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Curricular Robust Reinforcement Learning via GAN-Based
Perturbation Through Continuously Scheduled Task Sequence

Yike Li, Yunzhe Tian, Endong Tong�, Wenjia Niu�, Yingxiao Xiang, Tong Chen, Yalun Wu, and Jiqiang Liu

Abstract: Reinforcement learning (RL), one of three branches of machine learning, aims for autonomous learning

and is now greatly driving the artificial intelligence development, especially in autonomous distributed systems, such

as cooperative Boston Dynamics robots. However, robust RL has been a challenging problem of reliable aspects

due to the gap between laboratory simulation and real world. Existing efforts have been made to approach this

problem, such as performing random environmental perturbations in the learning process. However, one cannot

guarantee to train with a positive perturbation as bad ones might bring failures to RL. In this work, we treat robust RL

as a multi-task RL problem, and propose a curricular robust RL approach. We first present a generative adversarial

network (GAN) based task generation model to iteratively output new tasks at the appropriate level of difficulty for

the current policy. Furthermore, with these progressive tasks, we can realize curricular learning and finally obtain a

robust policy. Extensive experiments in multiple environments demonstrate that our method improves the training

stability and is robust to differences in training/test conditions.
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1 Introduction
Recent advances in reinforcement learning (RL) have
demonstrated its success for automated solutions in
the field of decision making with beyond-human
performance. Developing the usability of RL in real-
world deployment environments rather than games is
one of the core challenges in engineering applications.
However, due to the gap between a simulated
environment and the complex real world, most RL-
based approaches fail to generalize in transferring a
policy learned in simulations to applications. To this
end, achieving robustness to environmental dynamics is
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crucial for adaptive and safe RL.
Existing efforts in robust RL have focused on

environmental perturbations. One effective approach is
based on domain randomization[1] to identify uncertain
components of the environment and randomize their
parameters. However, this requires to handcraft a set of
training environments. Some existing approaches[2–6]

explore automated perturbation. Robust adversarial
reinforcement learning (RARL)[5] and noisy robust
Markov decision process (NR-MDP)[6] represent two
prominent examples, and the adversarial idea is typically
introduced. By setting an adversary agent and a
protagonist agent, this problem is formulated as a zero-
sum min-max game to search for pure Nash equilibria
(pure NE).

Despite its impressive progress, robust RL remains
an open and critical challenge. Recent literature has
shown that perturbations might fail to result in improved
robustness, and some prominent studies contribute
different-perspective solutions. Robustness via adversary
populations (RAP)[7] uses multiple adversarial agents
for perturbations and applies adversary populations to
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NR-MDP. Wasserstein robust reinforcement learning
(WR2L)[8] limits the perturbations by the Wasserstein
distance. The Langevin Dynamics based approach[9]

chooses mixed Nash equilibrium (mixed NE) to model
robust RL instead of pure NE, based on the stochastic
gradient Langevin dynamics (SGLD)[10]. However,
although the aforementioned literature involves positive
perturbations, they neglect to control the perturbation
difficulty and opportune time of positive perturbations
in step-by-step robust RL. That is, sometimes at an
inopportune time, an imposed positive perturbation can
become a bad one, breaking the training stability and
even bringing a failure of policy learning. As shown in
Fig. 1b, we find an example of bad perturbation through
visualizing the reinforcement learning process using
trust region policy optimization (TRPO)[11] in OpenAI
gym’s CarRacing game[12]. Such a perturbed friction
coefficient (FC) is 0.28 at the third epoch, which disrupts
the stability and leads to a failure of robust RL. However,
the same perturbation imposed at the fourth epoch time
is absolutely a positive perturbation, as illustrated in
Fig. 1a.

To tackle the above problem, an important insight
brought by this work is to leverage curricular progressive
learning for improving robustness. However, this
solution is nontrivial, presenting us with two key
challenges: (1) How to measure the perturbation
difficulty according to the current policy in curricular RL
learning? Existing methods either limit perturbations[5]

or use a population of adversarial agents to control
perturbations[7]. Hence, it is important to design novel
measurements on current policy-aware perturbation
difficulty. (2) How to automatically and efficiently
generate appropriate perturbations? Existing generative
adversarial network (GAN) based methods for task
generation[13] use least squares GAN (LSGAN)[14] to
automatically generate new tasks for the pathfinding
scenario. Unfortunately, it cannot be directly applied to
the automated perturbation of robust RL.

In this study, to address the above challenges, we
make the first attempt to treat robust RL as a multi-
task RL problem and propose a novel approach named
curricular robust RL (CRRL). Based on automatic
task generation, CRRL optimizes RL stability and
robustness via curricular progressive task-oriented
learning. Particularly, we propose a measurement of
perturbation difficulty, which captures the context-aware
difficulty of perturbations according to the current
policy in a step-by-step learning process. Furthermore,
based on the qualitative difficulty of perturbations, bad
perturbations of the worst level are filtered out before
imposing on follow-up tasks for robust learning. Our
major contributions are highlighted as follows:
� To the best of our knowledge, we make the first

attempt to explore the opportune time and appropriate
difficulty of perturbations by modeling robust RL as
a multi-task RL problem, which realizes curricular
learning across multiple progressive tasks.

Fig. 1 Examples of visual trust region policy optimization reinforcement learning process in OpenAI Gym’s CarRacing game,
performing under single-parameter perturbations of friction coefficient. In the training process (a) and (b), the first row is the
visualization of the car’s trajectories and the second row is the car’s corresponding reward curves.
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� We propose a novel approach called CRRL, in
which some delicate designs based on LSGAN, e.g.,
perturbation difficulty measurement and task generation,
are proposed to improve the stability and robustness
during curricular learning.
� We conduct extensive experiments on three

environments (InvertedPendulum, Hopper, and
HalfCheetah) to validate the effectiveness of CRRL as
compared with state-of-the-art methods.

Figure 2a illustrates the framework of our proposed
CRRL. Given a simulator and modified GAN, a range
of RL tasks will be iteratively generated. Then, after
the task evaluation, progressive tasks at the appropriate
level of difficulty for the current policy will be utilized
to train a robust policy in a curricular way. As shown in
Fig. 2b, the policy takes st as preconditions and outputs
at accordingly. The details of the modified GAN are
shown in Fig. 2c. It exploits positive tasks to iteratively
output new tasks at the appropriate level of difficulty for
the current policy.

The rest of the paper is structured as follows: Section 2
introduces the preliminary and problem formulation.
Section 3 proposes a novel approach CRRL based
on LSGAN. Section 4 reports our experiments and
evaluations on three OpenAI Gym’s environments.
Section 5 discusses related works. Finally, Section 6
presents the conclusions of this study.

2 Preliminary and Problem Formulation

In this section, we first illustrate standard RL and then
redefine robust RL under the framework of multi-task
learning.

2.1 Preliminary

The 6 tuples of MDP in standard RL are (S; A; P ; r ; 
 ;
and s0), where S is a finite state space and A is a finite
action space, P : S � A � S ! R is the transition
probability, r : S � A ! R is the reward function
and r.s0js; a/ is the reward that the agent receives when
selecting action a 2 A from states s to s0. 
 2 Œ0; 1/ is
the discount factor, and s0 is the initial state distribution.
The RL process is to learn a policy � , whose input is
the observation of agents (also called actors) which is
represented as a state a, and whose output is a vector of
action probability for any state. In choosing at for the t
time, the policy �.at jst / is calculated by the probability
p.at jst /.

Given the parameter θ for the policy �θ and maximal
time T to perform policy optimization, the RL goal is
to find a policy ��θ : S � A ! R that maximizes the
expectation of the cumulative discounted reward:

R.��θ jP/ D arg max
�
E

"
T�1X
tD0


 t � r.st ; at /jP
#

(1)

2.2 Problem formulation

As presented in Eq. (1), the expected reward is
conditioned on the transition function P . In standard RL,
the transition function is always fixed. Unfortunately,
the transition function may have modeling errors as
designing an accurate simulator of the real world is
extremely challenging. Thus, in robust RL, our goal is
to learn a policy that generalizes well across a range
of scenarios corresponding to a range of transition
functions. Take a CarRacing scenario for example, we

Fig. 2 Overview of the CRRL.
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aim to learn a policy for a self-driving car that can run
not only on a high-grade road (training scenario) but
also on an icy road (test scenario). To achieve the policy
robustness and generalization, we have the following
assumptions:
� Modeling errors of the transition function can be

viewed as a set of RL tasks following task distribution
pk.�/.
� If we can learn a policy that is robust to a group of

RL tasks, then this policy will have a high probability of
being robust to changes in training/test conditions.

Based on the above assumptions, we attempt to tackle
the robust RL issue by solving a multi-task RL problem.
First, we take the initial simulator setting as the initial
task and learn to get a policy, because the simulator
is constructed elaborately, and the environment and
dynamics of the simulator are roughly the same as the
real world. Then, we iteratively generate new tasks at
the appropriate level of difficulty for the current policy,
and finally learn an ensemble policy on a progressive
sequence of these tasks.

To summarize, in our robust RL framework, instead
of learning to optimize a single reward function (as
shown in Eq. (1)), we consider a group of reward
functions, where each reward function is parameterized
by a task k � pk.�/. The objective is to learn a policy
that maximize the expected reward among all the tasks
following pk.�/:

R.�� / D E
k�pk.�/

"
E

"
T�1X
tD0


 t � r.st ; at /jk

##
(2)

3 Methodology

In this section, we introduce the proposed method in
detail. We illustrate the definition of the policy under the
multi-task framework, and show the task generation and
evaluation method. Lastly, we propose our algorithm for
policy optimization with curriculum settings.

3.1 Policy expression

We denote an agent policy as ��
�

, which takes action
at given state st at timestep t . Note that in the real
world, it is extremely hard for an agent to get all the
environment parameters. For instance, the FC is usually
a latent parameter that is hard to be determined in the
CarRacing scenario. Therefore, a finite state space S is
insufficient to model all the environmental parameters
in the training/test scenario. In addition, robust RL is
usually achieved by solving a max-min optimization
problem[15]. As a result, a policy will learn to always take

conservative actions to avoid performing badly in some
worst-cases. Clearly, this is not the optimal solution for
robust RL.

We improve the policy expression as �� .at jst ;

st�1; at�1/, which will take action at according to not
only the current state st but also the previous state st�1
and action at�1. Taking the CarRacing scenario as an
example, although the friction value is hard to get, we
can parameterize the friction indirectly. Generally, an
autonomous vehicle may show different driving statuses
given the same state and action due to different FCs.
Hence, in principle, if an autonomous vehicle takes
action at�1 at state st�1, making the state transfer from
st�1 to a new state st , then we can extrapolate the current
friction correspondingly. By using st�1, at�1, and st
as the preconditions of policy �� , our improved policy
expression can model all possible latent environment
parameters in the training/test scenario. On this basis,
the final convergent policy will perform uniformly well
in all cases.

As mentioned in Section 2, we aim to find a policy ��
�

that achieves a high reward for a set of tasks:
��� .at jst ; st�1; at�1/ D arg max

�
Ek�pk.�/R.�� jk/;

R.�� jk/ D E

"
T�1X
tD0


 t � r.st ; at /jk

#
(3)

3.2 Task evaluation

A successful robust RL training relies on the
effectiveness of task sampling. In particular, we should
sample valuable tasks that have a positive effect on the
RL stability and robustness. Here, we present a definition
of the valuable task corresponding to the appropriate
level of perturbation difficulty.

Definition 1. (Valuable task) For the current policy
� iθ (at iteration i ), a task k is considered to be a valuable
task, if in such task the � iθ receives expected reward s.t.
Rimin 6 R.� i jk/ 6 Rimax.

On one hand, R.� i jk/ > Rimin guarantees that
sampled tasks can obtain enough reward and the policy
convergence will be easy to receive. On the other hand,
R.� i jk/ 6 Rimax makes sure that we do not repeatedly
sample from a small set of already mastered tasks, as
these mastered tasks usually have high rewards. Each
sampled task should be set with an appropriate difficulty
to guarantee training stability.

The core idea of CRRL is to treat robust RL as a
curricular multi-task RL problem. Hence, the difficulty
of tasks should become iteratively higher as the training



Yike Li et al.: Curricular Robust Reinforcement Learning via GAN-Based Perturbation Through Continuously : : : 31

process goes on step-by-step. Accordingly, the values
of Rmin and Rmax should be dynamically updated. For
instance, at iteration m, we generate a group of valuable
tasks for the current policy �m

�
. Then, we train a new

policy on these tasks and obtain the following expected
reward:

Rm D R.�m� / D E
k�T S.m/

"
E

"
T�1X
tD0


 t � r.st ; at /jk

##
;

T S.m/ D
mX
iD0

�T S.i/ (4)

where �m
�

is the policy at iteration m, �T S.i/
represents the new set of valuable tasks at iteration i ,
and �T S.0/ D 1 (i.e., initial simulator environment).

Thus, the valuable tasks for the current step are
selected based on the reward value. According to Rm,
Rmin and Rmax will be updated as follows:

Rmmin D wmin �R
m; Rmmax D wmax �R

m (5)

where wmin and wmax are hyperparameters, which can be
reasonably adjusted. Different wmin and wmax values
decide the degree of task difficulty to improve each
iteration. We suggest that wmin 2 .0:6; 0:7/ and
wmax 2 .0:8; 0:9/. With the new Rmin and Rmax, new
task generation and policy training will be iteratively
performed.

Thus far, we have presented the task evaluation
method. Given a number of tasks, we first estimate
the label yk 2 f0; 1g that indicates that whether a task is
valuable task or not. Specifically, yk D 1 indicates the
task is a valuable task and vice versa. Thus, we regard the
perturbation difficulty measurement as a classification
problem in different training iterations. Then, we use
the labeled tasks to train a generative model with which
we can generate more valuable tasks to train on the next
iteration.

3.3 Progressive task generation

Sampling tasks from pk.�/ directly, and filtering out
valuable tasks to derive T S may not be the most efficient
sampling methods. Thus, we adopt the “goal GAN”
proposed in Ref. [13].

A generator network G.z/ learns to make the
discriminator network D.k/ classify its output tasks as
valuable tasks. Meanwhile, D.k/ is trained to maximize
the probability of assigning the correct label to training
examples and samples from G.z/. Unlike LSGAN[14],
the “goal GAN” introduces the binary label yk , allowing
us to train from negative examples when yk D 0. This

improves the accuracy of the generative model despite
being trained with few positive samples.

min
D
V.D/ DEg�pg.�/Œyk � .D.k/ � b/

2
C

.1 � yk/ � .D.k/ � a/
2�C

Ez�pz.z/Œ.D.G.z// � a/
2�;

min
G
V.G/ DEz�pz.z/Œ.D.G.z// � c/

2��

w �Ez�pz.z/ŒRANGE2.G.z//�;

RANGE2.M/ D

nX
iD1

Œmax.MŒW; i �/ �min.MŒW; i �/�2

(6)
Here, we directly use the original hyperparameters

reported in Ref. [14] in all our experiments (a D �1,
b D 1, and c D 0).

As shown in Eq. (6), we have three terms in the value
function V.D/. For tasks labeled with yk D 1, the
second term disappears and we are left with the first and
third terms, which are the same as LSGAN. For tasks
labeled with yk D 0, the first term disappears and the
second and third terms are retrained, which allow us
to train from negative examples. Note that the GAN
may get stuck in the model collapse problem, that is,
the generated samples tend to be close to one another.
Thus, we modify the original value function G.z/ by
introducing RANGE2.M/, which allows us to obtain
more diverse generated perturbations within a reasonable
range. It is treated as a measure of the pairwise distance
between all of the generated perturbations, and our target
is to maximize this distance to obtain more diverse
generated perturbations within a reasonable range.

3.4 Curricular robust policy optimization

As mentioned earlier, we aim to train a robust policy
��
�
.at jst / to maximize the expected reward in Eq. (2).

Algorithms 1 and 2 outline our approach in detail.
Initially, we train a policy based on the initial

environment parameters of the simulator. For the initial
policy, we directly sample tasks from pk.�/, and label
these sampled tasks as described in Section 3.2. At
each iteration i , we generate more valuable tasks for the
current policy using the improved “goal GAN” presented
in Section 3.3. Then, we use these positive tasks to
train our policy. As the positive task is selected with
the expected reward of agents in the range(Rmin, Rmax),
in each training iteration, when the average reward
of agents is higher than Rmax, the current iteration
will be stopped, which is expressed as the opportune
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Algorithm 1 Iterative training of robust RL
Input: Simulator environment "
Output: Policy ��

�

�0
�
 initial policy."/

R.�0
�
/ EŒ

PT�1
tD0 


t � r.st ; at /j"�

1: while R.�i
�
/ > wstop �R.�

0
�
/ do

2: z  sample noise.pz.�//
3: pert G.z/ [ task sample.pk.�//
4: labeledtasks task evaluation.pert; R.�i�1

�
//

5: .G;D/ train GAN.labeledtasks/
6: T S.i/ G.z/

7: �i
�
 update policy.T S.i/; �i�1

�
/

8: R.�i
�
/ Ek�T S.i/ŒEŒ

PT�1
tD0 


t � r.st ; at /jk��

9: end while
10: return ��

�

Algorithm 2 Policy updating progress
Input: Policy �i�1

�
, Valuable task set T S.i � 1/

Output: Policy �i
�

1: for k D 1 to jT Sj do
2: "k  constructEnv."; k/
3: for t D 1 to T do
4: f.sit ; a

i
t ; r

i
t /g  roll."k ; �i�1�

; Ntraj/

5: �i
�
.k/ optimize policy.f.sit ; a

i
t ; r

i
t /g; �

i�1
�

/

6: end for
7: end for
8: �i

�
D arg max� Ek�T S.i�1/R.�� jk/)

9: return �i
�

time to generate new tasks with updated difficulties.
Moreover, any RL algorithm can be used for training;
in our case we use TRPO with generalized advantage
estimation (GAE)[11]. TRPO can prevent the policy
from vibrating too much due to the noise in the policy
gradient. Essentially, all the generated tasks from the
previous iteration will also be labeled again and used
to train a new generator to output valuable tasks for
the next iteration. Lastly, we update Rmin and Rmax

according to Eq. (5). When the expected reward at one
iteration reaches Rstop D wstop � R.�

0
�
/ (wstop D 0:5 in

our experiments), the robust RL will be stopped, and the
current policy will be outputted as the final robust policy.

Algorithm 2 illustrates the policy updating process
in each epoch. We consider all the valuable tasks k 2
T S.i � 1/, and for each task k, we construct the
corresponding perturbed environment "k and perform
T steps of training on the agent. In each step t ,
rol l function samples trajectories .st ; at ; rt / given the
perturbed environment "k to train �� .k/. Then, we
update the old policy � i�1

�
using a policy optimizer,

and the new policy can be denoted as � i
�
.

4 Experimental Results and Analysis

In this section, we illustrate our experimental setup
and evaluate the robustness and stability of our CRRL
through a comparison with the state-of-the-art methods.

4.1 Experimental setup

Benchmark. We implement the adversarial benchmark
built on OpenAI Gym’s[12] control environments with the
MuJoCo[16] physics simulator. We experiment with the
InvertedPendulum, Hopper, and HalfCheetah continuous
control environments. The details of the environments
and their corresponding adversarial perturbations are
shown in Fig. 3.
� InvertedPendulum. The protagonist agent can

apply one-dimensional forces to keep the pendulum
upright, and the pendulum is mounted on a pivot point
on a cart with the cart restricted to linear movements in
a plane.
� Hopper. The protagonist agent is a planar monopod

robot with four rigid links, corresponding to the torso,
upper leg, lower leg, and foot, along with three actuated
joints.
� HalfCheetah. The protagonist agent is a planar

bipedal robot with eight rigid links, including two legs
and a torso, along with six actuated joints.

The ranges of the environmental parameters mass and
FCs are defined as follows: for Hopper, mass 2 Œ0:7; 1:3�
and friction 2 Œ0:7; 1:3�; for HalfCheetah, mass 2
Œ0:5; 1:5� and friction 2 Œ0:7; 1:3�. Because the friction
is not relevant to InvertedPendulum, there is only one
parameter mass that varies in the range Œ0:6; 6:6�. For
each randomized parameter set within predefined ranges,
we train our CRRL by progressively generating the force
for the adversary agent.

We adopt a version of the training-validation-test
split from the field of supervised learning[17, 18]. Based
on the grid search, the validation set is used to select
the optimal hyperparameters for further testing. That
is, parameters within a model are selected rather than

Fig. 3 InvertedPendulum, Hopper, and HalfCheetah
environments of OpenAI gym, in which an adversary agent
applies destabilizing forces on specific points (denoted by red
arrows) as perturbations to the environments.



Yike Li et al.: Curricular Robust Reinforcement Learning via GAN-Based Perturbation Through Continuously : : : 33

selecting different models. Moreover, we record all
forces with corresponding environmental parameter
settings as our training set. For the validation set, we
sample all the environmental parameters such as mass
and friction at fixed intervals, so that all possible
parameter combinations in the environment are used
as the verification set. For the test set, we extract the
highest and lowest parameter values from the range and
combine them together. That is, the test set is composed
of “worst perturbations”, because the worst perturbed
environment can best reflect the robustness and stability
of the approach.

Therefore, the validation set is much larger than
the test set, as the validation set contains all possible
combinations of parameters, whereas the test set
only focuses on the worst combination of parameters.
In our experiments, the corresponding sizes of the
training/validation/test sets are respectively 200/440/20
for InvertedPendulum, and 200/4840/32 for both
HalfCheetah and Hopper.

Baseline methods. We contextualize the empirical
results of our CRRL using comparisons with the
following state-of-the-art baseline methods:
� TRPO[11] was developed by OpenAI to implement

strong RL without perturbations and serves as a basic
indicator for measuring the performance of different
approaches.
� RARL[5] trains the RL for the protagonist agent in

the presence of an adversary agent’s perturbations.
� RAP[7] makes use of a large set of protagonist

agents in the training process, proving that it can avoid
the potential failure of training with a signal adversary.

In this work, TRPO is used as the policy optimizer
implemented by a neural network with three hidden
layers and 100 neurons. We set the learning rate as 0.01.
Other hyperparameters, namely kl step size for TRPO,
training batch size, discount factor, and lambda used for
the generalized advantage estimation, are tuned by the
grid search. In the GAN implementation, the generator
consists of two hidden layers with 256 neurons each, and
the discriminator consists of two hidden layers with 128
neurons each. We set !min and !max as 0.65 and 0.85,
respectively.

Evaluation metrics. We evaluate the performance of
different approaches from two aspects:
� Robustness. The robustness is defined as the

ability of the protagonist agent to overcome different
adversarial perturbations. Three datasets (i.e., training,
verification, and test sets) are used to verify the

robustness of different approaches, described in the
experimental settings in Section 4.1.
� Stability. We focus on stability in the training

period. As the performance of the agent is greatly
influenced by adversarial environments, the training
stability reflects the difficulty of introduced perturbations
in a way.

Specifically, for the robustness evaluation, we report
both the mean of all accumulated rewards (Mean) and
the average of top 10 accumulated reward (Aver@10).
Specifically, each epoch is set to contain 10 trajectories
of the episode. When testing, we sample trajectories
to get the reward of the current policy and then get the
accumulated reward across several episodes. Meanwhile,
for the training stability evaluation, we adopt the mean
and standard deviation of the rewards of the training
period.

4.2 Robustness comparison

We perform an experiment on both the low-dimensional
dynamical system (i.e., InvertedPendulum) and high-
dimensional dynamical systems (i.e., HalfCheetah and
Hopper). Then, we show the comparison results for all
the baseline methods (i.e., TRPO, RARL, and RAP) and
our CRRL using the mean reward and average of the
top 10 as the metrics. For each method, the training,
validation, and test sets are examined with the same
number of training epochs. The results are shown in
Table 1, from which we have the following observations:
(1) For low dimensional dynamical systems, CRRL
obtains the best performance on the mean and Aver@10
in the training, validation, and test sets. (2) For high
dimensional dynamical systems, the mean reward of
CRRL is stably superior to all baselines. Compared
with the suboptimal baseline methods, CRRL achieved
up to 2.51%, 5.62%, and 7.34% improvements on the
training, validation, and test sets in the Hopper, 102.97%,
28.70%, and 7.23% improvements on the three sets in
the HalfCheetah, respectively. The Aver@10 of CRRL
also obtained a better performance in general. The
result denotes that the priority of CRRL provides robust
performance against “bad perturbations”.

4.3 Training stability analysis

In this section, we analyze the training stability of CRRL.
We use the mean and standard deviation of rewards at
each training epoch as the metrics for evaluation. To
analyze the different ways that perturbations can be
introduced into the dynamic system, we compare CRRL
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Table 1 Experiments on different datasets (mean±±±one standard deviation).

Environment Baseline
method

Training Validation Test
Mean Aver@10 Mean Aver@10 Mean Aver@10

InvertedPendulum

TRPO 953.15˙209.53 1000.00˙0.00 995.59˙14.00 1000.00˙0.00 505.00˙495.00 1000.00˙0.00
RARL 880.89˙206.99 1000.00˙0.00 953.58˙93.44 1000.00˙0.00 408.73˙470.56 1000.00˙0.00
RAP 1000.00˙0.00 1000.00˙0.00 996.78˙ 12.49 1000.00˙0.00 580.49˙407.60 1000.00˙0.00

CRRL 1000.00˙0.00 1000.00˙0.00 998.59˙6.30 1000.00˙0.00 587.80˙478.21 1000.00˙0.00

Hopper

TRPO 1700.86˙574.71 2284.71˙8.25 1164.79˙ 515.92 2062.34˙90.70 1003.64˙112.51 2504.03˙112.51
RARL 2468.89˙ 877.37 3162.73˙79.14 1305.29˙534.01 2237.09˙90.28 1036.69˙839.99 2922.22˙72.04
RAP 1109.54˙607.69 2445.52˙48.80 1411.95˙878.64 2997.26˙41.11 1181.86˙465.40 2929.49˙80.89

CRRL 2530.84˙1005.18 3258.94˙32.25 1491.28˙827.53 2833.31˙91.84 1268.66˙591.11 2056.15˙1.45

HalfCheetah

TRPO 1331.77˙42.39 1353.89˙16.60 1295.27+191.66 1589.85+23.02 1148.32+413.80 2043.47+18.69
RARL 1249.78˙55.12 1287.99˙26.50 1165.84+136.67 1412.80+45.67 1016.27+322.03 1901.91+63.76
RAP 925.36˙877.78 1489.06˙13.25 2010.81˙347.83 2678.93˙201.03 2159.47˙261.00 2509.69˙209.62

CRRL 2703.14˙110.73 2770.95˙38.13 2588.03+167.33 2869.34+25.99 2315.70+577.46 3416.98+68.94

Note: We record the mean reward (i.e., Mean) and the average of the top 10 reward values (i.e., Aver@10) for comparison. For
InvertedPendulum, Hopper, and HalfCheetah adversarial environments, the results on the three datasets (i.e., training, verification, and test
sets) are listed from left to right. The approach with the highest reward value is presented in bold, and the second highest is underlined.

with RARL and RAP.
The results are shown in Fig. 4, from which we

formulate the following observations: (1) For low-
dimensional dynamical systems, CRRL, RARL, and
RAP achieve high rewards within the short terms.
However, compared to other methods, CRRL was not
affected by the “bad perturbations” during the training
period. (2) For high dimensional dynamical systems,

CRRL has more stable mean rewards compared to
RARL and RAP. The standard deviation is closely
related to amount of “bad perturbations”. CRRL greatly
reduces the standard deviation as it gets better control
to perturbation difficulty for the current policy. This
finding empirically highlights the significant gains in the
training stability of our CRRL especially for complex
environments.

Fig. 4 Training stability of different methods. (a) Comparison of the mean reward from epoch 0–100, (b) the standard deviation
of each training epoch. From left to right: InvertedPendulum, HalfCheetah, and Hopper adversarial environments.
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4.4 Visualization

To intuitively examine the robustness w.r.t.
environmental parameter combination, we visualize the
mean reward of the validation set using the heatmap
across all the mass and FCs combinations. Figure 5a shows
the robustness of policies on a simple InvertedPendulum
as the mass values in the range 0.6–6.6. Apparently,
CRRL outperforms all baselines in these benchmarks
with high and stable rewards. Similarly, we perform
tests by jointly varying both mass and FC in Figs. 5b
and 5c. The lighter color, the better the performance.
Clearly, CRRL has more stable and robust performance
among all perturbation settings.

5 Related Work

5.1 Robust reinforcement learning

Robust RL has received significant attention due to its
generalization for robust control. Robustness has several
definitions in related researches. A common definition
is a robustness against random noise and adversarial
perturbations[19, 20]. Some define robustness as variance
reducing[21, 22]. Here, we consider the second definition

of robustness in our method. As most RL-based
approaches fail to generalize in transferring a policy
learned in a simulation to an application, robust RL
is of great significance in narrowing the discrepancy
between ground-truth states and agent observations. In
related research, it is also defined as a sim-to-real
problem. For instance, an agent working well in
simulated environments may fail in real environments
due to noises in observations[23], as real-world sensing
involves unavoidable noises[24]. This condition also
raises concerns in using RL in safety-crucial applications
such as autonomous driving[25]. Robust RL aims to
find optimal controllers under noisy perturbations. This
problem is typically treated as a robust MDP[6] and
solved through function approximation. For interpreting
perturbations, some studies choose to disturb the
observation. For instance, state-adversarial MDP[26]

characterizes the decision making problem under
adversarial attacks on state observations. Other studies
change the action space of the agent[27] or modify
transition dynamics. While the adversarial idea is first
introduced in the prominent work RARL[5], which
sets an adversary agent and a protagonist agent,

Fig. 5 Mean reward visualization of heatmap w.r.t. different methods. The mass coefficient sets on the x-axis, and the friction
coefficient sets on the y-axis. In (b) and (c), from left to right: results of the TRPO, RARL, RAP, and CRRL approaches.
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the problem is formulated as a zero-sum min-max
game. Different from another prominent variant idea,
i.e., NR-MDP[6]. RARL selects specific robot joints
that the adversary agent acts on instead of adding
the adversary agent action into the agent action in
NR-MDP. Recently, the Langevin dynamics based
approach[10] models robust RL as a mixed NE. WR2L[8]

intends to limit perturbations using the Wasserstein
distance. By casting the robust RL problem as a
multi-objective optimization problem, multi-objective
bayesian optimization[28] is also introduced to solve
the robust RL problem. Furthermore, based on RARL,
the RAP-based approach[7] uses multiple adversarial
agents for perturbations. Although these aforementioned
methods achieve promising performances, they neglect
to control perturbation difficulty and opportune time for
the current policy, which might cause failures for robust
RL.

Adversarial examples and attacks have been used in
other learning problems. For instance, a method of
using learning robust classifiers in supervised learning
is performed through GANs[29]. In our work, we
use LSGAN to generate perturbations automatically.
Compared with the traditional GAN framework, LSGAN
uses the least squares loss[30] in the objective function
instead of the cross-entropy loss[31] to achieve a stable
training performance. However, it is still unclear how
to use the GAN-based model to generate automated
perturbations of appropriate difficulty in progressive
tasks.

5.2 Curricular learning

Curricular learning strategies have been successfully
employed in all areas of learning problems and in a
wide range of tasks. As a meta-learning methodology,
curricular learning starts with learning how to solve a
problem from simple examples and gradually increasing
the complexity of examples in different thresholds. In
recent studies, the teacher-student curricular learning
framework[32] shows that curricular learning improved
the performance of the training. Another curricular
learning framework Mix&Max[33], shows that the
curricular learning framework can also decrease the
sample complexity of the training process.

As a number of studies have proven that curricular
method is well adapted to RL, there is also a growing
trend of introducing curricular settings into multi-task
RL. Previous works[34, 35] have explored the idea of
using curricular learning by artificially designing the

curricula, in which the learned policy is closely related
to the curricular design. Most curricular learning in
RL still relies on fixed pre-specified sequences of
tasks[36]. Recent research proposed a method to train
a policy that generalizes to a set of continuously
parameterized tasks[13] but only concentrates on specific
environments. In our work, we shape the learning
process by continually creating new challenging tasks
for agents to adapt to, thereby facilitating the acquisition
of efficient policies.

In addition, taking the CarRacing scenario as an
example, in safety-critical applications, existing safe RL
methods make an agent rely on priors to avoid dangerous
situations with high probability, but the probabilistic
guarantees and smoothness assumptions inherent in the
priors are not viable in many scenarios. To prevent such
problems, in our work, we introduce a GAN to produce
tasks that are always at the appropriate level of difficulty
for the agent, thus automatically producing a curriculum.

6 Conclusion

In this study, we focus on the robust RL problem. There
are two main challenges, one of which is how to design
reasonable perturbations, and the other is how to control
perturbation difficulty and opportune time. To address
these challenges, we make the first attempt to treat robust
RL as multi-task learning for controlling perturbation
difficulty and opportune time for the current policy.
We propose CRRL, an approach to curricular robust
RL, which realizes curricular learning across multiple
progressive tasks. Particularly, to realize the automated
difficulty-aware task generation, the mechanisms of task
difficulty measurement are developed based on LSGAN.

To the best of our best knowledge, we conduct
extensive experiments on all state-of-the-art robust RL
algorithms including TPRO, RARL, and RAP in typical
benchmarks. We analyze the experimental results on
various aspects including training stability and RL
performance. The experimental results have shown the
advantages of our method in terms of robustness.
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