
TSINGHUA SCIENCE AND TECHNOLOGY
I S S N l l 1 0 0 7 - 0 2 1 4 0 1 / 1 8 p p 1 – 1 2
DOI: 10 .26599 /TST.2021 .9010071
Volume 28, Number 1, February 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Threat Model and Defense Scheme for Side-Channel Attacks
in Client-Side Deduplication

Guanxiong Ha, Hang Chen, Chunfu Jia�, and Mingyue Li

Abstract: In cloud storage, client-side deduplication is widely used to reduce storage and communication costs. In

client-side deduplication, if the cloud server detects that the user’s outsourced data have been stored, then clients

will not need to reupload the data. However, the information on whether data need to be uploaded can be used as a

side-channel, which can consequently be exploited by adversaries to compromise data privacy. In this paper, we

propose a new threat model against side-channel attacks. Different from existing schemes, the adversary could

learn the approximate ratio of stored chunks to unstored chunks in outsourced files, and this ratio will affect the

probability that the adversary compromises the data privacy through side-channel attacks. Under this threat model,

we design two defense schemes to minimize privacy leakage, both of which design interaction protocols between

clients and the server during deduplication checks to reduce the probability that the adversary compromises data

privacy. We analyze the security of our schemes, and evaluate their performances based on a real-world dataset.

Compared with existing schemes, our schemes can better mitigate data privacy leakage and have a slightly lower

communication cost.

Key words: cloud storage; deduplication; side-channel; privacy

1 Introduction

The rapid growth of data volume has required cloud
service providers to use the data deduplication to
reduce storage and communication costs[1–3]. After the
deduplication, the cloud server could identify data
redundancy and only store a single copy of user data.
Based on the deduplication location, deduplication can
be classified as a server or client side deduplication[2]. In
the server-side deduplication[4, 5], clients always upload
data to the cloud server. After receiving the uploaded
data, the cloud server performs deduplication to save
storage space. In the client-side deduplication, clients
compute hash values for user data as data tags and send
them to the cloud server. After receiving data tags, the

�Guanxiong Ha, Hang Chen, Chunfu Jia, and Mingyue Li are
with the College of Cyber Science, Nankai University, Tianjin
300350, China, and also with the Tianjin Key Laboratory of
Network and Data Security Technology, Tianjin 300350, China.
E-mail: cfjia@nankai.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2021-09-18; accepted: 2021-09-29

cloud server checks whether the data have been stored
based on data tags and returns deduplication responses
to clients. For example, if the data have been stored, then
the deduplication response will be set to 1. Otherwise, it
will be set to 0, as shown in Fig. 1. When a client receives
a response of 0, it should upload the data; otherwise,
it does not need to upload the data. Compared with
server-side deduplication, client-side deduplication can
reduce storage and communication costs and has been
widely used in cloud storage[6]. However, deduplication
responses in the client-side deduplication could be
exploited by adversaries to launch side-channel attacks[7]

to violate data privacy, because the data transmission
between clients and the server can be monitored by
adversaries and data tags could be used to detect the
data existence in the server.

In view of the above problems, this paper makes the
following contributions.
� We propose a new threat model against side-

channel attacks in the client-side deduplication.
Different from existing defense schemes[8, 9], our threat

2 Tsinghua Science and Technology, February 2023, 28(1): 1–12

𝐴𝐹1 𝐵 𝐶

𝐹2 𝐵 𝐶 𝐷

Dedup 𝐴 𝐵 𝐶 𝐷

Server-side deduplication

(ℎ 𝐴 ，ℎ 𝐵 ，ℎ 𝐶)

(0, 0, 0)

(ℎ 𝐵 ，ℎ 𝐶 ，ℎ 𝐷)

(1, 1, 0)

𝐴 𝐵 𝐶

𝐷

Client-side deduplication

𝐴 𝐵 𝐶 𝐷

Client Server Client Server

Fig. 1 Deduplication in the cloud storage.

model considers a stronger adversary, which can learn
the approximate ratio of stored chunks to unstored
chunks in outsourced files. We assume that the adversary
could maliciously construct outsourced files with a
certain number of stored chunks (uploaded by it before)
and unstored chunks (random chunks). Then, it places
a specific target chunk in maliciously constructed
files and performs side-channel attacks by constantly
uploading constructed files with different ratios of stored
chunks to unstored chunks. The adversary can observe
deduplication responses and data transmissions during
the deduplication check, and try to learn the existence of
the target chunk.
� Under our threat model, we propose two defense

schemes against side-channel attacks, namely basic
and enhanced schemes. We argue that the reason why
the adversary could launch side-channel attacks is that
the deduplication responses leak the information of
data existence. Therefore, both our schemes design
interaction protocols between clients and the server to
disturb the correlation between deduplication responses
and data existence.
� We analyze the security for our basic and enhanced

schemes and two existing schemes[8, 9] under our
threat model, and then evaluate the computational and
communication overheads in these four schemes based
on a real-world dataset. The results of the security
analysis and performance evaluation show that our
schemes can effectively mitigate data privacy leakage
and reduce the communication cost for the system.

2 Related Work

2.1 Data deduplication

Data deduplication is an effective method to save
storage overhead for cloud storage systems[2, 10, 11]. The
cloud server can detect redundant data in cross-user
uploaded data by deduplication, and only store unique

data. Based on the data granularity, deduplication can
be divided into file-level or chunk-level deduplication.
In the file-level deduplication[11, 12], the user file is
treated as the basic unit for deduplication. By contrast,
in the chunk-level deduplication[5, 13–16], clients divide
user files into chunks and the chunk is the basic unit.
Compared with file-level deduplication, chunk-level
deduplication usually has a higher deduplication ratio.

In the chunk-level client-side deduplication, we
suppose that the outsourced file is F , the client first
splits F into multiple chunks fmg, where m denotes the
data chunk. Then, the client computes the hash values
fhg for chunks as data tags and sends them to the cloud
server. The cloud server uses data tags for deduplication
check. If the data tag hi is not found, then the server
will set the deduplication response to 0 and return it to
the client. Then, the client needs to upload the chunk
mi and the server stores .hi D H.mi /;mi /, where H.�/
denotes a cryptographic hash function. Otherwise, if hi

has been found in the server, then the client will receive
the response of 1 and does not need to upload mi .

2.2 Side-channel attacks

Harnik et al.[7] found that the client-side deduplication
can be used as a side-channel. In cross-user client-side
deduplication, the adversary can establish a side-channel
using deduplication responses and violate the privacy
of user data. For example, adversaries can use the side-
channel to launch the following attacks:
� Identifying the existence of specific files:

Suppose an adversary wants to learn whether a specific
file F has been uploaded to the cloud server by other
users, it can observe deduplication responses when
uploading F . If the server asks the adversary to upload
F , then it learns that F is not stored on the server.
Otherwise, F has already been uploaded by other users.
� Establishing a covert channel: Multiple

adversaries can establish a covert channel to

Guanxiong Ha et al.: Threat Model and Defense Scheme for Side-Channel Attacks in Client-Side Deduplication 3

communicate with one another through deduplication
responses. For example, two adversaries A1 and A2

first agree on a specific file F . Then, A1 can transmit
one bit to A2 by uploading or deleting F . If A2 uploads
F and receives the deduplication response of 0, then
it learns that the bit sent by A1 is 0. Otherwise, the
bit is 1.
� Learning-the-remaining-information (LRI)

attack: In the LRI attack[17], the adversary knows
most of the contents of a specific file F , and it
tries to learn the remaining unknown information
by uploading all possible versions of F to launch
side-channel attacks. Suppose that F can be divided
into chunks fm1; m2; : : : ; mng and only mi is unknown
to the adversary, then the adversary can launch
brute-force attacks if mi is predictable[18]. If the
adversary can determine that mi is drawn from a
chunk dictionary Sm D fmi1; mi2; : : : ; milg, then
it can repeatedly upload files from a file dictionary
SF D fFi1; Fi2; : : : ; Filg, as shown in Fig. 2. If the
adversary finds that mij does not need to be uploaded
when uploading Fij , then it can be sure that mi D mij .

The LRI attack may occur in many application
scenarios. In the real world, many files are presented in a
public known standard document template (e.g., medical
reports of patients or salary contracts in a company[17]),
which means that the adversary could know most of
the file contents, except for a few sensitive information.
Nevertheless, sensitive information in files can often
be predicted by adversaries. For example, results in
a medical report for a patient are usually only drawn
from a small domain (e.g., a yes or no in a medical test),
which are not difficult to be predicted. The salaries for
employees in a company may be just in the range of
1000 to 10 000, and a multiple of 500, which is also easy
to be predicted[7, 17].

Therefore, the adversary can launch side-channel
attacks on many real-world files to violate the privacy
of user data, which is a non-negligible threat in cloud
storage.

2.3 Existing defense schemes against side-channel
attacks

Harnik et al.[7] proposed a defense scheme against side-
channel attacks by configuring random thresholds tF

𝐹𝑖1 ：

𝐹𝑖2 ：

𝐹𝑖𝑗 ：

𝑚1

𝑚1

𝑚1

𝑚2

𝑚2

𝑚2

𝑚𝑖1

𝑚𝑖2

𝑚𝑖𝑗

𝑚𝑛

𝑚𝑛

𝑚𝑛

…

…

…

…

…

…

do not upload 𝑚𝑖1

do not upload 𝑚𝑖2

upload 𝑚𝑖𝑗

Adversary Server

Fig. 2 Learning the remaining information of specific files.

for each file in the server. If the number of uploads
for a file F does not reach tF , then the server will
perform the server-side deduplication to protect against
side-channel attacks. Only when the number of uploads
for a file has already reached tF can the server perform
the client-side deduplication. Lee and Choi[19] found
that the probability that the adversary in Ref. [7] learns
data information is still non-negligible and proposed a
new method to select thresholds for files. Armknecht
et al.[20] defined the security for client-side deduplication
and proposed a criterion for designing deduplication
strategies.

However, for defense schemes using thresholds, the
adversary cannot violate data privacy only when the
number of uploads for user data is still not reaching
the thresholds set by the server. Moreover, it is
heuristic to choose proper thresholds, and the choice
of thresholds probably makes the system difficult to
design[8, 9]. Furthermore, adding thresholds to the client-
side deduplication incurs additional communication
costs because clients may still need to upload data even
though they have already been stored on the server. Some
defense schemes deploy a trusted gateway between the
server and clients to obfuscate the network traffic. Heen
et al.[21] proposed a gateway-based deduplication scheme
to reduce the risk of information leakage. The gateway
is used to obfuscate the view of the adversary. Shin
and Kim[22] designed a differentially private client-side
deduplication scheme, which used a gateway to achieve
data deduplication and privacy protection. However, the
introduction of an extra trusted third party may make
schemes less practical.

Pooranian et al.[8] proposed random response (RARE).
Yu et al.[9] proposed zero-knowledge deduplication
response (ZEUS) and ZEUSC. These schemes all
perform the deduplication check on two chunks at once
to design the randomized deduplication response. Their
threat models assume that the probability that each chunk
is stored on the server is quite small. This may not be
a very reasonable assumption because the adversary
could use random chunks (almost impossible to be
stored on the server) and stored chunks (uploaded by
the adversary before) to construct malicious files to
launch side-channel attacks. For most chunks in these
maliciously constructed files, the probability that they
are stored on the server can be inferred by the adversary.
In other words, the probability that each chunk has
already been stored is not always quite small.

3 System Model

This section first introduces the architecture of our

4 Tsinghua Science and Technology, February 2023, 28(1): 1–12

scheme, then describes the proposed new threat model
and security definition.

3.1 Architecture

Our schemes consist of two entities: clients and a cloud
server.
� Clients: To outsource a user file F to the cloud

server, the client divides F into fix-sized chunks fmg
and computes the hash values fhg for these chunks as
data tags. The client sends data tags to the server to ask
for deduplication responses, which determine how the
client uploads data.
� Cloud server: The cloud server provides data

storage services for multiple users and performs cross-
user chunk-level client-side deduplication to minimize
storage and communication costs. After receiving
the data tags uploaded by clients, the cloud server
checks whether they were stored before. Then, it sends
deduplication responses back to clients.

3.2 Threat model

The adversary of the side-channel attack is usually
a malicious client, which tries to learn the existence
of a target chunk c in the server using deduplication
responses. Some previous schemes[8, 9] supposed that the
probability that each chunk is stored in the server is quite
small, which means that the adversary is unaware of the
existence of all chunks in the outsourced file. However,
this may not be a reasonable assumption. We argue that
the adversary could learn the existence of most chunks
in the outsourced file. So, the probability that a chunk
is stored in the server is not always very small, which
breaks the assumption in previous threat models.

In our threat model, the adversary could construct
some random chunks Mr D fmr1

; mr2
; : : : ; mrp

g and
stored chunks Ms D fms1

; ms2
; : : : ; msq

g, and place
them in an outsourced file Fm along with a target
chunk c. Then, the adversary could upload many
outsourced files fFm1

; Fm2
; : : : ; Fmn

g with different
ratios of random chunks to stored chunks to launch
side-channel attacks, as shown in Fig. 3. Evidently,
the probabilities that chunks in the outsourced file are
stored in the server are not equal. For chunks in Mr ,
the probabilities are close to 0. By contrast, for chunks
in Ms , the probabilities should be 1. The deduplication
responses for chunks in Mr and Ms should be 0 and 1,
respectively. Thus, the adversary can adjust the number
of 0 and 1 in deduplication responses by adjusting the
size of Mr and Ms in Fm. The number of 0 and 1
in deduplication responses will affect the probabilistic

𝐹𝑚1 = {𝑐, 𝑚𝑟1 , 𝑚𝑟2 , ... , 𝑚𝑟𝑝}

⋮
𝐹𝑚𝑖 = {𝑚𝑠1 , ... , 𝑚𝑠𝑖 , 𝑐 , 𝑚𝑟1 , ... , 𝑚𝑟𝑗 }

⋮
𝐹𝑚𝑛 = {𝑚𝑠1 , 𝑚𝑠2 , ... , 𝑚𝑠𝑞 , 𝑐}

ServerAdversary

Fig. 3 Side-channel attacks in our threat model.

advantage that adversary A learns the existence of the
target chunk c. We will analyze this point in detail in
Section 5.

Our threat model is reasonable in the real world. The
adversary can upload some chunks before launching
side-channel attacks, and select some of these uploaded
chunks as Ms . Moreover, the random chunks Mr are
easy to be constructed.

3.3 Security definition

The chunks in outsourced files constructed by the
adversary can be divided into the target chunk c and
other chunks Mo D fmo1

; mo2
; : : : ; mon

g. We use Po

to denote the probability that an arbitrary chunk in Mo

is stored in the server. Clearly, Po is related to the size
of Ms and Mr in outsourced files. For example, if the
ratio of the size of Ms and Mr is 1:2, then Po is equal
to 1/3. Pc denotes the probability that the target chunk
c is stored in the server. For the adversary without any
prior knowledge, Pc is equal to 1/2 because it can only
randomly guess the existence of c is yes or no[8, 9]. The
adversary can receive several deduplication responses
from the server by constantly uploading files containing
different sizes of Ms and Mr to launch side-channel
attacks. Then, it can use these deduplication responses
as the prior knowledge to infer the existence of c.

We use dr D f .c/ to denote the deduplication
responses that the adversary receieves during
the deduplication check, where f .�/ denotes the
deduplication check protocol and c denotes the target
chunk. The probabilistic advantage that an adversary A
learns the existence of c can be defined in Eq. (1),

Adv.A/ D jP ŒC jdr� � Pcj (1)

where C denotes the case that c is stored in the server.
The adversary can use deduplication responses dr as
the prior knowledge to try to learn the existence of c.
In the server-side deduplication, P ŒC jdr� is equal to
1/2 and Adv.A/ D 0 because dr does not reveal any
existence information for chunks. By contrast, in the
client-side deduplication, P ŒC jdr� is equal to 1 or 0 and
Adv.A/ D 1=2 because dr directly reveals existence

Guanxiong Ha et al.: Threat Model and Defense Scheme for Side-Channel Attacks in Client-Side Deduplication 5

information. Therefore, Adv.A/ is in the range of 0 �
1=2. Our security goal is to minimize the impact of the
deduplication responses dr on the existence of chunks.
In other words, we want to minimize Adv.A/.

4 Proposed Defense Scheme

4.1 Main idea

Some existing schemes[8, 9] attempt to defense
against side-channel attacks by carefully designing
deduplication responses. They use the idea of exclusive-
or (XOR) obfuscation to encode deduplication responses.
For a chunk mi in the outsourced file, the client either
uploads mi directly or uploads mi ˚ m

0
i , where m0i is

another chunk in the file. There are two situations when
a chunk is uploaded. These two different situations can
be exploited by adversaries to learn the existence of
chunks. Thus, we want to design schemes in which
all chunks are uploaded after the XOR operation.
Then, it will become difficult for adversaries to use
deduplication responses to learn the chunk existence.
When the number of stored chunks is not less than
that of unstored chunks, we can design a scheme to
realize that all chunks are uploaded after being XORed
once. Hence, deduplication responses do not reveal any
existence information for chunks. When the number
of unstored chunks is larger than that of stored chunks,
some chunks will be XORed twice, whereas the other
chunks are XORed only once. This information may
reveal the existence of chunks to some extent. Our
solution is to group the deduplication results of stored
and unstored chunks into different sets and try to equate
the probabilities that the chunk XORed twice belongs to
stored chunks and unstored chunks to minimize privacy
leakage.

Accordingly, we put forward the basic and enhanced
schemes to defense side-channel attacks.

4.2 Basic scheme

Suppose that a client uploads a user file F to the
cloud server. It first splits F into serveral chunks
fmg, then calculates their hash values as data tags fhg,
and uploads these tags to the cloud server. The cloud
server checks whether uploaded data are stored based
on tags. If the tag has already been stored, then the
server sets the deduplication result to 1. Otherwise, the
deduplication result is set to 0. We use Ns and Nr

to denote the numbers of stored and unstored chunks
in a file, respectively. P denotes the ratio of Nr to

Ns (P D Nr=Ns). Our basic scheme will generate
deduplication responses in different ways depending on
the value of P , which can be divided into the following
cases.

P D 1:

(1) The server puts tags with the deduplication
results of 0 and 1 into two sets to construct H0 D

fh01; h02; : : : ; h0lg and H1 D fh11; h12; : : : ; h1lg, both
of length l .

(2) As shown in Fig. 4, for each h0i in H0, the
server randomly selects a tag h1ji

from H1 to construct
a pair .h0i ; h1ji

/. The server can get l pairs S D
f.h01; h1j1

/; .h02; h1j2
/; : : : ; .h0l ; h1jl

/g.
(3) The server sends S as deduplication responses to

the client.
After receiving deduplication responses, the client

performs the XOR operation on chunks corresponding
to tags in pairs in S and sends the results fm01 ˚

m1j1
; m02 ˚ m1j2

; : : : ; m0l ˚ m1jl
g to the server.

Because fm1j1
; m1j2

; : : : ; m1jl
g have already been

stored, the server can restore fm01; m02; : : : ; m0lg. In
this case, the amount of uploaded chunks is exactly the
same as that of the client-side deduplication, both of
which are of length l . Therefore, our scheme does not
add additional communication costs. Moreover, different
from RARE[8], ZEUS, and ZEUSC[9], the uploaded data
in our scheme are all the results of the XOR operation
between chunks, and a single data chunk will not be
uploaded directly. In the view of the client, each chunk
is uploaded after being XORed. The client can only
observe the times of the XOR operation performed
on a chunk. In this case, all chunks are XORed only
once. Thus, deduplication responses do not reveal any
existence information for chunks.

P < 1:

(1) Similar to the previous case, the server gets
H0 D fh01; h02; : : : ; h0lg and H1 D fh11; h12; : : : ;

h1l ; : : : ; h1l 0g. In this case, the lengths of H0 and H1

are not equal (l < l 0).
(2) The server divides H1 into two sets H 01 D
fh11; h12; : : : ; h1lg and H 001 D fh1lC1; h1lC2; : : : ;

𝐻0 ℎ01 ℎ02 ℎ0𝑙···：

𝐻1 ℎ11 ℎ12 ℎ1𝑙···：
0 1)(,

ii jh h

Fig. 4 Basic scheme (PDDD 1).

6 Tsinghua Science and Technology, February 2023, 28(1): 1–12

h1l 0g, as shown in Fig. 5.
(3) For each h0i in H0, the server randomly

selects a tag h1ji
from H 01 to construct a pair

.h0i ; h1ji
/. The server can get l pairs S0 D

f.h01; h1j1
/; .h02; h1j2

/; : : : ; .h0l ; h1jl
/g.

(4) The server pairs the tags from H 001 randomly to
construct another set S1 that contains .l 0 � l/=2 pairs.
If .l 0 � l/ is an odd number, then the client uploads a
random chunk to let l D l C 1.

(5) The server sends S D fS0; S1g as deduplication
responses to the client.

The client performs the XOR operation on chunks
corresponding to tags in pairs in S D fS0; S1g and
sends the results to the server. In this case, the amount
of uploaded chunks is .l C d.l 0 � l/=2/e/, which is
more than that of the client-side deduplication. The
difference between the two is d.l 0 � l/=2/e. Similar to
the previous case, all chunks are all XORed only once.
Thus, deduplication responses also do not reveal any
existence information for chunks.

P > 1:

(1) The server gets H1 D fh11; h12; : : : ; h1lg and
H0 D fh01; h02; : : : ; h0l ; : : : ; h0l 0g (l < l 0).

(2) The server divides H0 into two sets
H 00 D fh01; h02; : : : ; h0lg and H 000 D fh0lC1; h0lC2;

: : : ; h0l 0g, as shown in Fig. 6.
(3) For each h1i in H1, the server randomly selects

a tag h0ji
from H 00 to construct a pair .h1i ; h0ji

/.
The server can get l pairs S0 D f.h11; h0j1

/; .h12;

h0j2
/; : : : ; .h1l ; h0jl

/g.
(4) The server selects .l 0 � l/=2 tags each from H1

and H 00 to construct Ht of length .l 0 � l/.
(5) For each h0i 0 in H 000 , the server randomly

selects a tag htjk
from Ht to construct a pair

ℎ01 ℎ02 ℎ0𝑙···

ℎ11 ℎ12 ℎ1𝑙··· ℎ1𝑙 + 1 ℎ1𝑙′···
1)

ij
h

0(,ih

1 1),(i jhh  

0 :H

1 :H 

1 :H 

Fig. 5 Basic scheme (P <<< 1).

···

ℎ11 ℎ12 ℎ1𝑙···

ℎ01 ℎ02 ℎ0𝑙··· ℎ0𝑙 + 1 ℎ0𝑙′

ℎ𝑡1 ℎ𝑡(𝑙
′
− 𝑙)···

1 0(),
ii jh h

0 '),(
ki tjh h

1 :H

0 :H 

0 :H 

:tH

Fig. 6 Basic scheme (P >>> 1).

.h0i 0 ; htjk
/. Then the server can get .l 0 � l/ pairs S1 D

f.h0lC1; htj1
/; .h0lC2; htj2

/; : : : ; .h0l 0 ; htj.l0�l/
/g.

(6) The server sends S D fS0; S1g as deduplication
responses to the client.

The client performs the XOR operation on chunks
corresponding to tags in pairs in S D fS0; S1g, and
sends the resultsMS0

D fm11˚m0j1
; : : : ; m1l˚m0jl

g

andMS1
D fm0lC1˚mtj1

; : : : ; m0l 0˚mtj.l0�l/
g to the

server. Because m1i in every pair .m1i ; m0ji
/ in MS0

has been stored before, the server could restore every
m0ji

. Therefore, the server can restore all chunks in
MS0

. Similarly, chunks corresponding to tags in Ht

can be restored by the server, so chunks corresponding
to tags in all pairs in S1 can also be restored. In other
words, all chunks in MS1

also could be restored by the
server.

In this case, the number of uploaded chunks is the
same as that of the client-side deduplication, which is
l 0. If the number of 0 in deduplication responses is more
than three times that of 1 (P > 3), the length of Ht

cannot reach that ofH 000 , and the server cannot restore all
chunks corresponding to tags in H 000 . A straightforward
way to solve this problem is to let the client upload
all chunks when P > 3. However, the adversary may
use this information to launch side-channel attacks. For
example, the adversary could construct a file Fm with
P D 3 and then place a target chunk c into Fm to
construct F 0m. If it finds that all chunks in F 0m need
to be uploaded, then it can learn that P > 3 and c have
been stored. Therefore, the server needs to set a security
parameter � . Every time P for an uploaded file is greater
than 1; the server needs to select a random value for
�. The server will let the client upload all chunks when
P > 3�� . The selection for � is analyzed in Section 5.1.

However, there is a security vulnerability in the basic
scheme. Unlike the above two cases, a chunk may be
XORed once or twice when P > 1. However, the XOR
times of a chunk may be exploited by the adversary to
learn the chunk existence. For this vulnerability, we
propose a kind of attack in Section 4.3 and an enhanced
scheme to protect against this attack in Section 4.4.

4.3 Attack for the basic scheme

We present an example of an attack that exploits the
vulnerability in the basic scheme. As shown in Fig. 7,
we assume that an adversary constructs files fFmg with
P D 1, P < 1, and P > 1 , and then it places the target
chunk c into fFmg to construct fF 0mg to upload. Based
on the different values of P , the attack can be divided

Guanxiong Ha et al.: Threat Model and Defense Scheme for Side-Channel Attacks in Client-Side Deduplication 7

𝑃 = 1 𝑑𝑟(𝑐)+
0 0 … 0

1 1 … 1 1
or

0 0 … 0

1 1 … 1

00 0 … 0

1 1 … 1

𝑃 > 1 𝑑𝑟(𝑐)+
0 0 … 0 0

1 1 … 1 11 1 … 1

0 0 … 0 0

1 1 … 1

0 0 … 0 00

𝑃 < 1 + 𝑑𝑟(𝑐)
0 0 … 0

1 1 … 1 1 1

0 0 … 0

1 1 … 1 1

0 0 0 … 0

1 1 … 1 1

(case 1)

or

or

(case 1)

(case 1)

(case 2)

(case 2)

(case 2)

Fig. 7 Attack for the basic scheme (dr(c) denotes the
deduplication result for c).

into the following situations:
� P D 1: If c has already been stored (case 1 in

Fig. 7), then the adversary can learn that each chunk is
XORed only once. Otherwise (case 2 in Fig. 7), one
chunk is XORed twice.
� P > 1 (For simplicity, we let Nr D Ns C 1). If

c has already been stored, then the adversary can learn
that each chunk is XORed only once. Otherwise, two
chunks are XORed twice.
� P < 1 .Ns D Nr C 1/. All chunks are XORed

once, regardless of whether c has been stored or not.
WhenP is not less than 1, the adversary can determine

whether c is stored by observing the number of chunks
XORed twice.

4.4 Enhanced scheme

We argue that the reason for the attack described in
Section 4.3 is that there are chunks XORed twice
only when P > 1 in the basic scheme. We design
an enhanced scheme to protect against the attack.
Regardless of the value of P , there are chunks XORed
twice in the enhanced scheme. As a result, the adversary
cannot violate data privacy by observing the number of
chunks XORed twice. We describe the enhanced scheme
in detail below.

(1) Similar to the basic scheme, the server divides
the deduplication results of 0 and 1 for the outsourced
file into H0 D fh01; h02; : : : ; h0l0

g and H1 D

fh11; h12; : : : ; h1l1
g. Let the smaller between l0 and

l1 be l .
(2) The server sets two ratios Pmin and Pmax

(0 < Pmin; Pmax < 1) as security parameters for the
outsourced file, and then selects a random probability
value Pe 2 ŒPmin; Pmax�.

(3) The server selects .Pe � l/ tags from H0 and H1 to
construct H 00 and H 01, respectively. The left tags in H0

and H1 construct a new set Hn.
(4) For each tag in H 00, the server randomly selects a

tag in H 01 to pair. The server takes these .Pe � l/ pairs as
the deduplication response S0, as shown in Fig. 8. Then

ℎ01 ℎ02 ℎ0𝑙0···

ℎ11 ℎ12 ℎ1𝑙1···

𝑃𝑒 · 𝑙

···

···

(ℎ𝑚𝑖′, ℎ𝑛𝑗′)

0 1),(i jhh

0 :H 

1 :H 

nH
mH

Fig. 8 Enhanced scheme.

the server merges H 00 and H 01 into Hm.
(5) For each tag in Hn, the server randomly selects a

tag in Hm to pair. Then, the server takes these pairs as
the deduplication response S1, and sends S D fS0; S1g

to the client.
We use Nx2

to denote the number of chunks XORed
twice. In the enhanced scheme, Nx2

is equal to the size
of Hn. In other words, Nx2

D .1 � Pe/.l0 C l1/ D

.1 � Pe/ � 2 � l C jNr � Nsj. Because Pe is randomly
selected each time the client uploads data, we can use
it to mitigate the impact of the existence of the target
chunk c on Nx2

. Thus, the adversary cannot learn the
existence of c by observing Nx2

. The selection of Pe

will affect the probability advantage of the adversary.
The detailed security analysis will be given in Section 5.

5 Security Analysis

5.1 Selection of security parameters

5.1.1 Selection of ���
As described in Section 4.2, the adversary may construct
a file Fm and its P is close to 3. Then it places a
target chunk c into Fm to launch side-channel attacks.
Therefore, � should be selected to prevent the adversary
from simply adding a single chunk c to Fm to make
P > 3. In other words, we need to ensure that .Nr C

1/ 6 3 � Ns. We can use this condition to derive

P D
Nr

Ns

6

�
3 �

1

Ns

�
. Therefore, the selection of

� for a file needs to satisfy that � >
1

Ns

. When P for an

uploaded file is greater than 3 � � , the server will let the
client upload all chunks for this file.

5.1.2 Selection of Pe

In the attack presented in Section 4.3, the adversary adds
a target chunk c into files and then observes the change
of Nx2

. The deduplication response of one chunk has a
maximum effect of 2 on the value of Nx2

for the whole
file, in the case that P for Fm is greater than 1, as shown
in Fig. 7. We want Nx2

for the outsourced file in the two
cases to be nearly equal. Thus, the selection of Pe in the

8 Tsinghua Science and Technology, February 2023, 28(1): 1–12

enhanced scheme needs to satisfy that j..1 � Pe1
/ � 2 �

l C 2/ � .1 � Pe2
/ � 2 � l j can be less than or equal to

0, where Pe1
and Pe2

are the randomly selected values
for Pe in the two cases. We can use this condition to

derive .Pe1
� Pe2

/ >
1

l
. Therefore, for an uploaded

file, the selection of Pmin and Pmax needs to satisfy that

.Pmax � Pmin/ >
1

l
.

5.2 Security analysis for defense schemes

In this section, we use the probabilistic advantage of
the adversary described in Section 3.3 to analyze the
security for our schemes and two previous schemes[8, 9].
In RARE[8] and ZEUS[9], the adversary can observe two
cases when uploading a chunk (described in Section 4.1).
If the deduplication response for a chunk is 2, then it
is uploaded directly. Otherwise, if the deduplication
response is 1, then the chunk is uploaded after being
XORed. In our schemes, the adversary can learn that
a chunk is XORed once or twice by deduplication
responses.

For a target chunk c, we use R to denote the
deduplication response for it. R1 and R2 denote the
events when the deduplication responses for c are 1
and 2 in RARE or ZEUS, respectively. Rx1

and Rx2

denote the events when c is XORed once and twice in
our schemes, respectively. C and C denote the events
when c is stored and not stored in the server, respectively.
Given the deduplication response R, the probability that
c is stored can be formulated in Eq. (2).

P rŒC jR� D
P rŒRjC �P rŒC �

P rŒRjC �P rŒC �C P rŒRjC �P rŒC �
(2)

According to our security definition, the probabilistic
advantage for adversary A can be formulated as
Adv.A/ D jP rŒC jR� � 1=2j. The security of schemes
can be formulated as maxfjP rŒC jRi � � 1=2jg, where
Ri 2 fR1; R2; Rx1

; Rx2
g. In other words, the security

is evaluated by the deduplication response that has the
greatest influence on the probability that a chunk is
stored.

We analyze Adv.A/ as the value of P changes in
RARE, ZEUS, and our basic scheme. The results are
shown in Fig. 9. Rx2

, R1, and R2 (ZEUS) have the
greatest influence on Adv.A/ when P > 1. Therefore,
we use these responses to analyze the security of
schemes. As shown in Fig. 10, maxfjP rŒC jRi �� 1=2jg

of our scheme is lower than that of the other two when
P > 1. Similarly, when P 6 1, R1 and R2 (ZEUS) are
the most influential responses in RARE and ZEUS. The

(a) P > 1

(b) P 6 1

Fig. 9 Adv.AA/ in RARE, ZEUS, and our basic scheme.

(a) P > 1

(b) P 6 1

Fig. 10 maxfjjjPrŒCjjjRi]���1/2jjjg in RARE, ZEUS, and our basic
scheme.

Guanxiong Ha et al.: Threat Model and Defense Scheme for Side-Channel Attacks in Client-Side Deduplication 9

Adv.A/ of our basic scheme is 0, because all
deduplication responses are all Rx1

.
The probability in our basic and enhanced schemes,

RARE, and ZEUS can be formulated in Eqs. (3) – (7).

RARE WP rŒC jR�D

8̂̂<̂
:̂
P rŒC jR1�D

8<:
PC1
PC2

; P>1I

1
PC2

; P61I

P rŒC jR2� D
PC1

3PC2

(3)

ZEUS:P rŒC jR� D

8̂̂<̂
:̂
P rŒC jR1�D

8<:
PC1
PC2

; P>1I

1
PC2

; P61I

P rŒC jR2� D 0

(4)

Basic scheme .P > 1/ W

P rŒC jR� D

(
P rŒC jRx1

� D �P 2C3P
�P 2C4PC1

;

P rŒC jRx2
� D P

PC1

(5)

Basic scheme .P61/ W P rŒC jR�DP rŒC jRx1
�D1=2

(6)

Enhanced scheme:P rŒC jR� D8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

P rŒC jRx1
� D8<:

�P 2C3P�2P .1�Pe/

�P 2C4P�2P .1�Pe/C1�2.1�Pe/
; P >1I

P .1�Pe/�1
.PC1/.1�Pe/�2

; P 61I

P rŒC jRx2
� D P

PC1

(7)

We also analyze the influence of Pe on Adv.A/ in the
enhanced scheme and the results are shown in Fig. 11.
If P > 1, then Pe has no effect on jP rŒC jRx2

� � 1=2j

and jP rŒC jRx1
� � 1=2j will increase as Pe goes down.

However, Rx2
is almost always the most influential

response. Thus, Pe almost has no significant impact
on security. If P 6 1, then the deduplication responses
in the enhanced scheme could be Rx1

and Rx2
, which

may decrease the security to some extent.

6 Performance Evaluation

We implement prototypes of our basic and enhanced
schemes with C++ and use the Enron email dataset for
performance evaluation. Our experiments are run on
a machine equipped with i5-10210U/1.60 GHz Quad
Cores CPU and 16 GB RAM, installed with 64-bit
Ubuntu 20.04.1 LTS. We use MD5 from OpenSSL as
the hash function to generate data tags. We randomly
select 1000 files from the dataset to upload to the cloud
server and then randomly select 200 files to upload for
performance testing. We also implement prototypes for
RARE and ZEUS and compare their performance to
ours.

(a) P > 1

(b) P 6 1

Fig. 11 Influence of Pe on Adv(AA).

We evaluate the communication costs between our
basic and enhanced schemes, RARE, ZEUS, and the
client-side and server-side deduplications at different
chunk sizes. As shown in Fig. 12a, the client-side and
server-side deduplications have the lowest and highest
communication costs, respectively. The communication
costs for ZEUS, and our basic and enhanced schemes are
close, whereas those for RARE are significantly higher.
We also evaluate the communication costs in different
schemes as the number of uploaded files increases. As
shown in Fig. 12b, our schemes have slightly lower
communication costs than RARE and ZEUS. The reason
is that the clients in our scheme need to upload fewer
chunks compared with existing schemes. Particularly,
the value of Pe for most files tends to be large, more
than 90%, so the enhanced scheme does not increase
the communication cost significantly compared with the
basic scheme.

We evaluate the XOR times for chunks at different
chunk sizes. As shown in Fig. 13a, the XOR times in
RARE are the fewest, and those of ZEUS and our basic
and enhanced schemes are close. We also evaluate the
computational overheads in the four schemes, which
contain the time overheads for clients to perform
the XOR operation and for the server to generate

10 Tsinghua Science and Technology, February 2023, 28(1): 1–12

(a) P > 1

(b) P 6 1

Fig. 12 Communicational costs in different schemes.

(a) XOR time

(b) Time overhead

Fig. 13 XOR time and time overhead in different schemes.

deduplication responses. The results are shown in
Fig. 13b. Compared with RARE and ZEUS, our basic
and enhanced schemes add a certain amount of time
overhead as they require more XOR operations, and the
server needs to pair data tags to generate deduplication
responses. However, the time overhead in this part is
extremely low. When uploading 200 files, our schemes
only add less than 3 ms of time overhead as compared
with RARE and ZEUS.

Based on the above analysis, our schemes effectively
reduce communication costs for the system and do not
introduce non-negligible computational overheads.

7 Conclusion

Although the client-side deduplication can be used
to save storage and communication costs for cloud
storage systems, deduplication responses are easily to
be used as a side-channel by the adversary to violate
data privacy. We argue that the threat models in existing
defense schemes against side-channel attacks need to
be strengthened. Thus, we propose a new threat model,
that considers an adversary that could construct files
containing a certain number of stored and unstored
chunks to launch side-channel attacks. We propose basic
and enhanced defense schemes against this kind of
attack. The security analysis and performance evaluation
show that the proposed schemes can effectively mitigate
the privacy leakage of user outsourced data, and can
effectively reduce the communication cost for the
system.

Acknowledgment

This work was supported by the National Key R&D
Program of China (No. 2018YFA0704703), National
Natural Science Foundation of China (Nos. 61972215,
61972073, and 62172238), and Natural Science
Foundation of Tianjin (No. 20JCZDJC00640).

References

[1] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua,
M. Fu, Y. C. Zhang, and Y. K. Zhou, A comprehensive
study of the past, present, and future of data deduplication,
Proceedings of the IEEE, vol. 104, no. 9, pp. 1681–1710,
2016.

[2] Y. Shin, D. Koo, and J. Hur, A Survey of secure data
deduplication schemes for cloud storage systems, ACM
Computing Surveys, vol. 49, no. 74, pp. 1–38, 2017.

[3] D. T. Meyer and W. J. Bolosky, A study of practical
deduplication, presented at 9th USENIX Conference on
File and Storage Technologies, San Jose, CA, USA, 2011.

Guanxiong Ha et al.: Threat Model and Defense Scheme for Side-Channel Attacks in Client-Side Deduplication 11

[4] J. Li, Z. Yang, Y. Ren, P. Lee, and X. Zhang, Balancing
storage efficiency and data confidentiality with tunable
encrypted deduplication, presented at 15th EuroSys
Conference on Computer Systems, Heraklion, Greece,
2020.

[5] J. Li, P. P. C. Lee, Y. Ren, and X. Zhang, Metadedup:
Deduplicating metadata in encrypted deduplication via
indirection, presented at 35th Symposium on Mass Storage
Systems and Technologies (MSST), Santa Clara, CA, USA,
2019.

[6] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl, Dark clouds on the horizon: Using cloud storage
as attack vector and online slack space, presented at 20th

USENIX Security Symposium, San Francisco, CA, USA,
2011.

[7] D. Harnik, B. Pinkas, and A. Shulman-Peleg, Side-channels
in cloud services: Deduplication in cloud storage, IEEE
Security & Privacy, vol. 8, no. 6, pp. 40–47, 2010.

[8] Z. Pooranian, K. Chen, C. Yu, and M. Conti, RARE:
Defeating side-channels based on data-deduplication in
cloud storage, presented at IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS),
Honolulu, HI, USA, 2018.

[9] C. Yu, S. P. Gochhayat, M. Conti, and C. Lu, Privacy aware
data deduplication for side-channel in cloud storage, IEEE
Transactions on Cloud Computing, vol. 8, no. 2, pp. 597–
609, 2020.

[10] F. Armknecht, J. Bohli, G. O. Karame, and F. Youssef,
Transparent data deduplication in the cloud, presented
at 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, 2015.

[11] M. Bellare, S. Keelveedhi, and T. Ristenpart, Messagelocked
encryption and secure deduplication, presented at 32nd

Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece,
2013.

[12] J. Li, Y. K. Li, X. Chen, P. P. C. Lee, and W. Lou, A hybrid
cloud approach for secure authorized deduplication, IEEE
Trans. Parallel Distributed Syst., vol. 26, no. 5, pp. 1206–
1216, 2015.

[13] Y. K. Zhou, D. Feng, W. Xia, M. Fu, F. T. Huang, Y. C.
Zhang, and C. G. Li, SecDep: A user-aware efficient
finegrained secure deduplication scheme with multilevel

key management, presented at 31st IEEE Symposium on
Mass Storage Systems and Technologies, Santa Clara, CA,
USA, 2015.

[14] R. M. Chen, Y. Mu, G. M. Yang, and F. C. Guo, BL-MLE:
Blocklevel message-locked encryption for secure large file
deduplication, IEEE Trans. Inf. Forensics Secur., vol. 10,
no. 12, pp. 2643–2652, 2015.

[15] J. W. Li, P. P. C. Lee, C. F. Tan, C. Qin, and X. S.
Zhang, Information leakage in encrypted deduplication
via frequency analysis: Attacks and defenses, ACM Trans.
Storage., vol. 16, no. 1, pp. 1–30, 2020.

[16] J. Stanek and L. Kencl, Enhanced secure thresholded
data deduplication scheme for cloud storage, IEEE Trans.
Dependable Secur. Comput., vol. 15, no. 4, pp. 694–707,
2018.

[17] P. F. Zuo, Y. Hua, C. Wang, W. Xia, S. D. Cao, Y. K.
Zhou, and Y. Y. Sun, Mitigating traffic-based side-channel
attacks in bandwidth-efficient cloud storage, presented at
32nd IEEE International Parallel and Distributed Processing
Symposium, Vancouver, Canada, 2018.

[18] S. Keelveedhi, M. Bellare, and T. Ristenpart, Dupless:
Server-aided encryption for deduplicated storage, presented
at 22nd USENIX Security Symposium, Washington, DC,
USA, 2013.

[19] S. Lee and D. Choi, Privacy-preserving cross-user
sourcebased data deduplication in cloud storage,
presented at International Conference on Information and
Communication Technology Convergence, Jeju Island,
Republic of Korea, 2012.

[20] F. Armknecht, C. Boyd, G. T. Davies, K. Gjøsteen, and
M. Toorani, Side-channels in deduplication: Trade-offs
between leakage and efficiency, presented at 12th ACM
on Asia Conference on Computer and Communications
Security, Abu Dhabi, United Arab Emirates, 2017.

[21] O. Heen, C. Neumann, L. Montalvo, and S. Defrance,
Improving the resistance to side-channel attacks on cloud
storage services, presented at 5th International Conference
on New Technologies, Mobility and Security(NTMS),
Istanbul, Turkey, 2012.

[22] Y. Shin and K. Kim, Differentially private client-side
data deduplication protocol for cloud storage services,
Secur. Commun. Networks., vol. 8, no. 12, pp. 2114–2123,
2015.

Guanxiong Ha received the MS degree
in computer science and technology from
Nankai University, Tianjin, China, in
2021. He is currently pursuing the PhD
degree at the College of Cyber Science,
Nankai University, Tianjin, China. His
research interests include cloud data
security and applied cryptography.

Hang Chen is pursuing the master degree
at the College of Cyber Science, Nankai
University, Tianjin, China. Her main
research interests are cryptography and data
deduplication.

12 Tsinghua Science and Technology, February 2023, 28(1): 1–12

Chunfu Jia is a PhD supervisor, a
professor, and the head of department
in Nankai University. His main research
interests include network and system
security, cryptography application, and
malware analysis.

Mingyue Li is currently pursuing the
PhD degree at the College of Cyber
Science, Nankai University, Tianjin,
China. Her research interests mainly
include network security and searchable
encryption technology.

