B. Brumley, and Y. Yarom, Make sure DSA
signing exponentiations really are constant-time, in Proc.
2016 ACM SIGSAC Conf. Computer and Communications
Security, Vienna, Austria, 2016, pp. 1639–1650.

[11] R. Brotzman, S. Liu, D. F. Zhang, G. Tan, and M. Kandemir,
CaSym: Cache aware symbolic execution for side channel
detection and mitigation, in Proc. of 2019 IEEE Symp.
Security and Privacy, San Francisco, CA, USA, 2019, pp.
505–521.

[12] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke,
Cacheaudit: A tool for the static analysis of cache side
channels, ACM Trans. Inf. Syst. Secur., vol. 18, no. 1, p. 4,
2015.

[13] S. Wang, Y. Y. Bao, X. Liu, P. Wang, D. F. Zhang, and D. H.
Wu, Identifying cache-based side channels through secret-
augmented abstract interpretation, in Proc. 28th USENIX
Security Symp., Santa Clara, CA, USA, 2019, pp. 657–674.

[14] Y. Xiao, M. Y. Li, S. C. Chen, and Y. Q. Zhang, STACCO:
Differentially analyzing side-channel traces for detecting
SSL/TLS vulnerabilities in secure enclaves, in Proc.
2017 ACM SIGSAC Conf. Computer and Communications
Security, Dallas, TX, USA, 2017, pp. 859–874.

[15] A. Zankl, J. Heyszl, and G. Sigl, Automated detection of
instruction cache leaks in modular exponentiation software,
in Proc. of the 15th Int. Conf. Smart Card Research and
Advanced Applications, Cannes, France, 2016, pp. 228–244.

[16] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and
G. Sigl, DATA–differential address trace analysis: Finding
address-based side-channels in binaries, in Proc. 27th

USENIX Conf. Security Symp., Baltimore, MD, USA, 2018,
pp. 603–620.

[17] J. Wichelmann, A. Moghimi, T. Eisenbarth, and B.
Sunar, MicroWalk: A framework for finding side channels
in binaries, in Proc. 34th Annu. Computer Security
Applications Conf., San Juan, PR, USA, 2018, pp. 161–173.

[18] Q. K. Bao, Z. H. Wang, X. T. Li, J. R. Larus, and D. H. Wu,

Fei Yan et al.: SPIDER: Speeding up Side-Channel Vulnerability Detection via Test Suite Reduction 57

Abacus: Precise side-channel analysis, in Proc. of 2021
IEEE/ACM 43rd Int. Conf. Software Engineering (ICSE),
Madrid, Spain, 2021, pp. 797–809.

[19] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, DifFuzz:
Differential fuzzing for side-channel analysis, in Proc. of
2019 IEEE/ACM 41st Int. Conf. Software Engineering
(ICSE), Montreal, Canada, 2019, pp. 176–187.

[20] D. A. Osvik, A. Shamir, and E. Tromer, Cache attacks
and countermeasures: The case of AES, in Proc. of
Cryptographers’ Track at the RSA Conf., San Jose, CA,
USA, 2006, pp. 1–20.

[21] C. Percival, Cache missing for fun and profit, https://
papers.freebsd.org/2005/cperciva-cache missing/, 2005.

[22] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena,
Preventing page faults from telling your secrets, in Proc.
11th ACM on Asia Conf. Computer and Communications
Security, Xi’an, China, 2016, pp. 317–328.

[23] B. Subashini and D. JeyaMala, Reduction of test cases using
clustering technique, Int. J . Innov. Res. Sci. Eng. Technol.,
vol. 3, no. 3, pp. 1992–1996, 2014.

[24] R. C. Wang, B. B. Qu, and Y. S. Lu, Empirical study of the
effects of different profiles on regression test case reduction,
IET Softw., vol. 9, no. 2, pp. 29–38, 2015.

[25] American fuzzy lop, https://lcamtuf.coredump.cx/afl, 2013.
[26] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.

Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, Pin:
Building customized program analysis tools with dynamic
instrumentation, ACM SIGPLAN Notices, vol. 40, no. 6, pp.
190–200, 2005.

[27] S. C. Johnson, Hierarchical clustering schemes,
Psychometrika, vol. 32, no. 3, pp. 241–254, 1967.

[28] W. B. Wang, Y. Q. Zhang, and Z. Q. Lin, Time and
order: Towards automatically identifying side-channel
vulnerabilities in enclave binaries, in Proc. of the 22nd

Int. Symp. Research in Attacks, Intrusions and Defenses
(RAID 2019), Beijing, China, 2019, pp. 443–457.

[29] NIST, Lightweight cryptography, https://csrc.nist.gov/
projects/lightweight-cryptography, 2021.

[30] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Y. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution, in Proc. of the 23rd Annu. Network and
Distributed System Security Symp., San Diego, CA, USA,
2016, pp. 1–16.

[31] A. B. Hansen, E. H. Nielsen, and M. Eskildsen,
Toolchain for timing leakage analysis of NIST lightweight
crypto candidates, https://csrc.nist.gov/Presentations/
2020/toolchain-for-timing-leakage-analysis-of-lwc, 2020.

[32] S. Wang, P. Wang, X. Liu, D. F. Zhang, and D. H. Wu,
Cached: Identifying cache-based timing channels in

production software, in Proc. 26th USENIX Conf. Security
Symp., Vancouver, Canada, 2017, pp. 235–252.

[33] J. C. Hu, J. F. Chen, L. Zhang, Y. S. Liu, Q. H.
Bao, H. Ackah-Arthur, and C. Zhang, A memory-related
vulnerability detection approach based on vulnerability
features, Tsinghua Science and Technology, vol. 25, no.
5, pp. 604–613, 2020.

[34] J. W. Tang, R. X. Li, K. P. Wang, X. W. Gu, and Z. Y. Xu,
A novel hybrid method to analyze security vulnerabilities
in Android applications, Tsinghua Science and Technology,
vol. 25, no. 5, pp. 589–603, 2020.

[35] D. Page, Partitioned cache architecture as a side-channel
defence mechanism, http://eprint.iacr.org/2005/280, 2005. .

[36] G. Dessouky, T. Frassetto, and A. R. Sadeghi, HybCache:
Hybrid side-channel-resilient caches for trusted execution
environments, in Proc. of the 29th USENIX Security Symp.,
Boston, MA, USA, 2020, pp. 451–468.

[37] Z. H. Wang and R. B. Lee, New cache designs for thwarting
software cache-based side channel attacks, in Proc. 34th

Annu. Int. Symp. Computer Architecture, New York, NY,
USA, 2007, pp. 494–505.

[38] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D.
Gruss, and S. Mangard, SCATTERCACHE: Thwarting
cache attacks via cache set randomization, in Proc. 28th

USENIX Conf. Security Symp., Santa Clara, CA, USA, 2019,
pp. 675–692.

[39] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B.
Hardekopf, R. Kastner, F. T. Chong, and T. Sherwood,
Crafting a usable microkernel, processor, and I/O system
with strict and provable information flow security, in Proc.
38th Annu. Int. Symp. Computer Architecture, San Jose,
CA, USA, 2011, pp. 189–199.

[40] R. Könighofer, A fast and cache-timing resistant
implementation of the AES, in Proc. of Cryptographers’
Track at the RSA Conf., San Francisco, CA, USA, 2008, pp.
187–202.

[41] C. Rebeiro, D. Selvakumar, and A. S. L. Devi, Bitslice
implementation of AES, in Proc. of the 5th Int. Conf.
Cryptology and Network Security, Suzhou, China, 2006,
pp. 203–212.

[42] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De
Sutter, Practical mitigations for timing-based side-channel
attacks on modern x86 processors, in Proc. of 2009 30th

IEEE Symp. Security and Privacy, Oakland, CA, USA,
2009, pp. 45–60.

[43] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and
M. Franz, Thwarting cache side-channel attacks through
dynamic software diversity, in Proc. of 22nd Annu. Network
and Distributed System Security Symp., San Diego, CA,
USA, 2015, pp. 8–11.

Fei Yan received the PhD degree from
Wuhan University, China in 2007. He is
currently an associate professor at the
School of Cyber Science and Engineering,
Wuhan University, China. He is a co-
founder of ChinaSigTC (China special
interest group on trusted cloud) and served
as an associate chair of program committee

of CTCIS (Chinse Trusted Computing and Information Security
Conference) from 2017 to 2021. His current research interests
include system security, trusted computing, side-channel security,
and AI security.

58 Tsinghua Science and Technology, February 2023, 28(1): 47–58

Rushan Wu received the BS degree from
Wuhan University, China in 2019. She is
currently a master student at the School
of Cyber Science and Engineering, Wuhan
University, China. Her research interests
include side-channel analysis and system
security.

Liqiang Zhang received the PhD degree
in information security from Wuhan
University, Wuhan, China in 2008. He
is currently an associate professor at the
School of Cyber Science and Engineering,
Wuhan University, China. His current
research interests include trusted computing,
software analysis, AI security, and system

evaluation.

Yue Cao received the PhD degree from
University of Surrey, Guildford, UK in
2013. Further to the PhD study, he was
a research fellow at University of Surrey,
and an academic faculty at Northumbria
University, Lancaster University, UK, and
Beihang University, China, and he is
currently a professor at the School of Cyber

Science and Engineering, Wuhan University, China. His research
interests focus on intelligent transport systems, including E-
mobility, V2X, and edge computing.

