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Thermal-Aware on-Device Inference Using Single-Layer
Parallelization with Heterogeneous Processors

Jinghui Zhang�, Yuchen Wang, Tianyu Huang, Fang Dong�, Wei Zhao, and Dian Shen

Abstract: Numerous neural network (NN) applications are now being deployed to mobile devices. These applications

usually have large amounts of calculation and data while requiring low inference latency, which poses challenges to

the computing ability of mobile devices. Moreover, devices’ life and performance depend on temperature. Hence, in

many scenarios, such as industrial production and automotive systems, where the environmental temperatures are

usually high, it is important to control devices’ temperatures to maintain steady operations. In this paper, we propose

a thermal-aware channel-wise heterogeneous NN inference algorithm. It contains two parts, the thermal-aware

dynamic frequency (TADF) algorithm and the heterogeneous-processor single-layer workload distribution (HSWD)

algorithm. Depending on a mobile device’s architecture characteristics and environmental temperature, TADF can

adjust the appropriate running speed of the central processing unit and graphics processing unit , and then the

workload of each layer in the NN model is distributed by HSWD in line with each processor’s running speed and the

characteristics of the layers as well as heterogeneous processors. The experimental results, where representative

NNs and mobile devices were used, show that the proposed method can considerably improve the speed of the

on-device inference by 21%–43% over the traditional inference method.
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1 Introduction

Recent years have witnessed the rapid progress in neural
networks (NNs)[1], which have made many new services
become a reality. Meanwhile, with the massive use of
mobile devices, more NN services are now deployed
in mobile devices, such as mobile phones and smart
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cameras. With the help of virtual assistants, such as
Google Assistant[2] and Apple Siri[3], users can convert
words into commands. Computer vision[4] applications
could recognize pictures and classify them into different
categories. Furthermore, NN services are widely used
in industrial production, with images and vibration
signals collected by intelligent sensors, and functions,
such as object surface detection and system fault
diagnosis, can be deployed without manual operation[5].
Running NN inference efficiently on mobile devices has
become significant with such widespread applications,
and the diversity of application scenarios has raised
various requirements to the service deployment[6, 7].
Traditionally, mobile devices use sensors, such as
cameras and radars, to collect surrounding information,
and then perform inference tasks. To be concrete, the
computation-intensive parts could be sent to the cloud
center (Fig. 1a) or partially processed on local device
and then the cloud center process the intermediate data
(Fig. 1b). It is possible that some mobile devices with
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Fig. 1 An illustration of how the computation-intensive
inference tasks are performed in three existing inference
methods.

accelerators available for the application to perform
the complete inference tasks locally (Fig. 1c). To meet
the high responsiveness requirement of mobile services,
the cloud center with abundant computing resources
runs all or part of the inference task and transmits
the results to the mobile device. However, sending
these messages to the cloud side might lead to privacy
disclosure, which would affect users’ safety. Although
the cloud centers could quickly perform computing tasks,
the performance of such a mode is largely affected
by the bandwidth. When the wireless network delay
is high, it will take a long time to transmit data
between the mobile device and the cloud computing
center, which could lead to catastrophic consequences. In
the case of high-performance mobile system-on-chips
(SoCs), current mobile devices are usually equipped
with multiprocessors, such as the central processing
unit (CPU) and graphics processing unit (GPU), which
allows employing on-device inference and executes the
entire NN model on mobile devices with their builtin
processors.

However, as current mobile devices are more energy
efficient, the single processor on them is usually not
powerful enough and cannot meet the delay requirement.
Therefore, using multiprocessors on mobile devices to
cooperatively accelerate the NN inference is a potential
option. Particularly, although numerous parallelism
algorithms, such as data parallelism[8] and model
parallelism[9], have conducted considerable work on
parallelism for NN models, little work has focused on

parallelizing NN models with heterogeneous processors
in one device, especially when there is only single NN
layer.

In addition, as NN services are deployed in a
wide variety of scenes, many constraints besides
latency should be considered. Taking the industrial
production scenario as an example, image recognition
applications deployed on smart cameras are often used
in these scenarios to check product quality. However,
as the ambient temperature is usually high in such
an environment, devices can be easily overheated,
consequently causing degraded performance and even
shortened device life. Hence, it is important to control
the service power consumption and reduce the device
temperature. In this study, considering a scenario where
the working temperature of the device has a limit, we
proposed an algorithm to accelerate the NN inference
with heterogeneous processors on one mobile device.
First, we proposed a dynamic power model to capture
the effect of the inference execution and the ambient
temperature on the device’s temperature. Second, we
classified the layers in the NNs according to the
characteristics of the layers. Then, we distributed the
workload of the layer to heterogeneous processors
according to the computing characteristics of the
layers and the computing ability of different processors
on the device. Finally, we built our thermal-aware
heterogeneous inference model to set the workload of
each layer and the running speed of the heterogeneous
processors.

The remainder of this paper is organized as follows.
Section 2 discusses related works. Section 3 reviews
the NN backgrounds and the integrated architecture
in mobile devices. Section 4 describes the dynamic
channel-wise parallelizing inference algorithm for
mobile devices. Section 5 shows the evaluation results.
Section 6 concludes this paper.

2 Related Work

2.1 Accelerating the inference on mobile devices

As recent mobile SoCs are equipped with diverse
computing resources, such as CPUs and GPUs, running
the NN inference on mobile devices has become
a promising option. However, as those processors
on mobile devices usually have weak computing
power, some existing mobile NN frameworks utilize
multiprocessors to execute the NN models. The
multicolumn deep neural network[10] distributes multiple
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inputs to different processors and lets them run the
inference separately. Therefore, it could meet the overall
latency requirement of multiple tasks, but the single-
input latency gets bounded by the single-processor
performance as each input is processed by a single
processor. In Ref. [11], each layer was executed
on different processors to achieve low latency. By
distributing layers, not inputs, the single-input latency
can decrease. However, as each layer is still processed
by a single processor, the single-input latency is
still bounded. By simultaneously utilizing diverse
heterogeneous processors on a mobile device and
by performing computations using processor-friendly
quantization, the �Layer[12] accelerates each NN layer,
but it does not consider the different computing powers
of processors on mobile devices and their occupancy
rate.

2.2 Heterogeneous multiprocessor computing

FinePar[13] considers the architectural differences of
the CPU and GPU on an integrated architecture and
leverages fine-grained collaboration to accelerate matrix
computation. It considers the different computing
characteristics of those processors and separates the
computing task. However, it mainly considers traditional
computing tasks, such as graph calculation, but lacks
research on the NN computing.

2.3 Thermal-aware resource management
frameworks

Many studies have focused on temperature control
in devices during task execution. In Ref. [14], the
impact of the CPU frequency on the device temperature
was observed, and a federated learning model training
framework was proposed. C2RM[15] paid attention
to the energy efficiency in training NN models with
heterogeneous computing. Furthermore, RTTRM[16]

realized thermal and timing constraints under dynamic
temperature variations in an automotive microcontroller.
However, these works mainly focused on the temperature
consumption in large clusters and ignored the case of
mobile devices. In addition, the methods mentioned
above aimed at reducing the power consumption, even
at the cost of accuracy loss, which is not reasonable in
practical applications.

3 Background

3.1 NNs

NNs can learn how to perform tasks without task-specific

procedures or rules[1]. Each neuron multiplies signals by
the weights of the associated connections, applies some
nonlinear functions on the sum of the multiplication
outputs, and then transmits the output to other neurons.
NNs can perform artificial intelligence applications, such
as face recognition and natural language processing. In
practice, training an NN refers to the process of adjusting
the weights to improve the accuracy of the network.
As mobile devices usually use a pretrained model to
perform the inference task, in this study, we focused
on the inference process. Among various types of NNs,
we mainly focused on convolutional neural networks
(CNNs)[17] as they are widely used in mobile devices
and have various applications.

3.2 CNN layers

A CNN comprises an input layer, an output layer, and
multiple hidden layers. The hidden layers typically
consist of a stack of convolution, pooling, and fully
connected (FC) layers. The convolution (Conv) layer
is the core building block and consumes most of the
computation time in a CNN model (e.g., 73.8% for
VGG-16[18] and 99.93% for YOLOv2[19]). The layer’s
parameters comprise a set of learnable filters (or kernels),
which have a small receptive field, but they extend
through the full depth of the input volume. Additionally,
the pooling layer’s function progressively reduces the
spatial size of the representation to reduce the number
of parameters and the computation in the network, and
hence to control overfitting. In the FC layers, all outputs
are connected to every activation unit of the next layer.
In most popular machine learning models, the last few
layers are the FC layers that compile the data extracted
by previous layers to form the final output. They are the
most time-consuming layers except the Conv layer.

3.3 Integrated architecture of mobile devices

The common architectures of present computing
devices, e.g., computers and servers, usually contain
powerful computing processors, such as CPUs and
GPUs, which are separately equipped with memories.
In this architecture, users can utilize different
processors to perform complex computing tasks.
Nevertheless, as these powerful processors have their
own memories to speed up their computational efficiency,
transmitting data between different memories while
using multiprocessors takes a long time. However, the
situation is quite different in mobile devices, such as
smartphones or Raspberry Pi. Although the processors in
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mobile devices are not as powerful as those in advanced
servers, the transmission of data takes less time due to
the sharing of the memory (Fig. 2), which makes using
multiprocessors to run computing tasks closer to reality.

4 Thermal-Aware Channel-Wise Heterogeneous
Inference Algorithm

4.1 Dynamic power model

For a mobile device D, we define f C
clock

and f G
clock

(in
cycle/s) as the clock frequency of the CPU and GPU on
D. The computing speeds of the CPU and GPU can be
defined as f C D f C

clock
� nC and f G D f G

clock
� nG ,

respectively, where nC and nG are the numbers of
CPU and GPU floating point operations per second per
cycle, respectively. According to Ref. [20], the power
consumption of a processor can be modeled as a function
of the clock frequency: P processor D 	.fclock/

3

where the coefficient 	.in W=.cycle � s�1/3/ depends on
the chip architecture and fclock is the clock frequency.
Using this model, the power consumptions of the CPU
and GPU on D can be defined as follows:

PC
D 	C .f C

clock/
3
D � C .f C /3 (1)

PG
D 	G.f G

clock/
3
D � G.f G/3 (2)

where � C D 	C=.nC /3 and � G D 	G=.nG/3.
In Ref. [21], the relationship between the device’s

leakage power consumption (P idle) and the temperature
(Teno) can be expressed by a linear function:

P idle
D V.ˇ1Teno C ˇ0/ (3)

where ˇ1 and ˇ0 are device-dependent constants and
V is the voltage of the device. Therefore, the power
dissipation of the device can be expressed as:
P DP idle

C PC
C PG

D

V.ˇ1TenoCˇ0/C�
C .f C /3C� G.f G/3 (4)

Suppose the initial temperature of the device is T .0/,
at time t , the temperature of the device is as follows:

Fig. 2 Integrated architecture of mobile devices and data
exchange with dynamic random-access memory (DRAM).

T .t/ D T .0/e�
t

RC C.Teno.t/CPR/
�
1 � e�

t
RC

�
(5)

whereR and C are the thermal resistance and capacitance,
respectively, and Teno.t/ is the environmental temperature
at time t . The steady temperature of the device is defined
as follows:

T .1/ D Teno.1/C PR D

Teno.1/C .P
idle
C PC

C PG/R D

.1C VRˇ1/Teno.1/CR�
C .f C /3C

R� G.f G/3 C VRˇ0 D

˛1 � Teno.1/C ˛2 � .f
C /3 C ˛3 � .f

G/3 C ˛0

(6)
where coefficients ˛0 D VRˇ0, ˛1 D 1C VRˇ1, ˛2 D

R� C , and ˛3 D R�
G , respectively.

To ensure that the device works properly, T .1/
should always be kept lower than Tmax , which
is the maximum normal operating temperature. In
consequence, the computing speeds of the CPU .f C /

and GPU .f G/ should comply with the following
constraint:

˛2.f
C /3C˛3.f

G/3 6 Tmax �˛1Teno.1/�˛0 (7)

4.2 Channel-wise parallelism

Now that the cooperative single-layer acceleration has
a high potential, mobile devices could distribute the
computation of a single CNN layer to the CPU and
GPU in a way that maximizes the performance gains.
Because the Conv layer and the FC layers perform a
similar pattern of computation, we divided our channel-
wise parallelism in CNN models into two categories and
mainly focused on the parallelism of these layers. As
shown in Fig. 3a, for the Conv and FC layers, the filters
are distributed to the CPU and GPU, while the input
data are shared as the filters extend through all the input
channels. Using the distributed filters and shared input
data, the CPU and GPU generate their portions of the
output channels. The generated output channels are then
merged to form complete output data. As the filters are
distributed with no overlaps, no redundant calculations
would be generated.

For pooling layers (Fig. 3b), because the global
function is spatially applied, the input data are distributed
across channels. Then, the CPU and the GPU perform
their tasks on their portions and generate their parts of the
output data. Later, the output data are merged. Similar
to the Conv and FC layers, no redundant calculations
would be generated for the pooling layer.
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(a) Conv and FC layers

(b) Pool parallelism

Fig. 3 An illustration of channel-wise parallelism for Conv,
FC, and pooling layers.

4.3 Layer workload distribution to heterogeneous
processors

Given a CNN modelG with n layers, L D fl1; l2; :::; lng
is the set of the layers in G and li 2 L is
the i-th layer. W D fW1; W2; : : : ; Wng is the
workload of the inference, and Wi 2 W denotes
the workload of the Layer li . While running li with
one processor, the latency of this layer is Wi

f C for

the CPU and Wi

f G for the GPU. By contrast, in the
parallelization method, we divided the workload W into
two parts: W C D fW C

1 ; W
C

2 ; : : : ; W
C

n g and W G D

fW G
1 ; W

G
2 ; : : : ; W

G
n g, for the workload Wi in Layer li ,

i.e., Wi D W
C

i CW
G

i ; i 2 f1; 2; : : : ; ng.
For Conv and FC layers, suppose the number of the

filters in this layer is N , in the channel-wise parallelism
method, the CPU and GPU will execute the computing
task with NC and NG filters, respectively. Then, the
workloads of the CPU and GPU are as follows:

W C
i D

NC

N
�Wi (8)

W G
i D

NG

N
�Wi (9)

For pooling layers, supposing that the number of the
input data’s channels is M , the CPU and GPU will
execute the computing task with MC and MG channels,
respectively. Then, the workloads of the CPU and GPU
are as follows:

W C
i D

MC

M
�Wi (10)

W G
i D

MG

M
�Wi (11)

Therefore, we could get the inference latency with the
parallelization method for Layer li :

tPi D max

(
W C

i

f C
;
W G

i

f G

)
C tmi (12)

where tmi 2 tm, tm D ftm1 ; t
m
2 ; : : : ; t

m
n g is the time

for merging the output of each processor in Layer li .
Note that a maximum value is taken here since the
overall inference latency of heterogeneous processors is
determined by the slower one.

Clearly, when
W C

i

f C
D

W G
i

f G
, the inference latency

of Layer li with the parallelization method would be
minimized. Therefore, the shortest inference time for
Layer li is

ti D min
n
tPi ; t

C
i ; t

G
i

o
(13)

where tCi D
Wi

f C
and tGi D

Wi

f G
are the inference

latencies using only the CPU and GPU, respectively.

4.4 Thermal-aware workload distribution and
dynamic adjustment

Although we had determined the theoretical minimum
inference latency of each layer in the previous section,
we had to consider other constraints, such as the
temperature of the devices and the maximum running
speed of the processors. Considering the constraints
in a real environment, we formulated the workload
distribution as an optimization problem subject to the
following constraints:

arg min
W C; W G; f C; f G

nX
iD1

ti

s.t. ti D minftPi ; t
C
i ; t

G
i g; 8i 2 f1; 2; : : : ; ngI

˛2.f
C /3 C ˛3.f

G/3 6 F I

t
p
i D

W C
i

f C
D
W G

i

f G
; 8W C

i 2W
C ; 8W G

i 2W
G
I

tCi D
Wi

f C
; 8Wi 2 W I

tGi D
Wi

f G
; 8Wi 2 W I

F D Tmax � ˛1Teno.1/ � ˛0I

Wi D W
C

i CW
G

i ; W
C

i > 0;W
G

i > 0I

f C 6 f C
maxI

f G 6 f G
max (14)

where f C
max and f G

max are the maximum running speeds
of the CPU and GPU in device D, respectively.
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To achieve the optimization objective in Formula (14),
the running speeds of the CPU and GPU should be set
first based on the maximum operating temperature limit
of the device and the maximum floating point operation
speed limit of the CPU and GPU, to maximize the
computing power of the device and keep the device work
steadily. We proposed an algorithm called the thermal-
aware dynamic frequency (TADF) algorithm to derive
f C and f G .

Algorithm 1 presents our TADF method. With an NN
model G to device D, we first set the running speeds
of the CPU and GPU in D as the maximum speeds,
f C

max and f G
max; under the environments temperature

Teno, we could derive the power consumption of P .
The initial P is calculated by Eq. (6) to examine if the
device temperature would exceed the maximum working
temperature (Tmax), while the device could work
steadily with the maximum working speed. Accordingly,
f C and f G will be set as f C

max and f G
max , respectively.

Otherwise, f C and f G will be adjusted until the device
can work steadily.

Algorithm 1:�Thermal-aware dynamic frequency (TADF)
algorithm

Input: Maximum computing speeds of CPU f C
max and GPU

f G
max , stand-by power consumption P idle , the

maximum operating temperature Tmax ,
environmental temperature Teno, coefficients ˛0, ˛1,
˛2, and ˛3;

Output: Running speeds of CPU (f C ) and GPU (f G);
1 if ˛2.f

C
max/

3 C ˛3.f
G

max/
3 6 Tmax � ˛1Teno � ˛0 then

2 f C  f C
max , f G  f G

max

3 else
4 f C

low
 0, f G

low
 0

5 f C
high

 f C
max , f G

high
 f G

max

6 f C  
f C

max

2
, f G  

f G
max

2

7 while ˛2.f
C

max/
3 C ˛3.f

G
max/

3 … ŒF � �; F � do
8 if ˛2.f

C
max/

3 C ˛3.f
G

max/
3 > F then

9 if 3
p
˛2f

C > 3
p
˛3f

G then

10 f C
high

 f C, f C  
f C

low
Cf C

high

2

11 else

12 f G
high

 f G, f G  
f G

low
Cf G

high

2

13 else if 3
p
˛2f

C > 3
p
˛3f

G then

14 f G
low
 f C, f G  

f G
low
Cf G

high

2

15 else

16 f C
low
 f C, f C  

f C
low
Cf C

high

2

17 return f C, f G

Second, with the fixed f C and f G , each layer’s
inference latency in three methods, namely, CPU-only,
GPU-only, and CPU-GPU parallelization method, will
be calculated. Consequently, the best inference method
for each layer and the workload distribution will be
determined. Algorithm 2 shows the workload allocation
method.

5 Experiment

We implemented and evaluated our algorithm on a
mobile device. In this section, we present our results.
Our evaluation focuses on whether the algorithm
can reduce the inference latency on-device while
guaranteeing the thermal constraints. We use three
benchmarks: Inference with the CPU only, inference
with the GPU only, and a coarse-grained workload
partitioning method called CGP[22]. In the third method,
the workload is distributed to the CPU and GPU
with a fixed ratio without considering the processor’s
computing ability.

5.1 Experimental setup

NNs: We use AlexNet and VGG16 to test the
performance of the four kinds of inference methods,
because they have a small number of parameters
and computations and are suitable for mobile device
inference. AlexNet has five Conv layers, three pooling
layers, three FC (linear) layers, and a softmax layer to
determine the probabilities of each category. Moreover,

Algorithm 2:� Heterogeneous-processors single-layer
workload distribution (HSWD) algorithm

Input: The set of the layers L, the workload set of each layer
W , running speeds of CPU (f C ) and GPU (f G);

Output: The set of the each layer compution in CPU W C ,
the set of the each layer compution in GPU W G ;

1 for i D 1; 2; : : : ; n do
2 W G

i
 

Wi f C

f GCf C

3 W C
i
 

Wi f G

f GCf C

4 if minftP
i
; tC

i
; tG

i
g D tP

i
then

5 break

6 else if minftP
i
; tC

i
; tG

i
g D tC

i
then

7 W C
i
 Wi

8 W G
i
 0

9 else
10 W C

i
 0

11 W G
i
 Wi

12 return W C , W G
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a rectified linear unit (ReLU)[23] layer was placed after
each Conv layer and FC layer to increase the nonlinearity.
As the cost of the ReLU layer and softmax layer is almost
negligible, we mainly parallelized the inference in the
Conv layer, FC layer, and pooling layer. VGG16 has 13
Conv layers, five pooling layers, three FC layers, and a
softmax layer.

Platforms: We measured the performance of the
parallelization methods on Nvidia Jetson Nano[24] (see
Fig. 4), as it has an integrated CPU/GPU architecture
and is suitable for our experiments. Nano has an ARM
Cortex-A57 MPCore CPU with four cores, a GPU
equipped with NVIDIA Maxwell framework and 128
NVIDIA CUDA cores, a memory size of 4 GB, and an
Ubuntu 18.04 system. Nano supports two power modes:
MaxN (10 W) and 5W (5 W). The parameters of each
mode are shown in Table 1. We used PyTorch[25] to build
the network model.

Fig. 4 Photo of Nvidia Jeston Nano.

5.2 Impact of temperature on the device’s
frequency

We first observed the impact of the environment on
the device’s frequency. We ran stress-ng[26], a stress
test tool to test the CPU and GPU frequencies after a
long-time operation. As shown in Fig. 5a, under a room

Table 1 Predefined parameters of Jeston Nano under two power modes.

Mode name Power budget (W) Model ID
Number of

online CPUs
CPU max frequency

(MHz)
GPU max frequency

(MHz)
Number of GPU texture

processing clusters
MaxN 10 0 4 1479 921 1

5W 5 1 2 918 640 1

(a) 20 ıC MaxN (b) 40 ıC MaxN

(c) 40 ıC 5.5W (d) 40 ıC TADF

Fig. 5 CPU and GPU clock frequencies under different environmental temperatures.
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temperature of approximately 20 ıC and device mode
of MaxN, the device’s temperature increases as the tool
runs. The CPU can steadily run with a max frequency
of 1.5 GHz when the device’s temperature goes up to
approximately 80 ıC. The same outcome happens with
the GPU, whose max frequency is 921 MHz. However,
when the environmental temperature turns to 40 ıC,
the device temperature would increase to over 90 ıC;
under such temperatures, the CPU and GPU frequencies
declined, as shown in Fig. 5b. We then turned the
device mode to 5 W, as shown in Fig. 5c; under such
a mode, the CPU and GPU can run steadily, and the
device temperature can be kept below 80 ıC. Under 5W
mode, the device can work without frequency decline,
but it cannot reach the maximum performance under
the environmental temperature. Figure 5d shows the
CPU and GPU frequencies set by the TADF algorithm.
The CPU and GPU frequencies were set as 1050 and
921 MHz, respectively, after a long-time operation.
The device temperature was kept below 85 ıC, and the
device ran steadily, which proves the effectiveness of
our method.

5.3 Comparison of the inference latencies

After setting the CPU and GPU frequencies with TADF,
we then compared the inference latencies of AlexNet
and VGG16 with our heterogeneous-processor single-
layer workload distribution (HSWD) algorithm and three
benchmarks to verify the effectiveness of our method.
The CPU and GPU frequencies were 1050 and 921 MHz,
respectively, which was set by the TADF algorithm,
as mentioned in Section 4. We first ran the inference
multiple times with four methods to derive the average
inference latency of each method. As shown in Fig. 6,
because the architecture of the GPU is highly suitable for
matrix computation, the latency of the GPU inference

is lower than that of the CPU. In addition, as the
CGP method uses the CPU and GPU to accelerate the
inference, its latency is lower than that of the single-
processor inference methods. However, as the workload
was not well distributed to processors according to their
computing ability and the layers’ characteristics, its
performance shows only a marginal advantage compared
with the GPU-only method.

Compared with the benchmarks, the HSWD algorithm
can choose the best method for each layer according to
the architecture and data, hence it could achieve the
lowest inference latency for each layer. As shown in
Fig. 6, HSWD achieves the lowest latency in the two
NNs. In AlexNet, the average inference latencies of the
GPU-only, CPU-only, and CGP methods are 724, 845,
and 592 ms, respectively, whereas the average inference
delay of the HSWD method is 465 ms. Compared with
the traditional method, the HSWD method can achieve
a 21%–36% latency reduction. In VGG16, the average
inference latencies of the GPU-only, CPU-only, and
CGP methods are 1954, 2170, and 1638 ms, respectively,
whereas the average inference latency of the HSWD
method is 1117 ms. Compared with the traditional
method, the HSWD method can achieve a 32%–43%
latency reduction.

Figure 7 shows the inference latencies per layer
of the four methods. In most layers, the GPU-only
method runs faster than the CPU-only method, whereas,
in a few layers, the situation is the opposite. The
CGP method cannot optimally adjust the workload
distribution of each layer so that it fails to achieve the
best performance. Moreover, in some layers, because
the workload distribution is not that reasonable, the
additional overhead resulting from merging the data
of the output from the two processors leads to a
longer latency than that of the single processor-only

(a) AlexNet latency (b) VGG16 latency

Fig. 6 Comparison on the inference latencies of different methods.
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(a) AlexNet latency of each layer (b) VGG16 latency of each layer

Fig. 7 Break-down of the inference latencies for each layer of the four methods.

methods. This situation indicates that only by selecting
the appropriate inference method according to the
characteristics of the single layer can the inference
latency be minimized. In each layer, the HSWD method
achieves the lowest latency. When the amount of
computation is larger, the effect of the decrease of
latency is more obvious. Especially in Conv4 and
Conv7 in VGG16, the HSWD method achieves almost
a 50% latency decrease, as compared with the large
computation amount. The extra delay caused by the
merging of data can be ignored.

6 Conclusion

In this study, we investigated the characteristics
and requirements of mobile device inference. We
identified the existing methods to determine whether the
inference has disadvantages and cannot make full use
of the computing resource on mobile devices. Existing
methods have not paid attention to the influence of
environmental implications, such as temperature. To
solve this problem, we proposed a thermal-aware
channel-wise heterogeneous inference algorithm, which
contains two parts: The TADF algorithm and the HSWD
algorithm. TADF is to set the CPU and GPU frequencies
according to the environmental temperature and device
performance, thereby ensuring the stable operation of
devices in a high-temperature environment. HSWD can
allocate the computing task to heterogeneous processors
on mobile devices under the temperature constraint
(Formula (7)) so as to minimize the inference latency.
The experiment results verify that our method can
significantly decrease the inference latency and maitain
running stability.
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