
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 09/18 pp93–104
DOI: 10 .26599 /TST.2021 .9010087
Volume 28, Number 1, February 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Multiuser Computation Offloading for Long-Term Sequential Tasks
in Mobile Edge Computing Environments

Huanhuan Xu, Jingya Zhou�, Wenqi Wei, and Baolei Cheng

Abstract: Mobile edge computing has shown its potential in serving emerging latency-sensitive mobile applications

in ultra-dense 5G networks via offloading computation workloads from the remote cloud data center to the nearby

network edge. However, current computation offloading studies in the heterogeneous edge environment face

multifaceted challenges: Dependencies among computational tasks, resource competition among multiple users, and

diverse long-term objectives. Mobile applications typically consist of several functionalities, and one huge category

of the applications can be viewed as a series of sequential tasks. In this study, we first proposed a novel multiuser

computation offloading framework for long-term sequential tasks. Then, we presented a comprehensive analysis of

the task offloading process in the framework and formally defined the multiuser sequential task offloading problem.

Moreover, we decoupled the long-term offloading problem into multiple single time slot offloading problems and

proposed a novel adaptive method to solve them. We further showed the substantial performance advantage of our

proposed method on the basis of extensive experiments.

Key words: mobile edge computing; sequential tasks; computation offloading; dependency

1 Introduction

The rapid growth of mobile devices (MDs) has brought
us to the era of network interconnections of all things,
and the demand for low-latency mobile applications
is soaring. However, the computational capabilities
of MDs are insufficient to support the real-time
requirements of these applications because of MDs’
inherent limitations, such as limited battery capacity,

�Huanhuan Xu, Jingya Zhou, and Baolei Cheng are with the
School of Computer Science and Technology, Soochow University,
Suzhou 215006, China. E-mail: 20195227020@stu.suda.edu.cn;
jy zhou@suda.edu.cn; chengbaolei@suda.edu.cn.
� Jingya Zhou is also with the State Key Laboratory of

Mathematical Engineering and Advanced Computing, Wuxi
214125, China, and the Provincial Key Laboratory for Computer
Information Processing Technology, Soochow University,
Suzhou 215006, China.
�Wenqi Wei is with the School of Computer Science, Georgia

Institute of Technology, Atlanta, GA 30332, USA. E-mail:
wenqiwei@gatech.edu.
�To whom correspondence should be addressed.

Manuscript received: 2021-10-25; accepted: 2021-11-08

limited context awareness, and system architecture[1, 2].
For example, to ensure the quality of service and prevent
the users from feeling dizzy and sick, the virtual reality
system not only needs to transmit high-resolution images
with a frame rate of more than 120 frames per second but
also needs to complete computation-intensive tasks, such
as target recognition and virtual holographic projection
modeling[3].

As a promising trend, mobile edge computing (MEC)
is capable of handling the challenging requirements of
these emerging applications. To provide low-latency
services for users, MEC allows users to offload their
tasks to nearby MDs through a wireless access network.

By making full use of idle resources around users,
MEC builds a carrier-grade service environment that
enables users to enjoy an elastic, high-quality network
experience[4]. However, compared with centralized data
centers, edge clouds usually cannot provide powerful
computation capacity because MDs are lightweight, and
the wireless resources are limited and can be jammed
when many users try to offload their tasks simultaneously.

94 Tsinghua Science and Technology, February 2023, 28(1): 93–104

Therefore, the limited resources must be jointly managed
to exploit the potential of MEC.

As a key component in MEC, computational
offloading allocates computational tasks from MDs to
edge servers. Computation offloading has a significant
impact on system performance and can alleviate MDs’
deficiencies in energy efficiency, resource storage, and
computational performance[5–7]. By looking for a nearby
MEC server for task offloading, mobile users with
limited resources can save energy and optimize their
experience[5].

Numerous efforts have been exerted in developing
efficient computation offloading strategies, aiming to
improve the system performance of MEC. They have
reduced energy consumption and processing delay
effectively or made a trade-off between them by selecting
task offloading decisions flexibly[8–10]. For instance, by
adopting a graph to model the dependencies among
tasks, the task offloading strategy proposed in Ref. [6]
optimizes the application delay. The task scheduling
strategy is put forward for local and edge offloading
in Ref. [11] by utilizing the Markov decision process
method and achieves a short average execution delay.

To utilize computation offloading efficiently in MEC,
many issues remain in real mobile application scenarios:

(1) Heterogeneity: MEC servers are typically
lightweight and heterogeneous, which means they are
along with different data formats, latency requirements,
computation resources, and management. These factors
explain why MEC servers are massively deployed
on edge networks and often come from multiple
service providers. Thus, they have different performance
in accomplishing data storage, computation, and
transmission. The heterogeneity of MEC servers leads
to high uncertainties in task execution cost and task
execution efficiency and becomes a bottleneck for
computational tasks.

(2) Multiuser: Most existing studies focus on
single-user task offloading and ignore the resource
competition problem in multiuser scenarios. Specifically,
the competition among MDs leads to low wireless rates
in the network and long queuing times on edge servers.
Therefore, developing an effective offloading strategy
is necessary to meet the user demand and improve
the utilization of the computational resources of MEC
servers.

(3) Dependency: Many mobile applications, such as
online games, consist of a set of consecutive dependent
tasks. However, existing works pay attention to the

computational offloading of independent tasks rather
than dependent tasks and fail to address the task-
dependency challenge. Moreover, multiuser scenarios
make the offloading problem more challenging than
usual. For example, Google Project Glass is equipped
with augmented reality technology that includes the
following functional modules: Video capture, video
parsing, target recognition, content mapping, video
synthesis, and real-time display. These functions must
be executed in strictly sequential order. Among them,
video parsing and content mapping put high demand on
computational resources, and offloading them to edge
servers can effectively reduce the processing latency of
the whole application.

(4) Long-term execution: Most existing studies
are about the static offloading scenario where the
optimized offloading strategy is determined before the
task execution and ignores the existence of the long-term
execution of sequentially dependent tasks. Dynamic
events, such as task departure, subsequent task arrival,
and computing resource changing, make it even difficult
to deal with long-term execution.

To address the above issues, we proposed a
multiuser computation offloading framework for long-
term sequential tasks (MCO-LST) in MEC environments.
Specifically, we focused on adaptive offloading
for multiple users’ long-term sequential tasks. The
offloading model is based on multiple time slots, and
in each time slot, the local offloading strategy is
optimized adaptively. Note that the sequential tasks
are interdependent, and their execution spans multiple
time slots so that the optimization of each time slot is
not independent of others. Our main contributions are
summarized as follows:

(1) We proposed a novel framework MCO-LST for
multiple users to optimize the long-term sequential tasks
offloading problem in heterogeneous MEC environments.
In this framework, we reduced the system delay by
optimizing the offloading strategy for multiple time slots.
To the best of our knowledge, this study is the first to
consider several challenging issues in MEC, including
heterogeneity, multiuser, sequential dependency, and
long-term execution.

(2) We proposed the method with multiple time slots
for further system delay reduction. We converted long-
term computational offloading into a multi-time slot
optimization problem and optimized the current optimal
offloading strategy for each time slot adaptively.

(3) We conducted extensive numerical experiments

Huanhuan Xu et al.: Multiuser Computation Offloading for Long-Term Sequential Tasks in Mobile Edge : : : 95

to evaluate the effectiveness of our proposed scheme.
The results show that it not only reduces the average
delay but also improves the system scalability, compared
with the conventional offloading strategies and improved
Hungarian algorithm without updating a strategy
adaptively.

The rest of this paper is summarized below. Section 2
presents the related work. Section 3 introduces
the MCO-LST model and the problem formulation.
Section 4 describes the adaptive multiuser sequential task
(AMUST) offloading algorithm. Section 5 provides the
performance evaluations. Finally, Section 6 concludes
the paper.

2 Related Work

Many efforts have been devoted to computation
offloading problems, and many solutions have been
proposed. However, the problem of dependent task
offloading in MEC is more complex, and only a few
studies have paid attention to the dependency constraints
imposed by sequential tasks.

Deng et al.[12] considered a real-world application that
comprises a task set and has a delay constraint, and they
also proposed a fine-granularity offloading strategy that
aims to reduce energy power. Kao et al.[13] studied how
to offload dependent tasks under resource constraints
and designed an algorithm with a polynomial-time
approximation to minimize the maximum completion
time. Al-Habob et al.[14] considered parallel and
sequential task offloading to multiple MEC servers, and
also utilized the algorithms based on genetic algorithms
and conflict graph models to minimize offloading latency
and failure probability. Zhao et al.[15] jointly considered
dependent task offloading and service caching placement
to minimize application completion time. Liu et al.[16]

considered the problem of dependent task placement and
scheduling with on-demand function configuration on a
server, and they also proposed an approximate algorithm
to minimize the application completion time. However,
the above works did not consider the real multiuser
edge environment where multiple users fiercely compete
for limited marginal resources. The following studies
considered the multiuser offloading problem in MEC.

Dai et al.[17] explored the task offloading problem in
a data-driven manner and utilized the solution based
on an asynchronous deep Q-learning and convex theory
to reduce average service time and cost. Fan et al.[18]

proposed the offloading problem of multiuser dependent
tasks to reduce the total application cost in the system

without exceeding the limit for completion of each
application. Jošilo and Dán[19] modeled the resource
allocation problem as a Stackelberg game in an MEC
scenario with wireless devices and proposed an effective
decentralized equilibrium algorithm to reduce task
completion delay. Bi et al.[20] investigated how to find an
optimal offloading strategy to improve the system utility
and also analyzed the expectation of time complexity on
the basis of Karush-Kuhn-Tucker to derive the optimal
scheme. Chen et al.[21] explored the multiuser task
offloading problem in an MEC scenario with channel
competition and designed a computing offloading
algorithm to obtain Nash equilibrium, and they also
obtained good computation offloading performance.
However, the above works ignore the long-term dynamic
characteristic of edge networks, which further enhances
the complexity of the offloading problem.

Zhou et al.[22] presented a model to capture the
execution of sensing tasks and leveraged the Lyapunov
optimization method to obtain the low average cost of
the system for the long term. Huang et al.[23] utilized
Lyapunov optimization to design a dynamic offloading
algorithm, which saves energy and satisfies the given
application execution time requirement. Yetim and
Martonosi[24] examined the problem of estimating the
delay tolerance of applications and used four low-
overhead and effective methods to infer the delay
tolerance of applications. Mao et al.[25] concentrated on
achieving green computing via energy harvesting (EH)
technologies, studied a green MEC system equipped
with EH devices, and designed a Lyapunov optimization-
based task offloading scheme to save energy. However,
they assumed that the latency among local processors is
negligible. Sundar and Liang[26] investigated the problem
of application offloading in a general heterogeneous
edge computing scenario where each application is
composed of multiple tasks with interdependency, they
also proposed a heuristic algorithm to obtain an effective
solution.

In this study, each MEC server has a limited workload,
and a long-term application delay concerned with data
communication, task queuing, and task execution exists,
resulting in a particular formulation of the problem that
has not been investigated in existing studies.

3 MCO-LST Framework and Problem
Formulation

In this section, we first introduce the MCO-LST
framework, including the network model, task model,

96 Tsinghua Science and Technology, February 2023, 28(1): 93–104

and task offloading model. Then, we formally define the
offloading problem.

3.1 Network model

Figure 1 shows a demonstration of typical sequential
tasks offloading in MEC environments where N MDs
are represented by set B D fb1; b2; : : : ; bN g, and
C D fc1; c2; : : : ; cKg is the set of K access points
(CAPs) with different computational capabilities. CAPs
are interconnected with high-speed networks[4], whereas
MD uses CAPs to transfer data via the single-carrier
wireless channel of orthogonal frequency division
multiple access. The channel gain is affected by shadow
fading and path loss. Each CAP can cover all MDs and
has an upper limit e on the number of accepted tasks,
which is similar to the heterogeneous edge environment
with dense MDs.

Each MD has an application to be processed,
and set D D fd1; d2; : : : ; dN g represents the mobile
applications on all MDs. Each application d 2 D
consists of a set A D fa1; a2; : : : ; aM g of M sequential
tasks. We adopt a widely used task model to describe
the m-th task on the n-th MD as �m; n.cm; n; hm; n/,
where cm; n (in unit of bit) represents the size of the
input data of the current task, which is also the size
of the data output from the previous task, and hm; n

represents the number of CPU cycles required for
task execution[27, 28]. For example, the core tasks of
virtual reality (VR) games require complex calculation,
whereas normal calculation tasks, such as general video
monitoring, are relatively simple[29]. To be more specific,
face recognition may require 2339 (in unit of cycle/bit),

Fig. 1 Demonstration of typical sequential tasks offloading
in MEC environments.

whereas video transcoding requires 200–1200 (in unit of
cycle/bit)[30].

In this study, we adopt a system-managed MEC
offloading model. This model runs in discrete time slots
T D f1; 2; : : : ; T g, and the length of each time slot is
determined by the service provider. At the beginning
of each time slot, the system manager is aware of the
current task information and device information in the
system and will offload each task to a nearby CAP for
execution. Depending on the offloading decision of the
previous task, the transmission process of the current
task may be different. The CAP may not process the
offloaded task after receiving it immediately and instead
just place it in a linear queue which follows the first-
come, first-serviced rule.

3.2 Task model

We considered that each application on an MD
can be partitioned into several tasks with sequential
dependencies, which is similar to Ref. [31]. The
application is launched from the MD, and results must
be returned to it. To model this requirement, we use
a one-way chain table to represent the sequential task
dependencies of the application, which does not lose the
generality of sequential tasks.

At each time slot, each task can be offloaded to a
nearby CAP for execution, and we defined the task
offloading variable as

xm; n 2 f1; 2; : : : ; Kg ; m 2 A; n 2 B (1)
Specifically, xm; n D k means that the m-th task on

the n-th MD is offloaded to the k-th CAP for execution.
For ease of presentation, we defined the offloading
strategies for all tasks as x D .xm; n/m2A; n2B and
the offloading strategy at the t-th time slot as x.t/. We
defined the set of tasks to be offloaded at the t-th
time slot as S.t/. We used the offloading strategy to

determine Sk.t/
�
D fm; njxm; n.t/ D kg, which is the

set of tasks offloaded to the k-th CAP at the t-th time
slot. Specifically, we defined sk.t/

�
D jSk.t/ j as the

number of tasks currently offloaded to the k-th CAP. In
addition, we defined the CPU cycles of the set of all
offloaded tasks to the k-th CAP at the current t-th time
slot as Uk.t/. Considering that the tasks on CAPs may
not be completed immediately, the task queue on the
k-th CAP at the t -th time slot is defined as Qk.t/, which
contains all the tasks to be executed.

Based on the task model mentioned above, we
formalized the delay costs of the task offloading
process, which are coupled with the long-term offloading

Huanhuan Xu et al.: Multiuser Computation Offloading for Long-Term Sequential Tasks in Mobile Edge : : : 97

strategies.

3.3 Task offloading model

The objective of task offloading in our scenario is
to minimize the total latency cost of the applications
by offloading sequential tasks on different CAPs with
limited computational resources. Next, we present our
cost model where each task completion flow comprises
three components: Execution, communication, and
queuing. To facilitate the discussions, we present
notations in Table 1.

Task execution: To analyze the delay caused by the
execution, we defined fk as the computational capacity
of the k-th CAP. The execution time of a task on the
k-th CAP is not dependent on the time slots but on the
offloading strategy, and is calculated as follows:

lex
m; n.xm; n/ D

hm; n

fk

.xm; n/ (2)

Task communication: At each time slot, the required
input data of the offloaded task are transferred depending
on the offloading decisions of the precursor task, the
current task, and the current local network environment,
from which we can calculate the communication delay.
The delay is also irrelevant to the time slots. Therefore,
according to the communication process, the task
transmission delay on the n-th MD time at the t -th time
slot is divided into the following two cases:

(1) The input data for task m are already on the k-th
CAP, that is, xm�1; n D xm; n. In this situation, no data
transfer is required, and the communication delay is

l tr
m; n.xm; n/ D 0 (3)

Table 1 Notations used in this paper.
Notation Meaning

B The set of mobile devices, B D fb1; b2; : : : ; bN g

A The set of tasks to be executed, A D fa1; a2; : : : ;

aM g

C The set of computational access points, C D fc1;

c2; : : : ; cKg

T The set of time slots of the system,
T D f1; 2; : : : ; T g

�m; n Information of the n-th MD’s m-th task

xm; n

Integer offloading variable of the n-th MD’s m-th
task

Lm; n Completion time of the n-th MD’s m-th task
r Data rate of wired link among CAPs

Sk.t/
Task set to be offloaded on the k-th CAP at the t -th

time slot
Qk.t/ Task queue of the k-th CAP at the t-th time slot
p.t/ Load vector of CAPs at the t -th time slot
q.t/ Task priority vector at the t -th time slot

(2) The input data of a task must be transmitted to
a CAP for execution, that is, xm�1; n ¤ xm; n. Given
that the fixed wired bandwidth between CAPs is r , the
communication delay is

l trm; n.xm; n/ D
cm; n

r
.xm; n/ (4)

Specifically, considering that the amount of data
returned as a result of the final application task is
generally small, we ignored the communication delay
of the result returned by the last task of the application,
similar to Ref. [21].

Task queuing: Considering that tasks may not be
executed immediately when they are offloaded to a CAP,
we needed to wait for the CAP to finish the previously
arrived tasks. Hence, we must consider the task waiting
process on the CAP, which is impacted by offloading
strategies of all time slots. Let Vk.t/ be the CPU cycles
of the task queue on the k-th CAP at the t-th time slot,
then we had

Vk.t C 1/ D Vk.t/ � fk C Uk.t/ (5)

The average queuing time of a task on the k-th CAP
at the t -th time slot can be expressed as

lqu
m; n.x/ D

Vk.t/

fk

.x.t//C
Uk.t/

sk.t/ � fk

.x.t// (6)

Given that the application completion process consists
of the execution, communication, and queuing of all
tasks, the application completion delay of the n-th MD’s
m-th task is expressed as

Lm; n.x/ D lex
m; n C l

tr
m; n C l

qu
m; n (7)

From the above task completion process and
formulation, aggressively minimizing delays from one
aspect will inevitably bring changes to the delay in other
aspects, and this impact will span time slots due to the
resource competition and dependencies among tasks.
As a result, a natural question is how to adaptively
optimize the delay impact of a real-time offload strategy
efficiently.

3.4 Problem formulation

We have explained the AMUST offloading problem from
the system perspective. Our goal is to minimize the
average application completion delay and meanwhile
satisfy the real-time requirement. The problem takes
changing tasks, wireless access, and CAP resources as
inputs to obtain an adaptive offloading strategy for multi-
device sequential tasks. Thus, the time is divided into
multiple time slots during task offloading. To achieve
this goal, the system should optimize the corresponding
offloading strategy for each time slot. Then, we gave

98 Tsinghua Science and Technology, February 2023, 28(1): 93–104

the formal definition of the task offloading problem as
follows:

minL D
NX

n D 1

MX
m D 1

Lm; n.x/

s.t. xm; n 2 f1; 2; : : : ; Kg ; 8m 2 A; 8n 2 B (8)

Our optimization goal and constraints explicitly
represent the interplay among task execution, wire
transmission, and server queue processing aspects at
each time slot. They also reflect the interdependence
among sequential tasks and drive the offloading
strategies to optimize the application completion delay
over a long period. Finally, they optimize the adaptive
offloading goal for multi-device applications with
sequential tasks.

The offloading strategies for discrete time slots are
tightly tied to task dependencies and optimization
objectives. On account of that, this nonlinear
integer programming problem includes the generalized
assignment problem at each time slot as a special case
(for a network without exceeding the CAP load upper
limit), and it is NP-hard[32]. Hence, the exact solution
cannot be obtained in polynomial time. Moreover, the
optimal solution of the formal problem requires complete
system information at all time slots, including task set
and server queue information at every time slot, which is
dynamically changing and extremely difficult to obtain
in advance. Thus, designing efficient adaptive offloading
strategies is highly desirable. In this way, the strategy can
use only the current system information to continuously
adjust to changes in the system. Therefore, we proposed
an adaptive task offloading algorithm that can efficiently
accomplish task offloading at a low-latency cost and
does not need global system information.

4 Adaptive Multiuser Sequential Task
Offloading

We now present the proposed framework on the basis of
task urgency and server load balancing. During the real-
time offloading, the complete set of network information
and the tasks of the system in a given time slot is
unpredictable. To address this challenge, we transformed
the global task offloading problem into multiple single
time slot adaptive task offloading problems to derive
locally optimal offloading strategies. Then, we propose
an auxiliary approach on the basis of task prioritization
and server load balancing. Accordingly, the system
obtains more explicit offloading preferences from the
exploration containing sequential task information and

updates the current locally optimal strategy to obtain an
improved and globally scoped one.

4.1 Local optimal offloading strategy

At each time slot in the system, there may be tasks
to be offloaded, and the system manager has to assign
appropriate CAP resources to them, which is reflected in
the offloading decisions of these tasks. Before the next
time slot arrives, only the current system information is
available. The delays of task offloading processes and
their impacts on the system are available at the end of the
current time slot, but the complete information of all the
following time slots is unknown until the corresponding
offloading decisions are made.

To well represent the variation of system conditions
and resource availability, we redefined xi .t/ D Œ0; 1;

: : : ; 0�T as the offloading variable of the i-th task to be
offloaded at a given t -th time slot, where Œ��T denotes the
transpose of a vector. xi; j .t/ D 1 means that the i-th
task in the set of tasks is offloaded to the j -th CAP at
the t -th time slot; otherwise, xi; j .t/ D 0.

Considering that a task is served by only one CAP for
a given time slot, we had the following constraints:X

j 2 C

xi; j .t/ D 1;8t 2 T ;8i 2 S.t/ (9)

xi; j .t/ 2 f0; 1g;8i 2 S.t/;8j 2 C (10)

Therefore, the original problem can be rewritten as
follows:

min
TX

tD1

s.t/X
iD1

Li .x/

s.t. Eqs. .9/ and .10/ (11)

where Li .x/ is the completion delay of the i -th task, and
its calculation is similar to Eq. (7), i.e.,

Li .x/ D lex
i C l

tr
i C l

qu
i (12)

The above problem is a 0-1 integer programming with
multiple time slots. Specifically, the offloading decision
and optimization objective have a long-term nonlinear
relationship. To achieve the goals of real-time adaptive
offloading and long-term system cost optimization, we
must determine the optimal offloading strategy on the
basis of the set of offloading tasks and the network
environment at the current time slot. Therefore, at the
t-th given time slot, we needed to obtain the current
optimization objective:

min
s.t/X

i

Li .x/

s.t. Eqs. .9/ and .10/ (13)

Huanhuan Xu et al.: Multiuser Computation Offloading for Long-Term Sequential Tasks in Mobile Edge : : : 99

This task offloading problem is a special 0–1
integer programming that can be converted to an
assignment problem. The Hungarian algorithm is always
an appropriate solution devoted to these issues, and it can
solve the assignment problem simply and effectively[33].
At a given t -th time slot, the number of tasks s.t/ and the
number of CAP K are probably not equal, and a CAP
can accept multiple tasks at the same time. Therefore,
the benefit matrix of this assignment problem may not be
a square matrix. CAPs can accept multiple tasks at the
same time; thus, we introduce virtual tasks to match
the requirement of the Hungarian algorithm[34]. The
improved Hungarian algorithm for the local offloading
strategy has the following steps:

(1) For a local offloading problem at time slot t , we
created its cost matrix O0.t/.n.t/ � n.t//.

(2) For each row of cost matrix O0.t/, we subtracted
the smallest value and obtain O1.t/.

(3) For each row of cost matrix O1.t/, we subtracted
the smallest value and obtain O2.t/.

(4) From utilizing the least straight lines to covering
all zeros in O2.t/, we obtained O3.t/.

(5) We established a new matrix O3.t/ where we
subtract each number that is not covered by lines from
the smallest value. Meanwhile, we added the smallest
value to the line intersection point, and then we obtained
O4.t/.

(6) We gained the local offloading decision from the
row or column with the least zeros and obtained the
optimal task offloading strategy x.t/.

We used Algorithm 1 to depict the detailed procedure.
The offloading variables are globally related to the
optimization objective. Hence, we must update the
system task set on the basis of the current task set
S.t/ and offloading variable information x.t/. After

Algorithm 1 Improved Hungarian based task offloading
algorithm
Input: Network environment paramenters, S.t/ and Q.t/;
Output: x�.t/;

1: if S.t/ D ∅ then
2: x.t/ ∅;
3: else if S.t/ ¤ ∅ then
4: s.t/ jS.t/j;
5: n.t/ s.t/ �K;
6: if n.t/ > K then
7: add virtual CAPs;
8: update cost matrix O.t/ according to the improved

Hungarian algorithm;
9: get optimal x�.t/;

10: return x�.t/;

determining the local optimal offloading strategy at the
current time slot, we can enable task offloading at the
next time slot, as shown in Algorithm 2. By combining
with the task set update process, Algorithm 3 shows the
detailed AMUST offloading algorithm.

Algorithm 2 Task set update algorithm
Input: Network environment paramenters, S; �;Q.t/; and
x.t/;
Output: S 0;

1: if t D 1 then
2: S.1/ ∅;
3: For each i 6M do
4: S.1/ S.1/[f�1; i g;
5: calculate L1; i according to Eq. (7);
6: L1; i L1; i ;
7: S .1C L1; i / S .1C L1; i /[f�2; i g;
8: else if t > 2 then
9: if S.t/ D ∅ then

10: break;
11: else if S.t/ ¤ ∅ then
12: s.t/ jS.t/j;
13: For each i 6 s.t/ do
14: determine task �m; n according to S.t/;
15: calculate delay Lm; n;
16: Lm; n dLm; ne;
17: S.1C Lm; n/ S.1C Lm; n/[f�mC1; i g;
18: S 0 S;
19: return S 0;

Algorithm 3 AMUST offloading algorithm
Input: S;Qk.t/; q.t/; and p.t/I
Output: x�.t/;
1: if S.t/ D ∅ then
2: x.t/ ∅;
3: else if S.t/ ¤ ∅ then
4: s .t/ jS .t/j I
5: get x.t/ according to Algorithm 1;
6: calculate q.t/ and p.t/;
7: sort S.t/ according to p.t/;
8: For each i 6 z do
9: find the smallest qk.t/;

10: if xi .t/ D k then
11: break;
12: else if xi .t/ ¤ k then
13: if L..x/0.t// > L..x/.t// then
14: break;
15: else if L..x/0.t// < L..x/.t// then
16: xi .t/ kI

17: update the overall cost matrix O.t/;
18: update S according to Algorithm 2;
19: x�.t/ x.t/;
20: return x�.t/;

100 Tsinghua Science and Technology, February 2023, 28(1): 93–104

4.2 Adaptive offloading strategy update

In this section, we design effective auxiliary methods on
the basis of task prioritization and server load balancing
for the adaptive task offloading of multiuser sequential
tasks. The key idea is to properly construct an offloading
strategy updating mechanism that fits the scenario and
captures the aspects of the task offloading process that
will affect the overall goal optimization to a large extent.
On the basis of the characteristics of the current model,
we can abide by the following steps to update the local
optimal offloading strategy for simulating the effect of
global information on the overall offloading strategy
preference.

First, from the system perspective, we maintained a
CAP load vector in each time slot as follows:

q.t/ D
�
V1.t/

f1

;
V2.t/

f2

; : : : ;
VK.t/

fK

�T

(14)

where we adapt qk.t/ D
Vk.t/

fk

to represent the load

situation of the k-th CAP at the current time slot,
which can be updated according to the current network
environment and long-term information. fk does not
vary, but Vk.t/ will fluctuate with the change of the
system state, and its update process abides by Eq. (5).

The load vector provides a good reflection of the
computational resources of CAPs in the current system,
thus avoiding the phenomenon of blindly offloading
tasks to partially overloaded CAPs. This phenomenon
can lead to the degradation of CAP performance in the
foreseeable future.

From the task perspective, we should obtain the
priority of the currently scheduled task at the current
time slot, which is closely related to the remaining
CPU cycles required by the application in our model.
Therefore, we constructed a priority vector over the tasks
to be offloaded at time slot t and sorted the tasks in the
set S.t/ accordingly:

p.t/ D Œw1; w2; : : : ; ws.t/�
T (15)

where wi denotes the CPU cycle sum of the subsequent
tasks of the i-th task at the t-th time slot. The scale of
this vector varies as the time slot advances, reflecting the
nature of the impacts of different offloading strategies
on the overall goal optimization in discrete time slots.

To sum up, by combining the above two features that
can reveal the optimization aspects affecting the global
objective, we can develop an auxiliary method on the
basis of task priority and server load balancing to update
the obtained locally optimal offloading strategy. After

each acquisition of the locally optimal offload strategy,
the system changes to traverse former z tasks on the
basis of task priority and query the impact on the total
system goal by offloading the current tasks with higher
priority to the CAP with less load to complete the update
once optimized, as shown in Algorithm 3.

In conclusion, in our adaptive task offloading
algorithm, the system first evaluates a locally optimal
offloading strategy on the basis of task information and
the network environment for each time slot. Then, the
system updates the current local strategy by utilizing the
auxiliary methods on the basis of server load balance and
task priority to obtain an improved global optimization
goal.

4.3 Feasibility and complexity analysis

Given that our task offloading problem defined in
Eq. (8) is NP-hard, the feasibility guarantee cannot
be determined in polynomial time. Therefore, we
considered a fallback scheme that updates the offloading
decisions of all tasks belonging to applications at each
time slot. Using this scheme is feasible under the premise
of the situation that partial tasks at the same time
slot have no significant impact on the costs of other
tasks. Hence, the offloading decisions can meet the low-
cost requirements for overall tasks. The computational
complexity of the fallback scheme is O.s.t/3K4/. By
concluding the time to obtain lower bound offloading
strategies, the computational complexity for the AMUST
algorithm is O..z C 1/s.t/3K3/, which is polynomial
concerning the size of the applications.

5 Experiment

We conducted simulation experiments to evaluate
and compare the performance of AMUST with other
benchmark methods. The experiments are conducted on
a MacBook Pro configured with a 2-GHz Intel Core i5
quad-core processor.

5.1 Experiment settings

For most scenarios, the following parameter settings
are used. We assumed that the area is a coverage
area of 250 m� 250 m, which contains 60 MDs and
9 CAPs with embedded edge servers. Each MD has
an application and each application has five tasks to be
executed, the task size follows a uniform distribution of
[600, 1800] Kbit, the number of required CPU cycles
follows a random distribution of [300, 1500] megacycles,
and the computational capacities of the CAPs are

Huanhuan Xu et al.: Multiuser Computation Offloading for Long-Term Sequential Tasks in Mobile Edge : : : 101

selected from f2, 3, 6g GHz[35]. The locations of the
CAPs follow a uniform distribution, and the CAPs are
interconnected by wired links. For the communication
model, the noise power was set to r D 6Gbps[36].

Specifically, we compared the performance of
AMUST with the following benchmark schemes:

Random offloading scheme (ROS). It randomly
assigns tasks to arbitrary CAPs for execution.

Greedy offloading with load balance (GOLB). It
always assigns tasks to the CAP with the lowest
workload.

Task offloading without adaptive updating
(TOw/AU). It does not update adaptively after utilizing
the improved Hungarian algorithm at each time slot.

5.2 Results

We evaluated the impact of the number of MDs by
changing it from 20 to 100 as shown in Fig. 2. The
average delay of all algorithms shows a growing
trend. Among them, AMUST always achieves the best
performance. With the growth of MDs, the average delay
increases gradually. The difference in delay between
GOLB and AMUST decreases from 20.2% at 20 MDs
to 7.8% at 100 MDs. This is because AMUST gives
preference to the task queuing process, which is the
main reference item considered in GOLB. By contrast,
the delay involves additional queuing time due to the
fierce competition for the limited CAP resources when
the number of MDs increases from 80 to 100.

We noticed that AMUST’s data transmission time
was longer than TOw/AU’s when the number of MDs
reaches 100. The reason was that TOw/AU does not
update the offloading strategies for time slots, leading to
less transmission delay. Meanwhile, AMUST considers
data transmission and task queuing. Although AMUST

has a long data transmission process, its queuing
delay is significantly lower than other algorithms. Thus,
compared with other algorithms, AMUST achieves the
lowest overall delay.

In Fig. 3, we compare the performance in the aspect
of average delay when the number of CAPs increases
from 3 to 15. The application delay gradually decreases
as the number of CAPs increases. The difference in
the performance between ROS and AMUST increases
from 26.5% at 3 CAPs to 57.8% at 15 CAPs. AMUST
can choose the number CAP with a low workload more
deftly, thus avoiding offloading tasks to overburdened
CAPs. Moreover, when the number of CAPs reaches
9, the addition of CAPs in the system reduces the delay
by a slight margin. In this case, the system resources
are sufficient for the current task scale, and the resource
competition weakens. Compared with other algorithms,
the advantage of AMUST is mainly reflected in the
reduction of the combination of data transmission and
task execution delay.

Figure 4 shows the comparison of average delay by
changing the number of tasks at each mobile application.
The large number of tasks reflects the complexity of
applications in the long-term system. This comparison
covers the range from simple to complex applications.
The average delay increases as tasks augment. The
performance difference between ROS and AMUST
increases from 22.3% at three tasks to 43.5% at seven
tasks. The reason is that the growth of the task number of
each application leads to an increase in offloading tasks
for the long term, leading to a more dynamic system.
However, AMUST considers CAP load balance and
communication process and avoids unnecessary data
transfer and unbearably long queuing time.

Fig. 2 Impact of the number of MDs on delay.

102 Tsinghua Science and Technology, February 2023, 28(1): 93–104

Fig. 3 Impact of the number of CAPs on delay.

Fig. 4 Impact of the number of tasks on delay.

6 Conclusion

This study investigated the multiuser sequential task
offloading problem in heterogeneous MEC environments.
Our goal was to minimize the average application delay.
To this end, we proposed the MCO-LST framework
to deal with offloading for long-term sequential tasks.
Specifically, we formally defined the problem. Then,
we proposed an effective algorithm AMUST to obtain
the optimal offloading strategy. Finally, we conducted
extensive experiments to demonstrate the effectiveness
of AMUST.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Nos. 61972272, 62172291,
62072321, and U1905211), the Natural Science
Foundation of the Jiangsu Higher Education Institutions
of China (No. 21KJA520008), the Open Project
Program of the State Key Laboratory of Mathematical

Engineering and Advanced Computing (No. 2019A04),
the Postgraduate Research & Practice Innovation Program
of Jiangsu Province (No. SJCX21 1344), and the
Provincial Key Laboratory for Computer Information
Processing Technology (No. KJS1740).

References

[1] E. Cuervo, A. Balasubramanian, D. K. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, MAUI: Making
smartphones last longer with code offload, in Proc. 8th

Int. Conf. Mobile Systems, Applications, and Services, San
Francisco, CA, USA, 2010, pp. 49–62.

[2] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X.
W. Zhang, ThinkAir: Dynamic resource allocation and
parallel execution in the cloud for mobile code offloading,
presented at the 2012 Proc. IEEE INFOCOM, Orlando,
FL, USA, 2012, pp. 945–953.

[3] E. Bastug, M. Bennis, M. Medard, and M. Debbah, Toward
interconnected virtual reality: Opportunities, challenges,
and enablers, IEEE Commun. Mag., vol. 55, no. 6, pp.
110–117, 2017.

Huanhuan Xu et al.: Multiuser Computation Offloading for Long-Term Sequential Tasks in Mobile Edge : : : 103

[4] N. X. Chen, Y. Yang, T. Zhang, M. T. Zhou, X. L. Luo,
and J. K. Zao, Fog as a service technology, IEEE Commun.
Mag., vol. 56, no. 11, pp. 95–101, 2018.

[5] B. Yang, X. L. Cao, X. F. Li, Q. Q. Zhang, and L. J.
Qian, Mobile-edge-computing-based hierarchical machine
learning tasks distribution for IIoT, IEEE Internet Things
J. vol. 7, no. 3, pp. 2169–2180, 2020.

[6] M. K. Jia, J. N. Cao, and L. Yang, Heuristic offloading
of concurrent tasks for computation-intensive applications
in mobile cloud computing, presented at the 2014 IEEE
Conf. Computer Communications Workshops (INFOCOM
WKSHPS), Toronto, Canada, 2014, pp. 352–357.

[7] W. W. Zhang, Y. G. Wen, and D. O. Wu, Energy-efficient
scheduling policy for collaborative execution in mobile
cloud computing, presented at the 2013 Proc. IEEE
INFOCOM, Turin, Italy, 2013, pp. 190–194.

[8] J. Wang, J. Hu, G. Y. Min, A. Y. Zomaya, and N. Georgalas,
Fast adaptive task offloading in edge computing based on
meta reinforcement learning, IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 1, pp. 242–253, 2021.

[9] J. P. Champati and B. Liang, Semi-online algorithms for
computational task offloading with communication delay,
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp.
1189–1201, 2017.

[10] B. D. Shang, L. J. Liu, and Z. Tian, Deep learning-
assisted energy-efficient task offloading in vehicular edge
computing systems, IEEE Trans. Veh. Technol., vol. 70,
no. 9, pp. 9619–9624, 2021.

[11] J. Liu, Y. Y. Mao, J. Zhang, and K. B. Letaief, Delay-
optimal computation task scheduling for mobile-edge
computing systems, presented at the 2016 IEEE Int. Symp.
Information Theory, Barcelona, Spain, 2016, pp. 1451–
1455.

[12] M. F. Deng, H. Tian, and B. Fan, Fine-granularity based
application offloading policy in cloud-enhanced small
cell networks, presented at the 2016 IEEE Int. Conf.
Communications Workshops, Kuala Lumpur, Malaysia,
2016, pp. 638–643.

[13] Y. H. Kao, B. Krishnamachari, M. R. Ra, and F. Bai,
Hermes: Latency optimal task assignment for resource-
constrained mobile computing, IEEE Trans. Mobile
Comput., vol. 16, no. 11, pp. 3056–3069, 2017.

[14] A. A. Al-Habob, O. A. Dobre, A. G. Armada, and S.
Muhaidat, Task scheduling for mobile edge computing
using genetic algorithm and conflict graphs, IEEE Trans.
Veh. Technol., vol. 69, no. 8, pp. 8805–8819, 2020.

[15] G. M. Zhao, H. L. Xu, Y. M. Zhao, C. M. Qiao, and
L. S. Huang, Offloading dependent tasks in mobile edge
computing with service caching, presented at the IEEE
Conf. Computer Communications, Toronto, Canada, 2020,
pp. 1997–2006.

[16] L. Y. Liu, H. S. Tan, S. H. C. Jiang, Z. H. Han, X. Y. Li,
and H. Huang, Dependent task placement and scheduling
with function configuration in edge computing, presented
at the 2019 IEEE/ACM 27th Int. Symp. Quality of Service,
Phoenix, AZ, USA, 2019, pp. 1–10.

[17] P. L. Dai, K. W. Hu, X. Wu, H. L. Xing, and Z. F. Yu,
Asynchronous deep reinforcement learning for data-driven
task offloading in MEC-empowered vehicular networks,

presented at the IEEE Conf. Computer Communications,
Vancouver, Canada, 2021, pp. 1–10.

[18] Y. N. Fan, L. B. Zhai, and H. Wang, Cost-efficient
dependent task offloading for multiusers, IEEE Access,
vol. 7, pp. 115843–115856, 2019.

[19] S. Jošilo and G. Dán, Wireless and computing resource
allocation for selfish computation offloading in edge
computing, presented at the IEEE Conf. Computer
Communications, Paris, France, 2019, pp. 2467–2475.

[20] R. Bi, Q. Liu, J. K. Ren, and G. Z. Tan, Utility aware
offloading for mobile-edge computing, Tsinghua Science
and Technology, vol. 26, no. 2, pp. 239–250, 2021.

[21] X. Chen, L. Jiao, W. Z. Li, and X. M. Fu, Efficient
multi-user computation offloading for mobile-edge cloud
computing, IEEE/ACM Trans. Netw., vol. 24, no. 5, pp.
2795–2808, 2016.

[22] J. Y. Zhou, J. X. Fan, and J. Wang, Task scheduling
for mobile edge computing enabled crowd sensing
applications, Int. J. Sensor Networks, vol. 35, no. 2, pp.
88–98, 2021.

[23] D. Huang, P. Wang, and D. Niyato, A dynamic offloading
algorithm for mobile computing, IEEE Trans. Wirel.
Commun., vol. 11, no. 6, pp. 1991–1995, 2012.

[24] O. B. Yetim and M. Martonosi, Dynamic adaptive
techniques for learning application delay tolerance for
mobile data offloading, presented at the 2015 IEEE Conf.
Computer Communications, Hong Kong, China, 2015, pp.
1885–1893.

[25] Y. Y. Mao, J. Zhang, and K. B. Letaief, Dynamic
computation offloading for mobile-edge computing with
energy harvesting devices, IEEE J. Sel. Areas Commun.,
vol. 34, no. 12, pp. 3590–3605, 2016.

[26] S. Sundar and B. Liang, Offloading dependent tasks with
communication delay and deadline constraint, presented
at the IEEE Conf. Computer Communications, Honolulu,
HI, USA, 2018, pp. 37–45.

[27] S. Zhang, N. Zhang, S. Zhou, J. Gong, Z. S. Niu, and
X. M. Shen, Energy-aware traffic offloading for green
heterogeneous networks, IEEE J. Sel. Areas Commun., vol.
34, no. 5, pp. 1116–1129, 2016.

[28] Y. Y. Mao, C. S. You, J. Zhang, K. B. Huang, and
K. B. Letaief, A survey on mobile edge computing:
The communication perspective, IEEE Commun. Surv.
Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[29] L. Q. Zhang, J. J. Luo, L. Gao, and F. C. Zheng, Learning-
based computation offloading for edge networks with
heterogeneous resources, presented at the 2020 IEEE Int.
Conf. Communication, Dublin, Ireland, 2020, pp. 1–6.

[30] J. Kwak, Y. Kim, J. Lee, and S. Chong, DREAM: Dynamic
resource and task allocation for energy minimization in
mobile cloud systems, IEEE J. Sel. Areas Commun., vol.
33, no. 12, pp. 2510–2523, 2015.

[31] L. Yang, J. N. Cao, H. Cheng, and Y. S. Ji, Multi-user
computation partitioning for latency sensitive mobile cloud
applications, IEEE Trans. Comput., vol. 64, no. 8, pp.
2253–2266, 2015.

[32] Y. Sahni, J. N. Cao, L. Yang, and Y. S. Ji, Multi-hop multi-
task partial computation offloading in collaborative edge

104 Tsinghua Science and Technology, February 2023, 28(1): 93–104

computing, IEEE Trans. Parallel Distrib. Syst., vol. 32, no.
5, pp. 1133–1145, 2021.

[33] H. W. Kuhn, The Hungarian method for the assignment
problem, Naval Res. Logist. Quart., vol. 2, nos. 1&2, pp.
83–97, 1955.

[34] S. Aslam, A. Shahid, and K. G. Lee, IMS: Interference
minimization scheme for cognitive radio networks using
Hungarian algorithm, presented at the 1st Int. Conf. Future
Generation Communication Technologies, London, UK,

2012, pp. 17–21.
[35] T. X. Tran and D. Pompili, Joint task offloading

and resource allocation for multi-server mobile-edge
computing networks, IEEE Trans. Veh. Technol., vol. 68,
no. 1, pp. 856–868, 2019.

[36] H. Z. Guo and J. J. Liu, Collaborative computation
offloading for multiaccess edge computing over fiber-
wireless networks, IEEE Trans. Veh. Technol., vol. 67,
no. 5, pp. 4514–4526, 2018.

Huanhuan Xu received the BEng degree
in electronic information engineering from
Jinling Institute of Technology, Nanjing,
China, in 2018. He is currently pursuing
the PhD degree in computer science at
the School of Computer Science and
Technology, Soochow University, Suzhou,
China. His research interests include mobile

edge computing and task offloading.

Jingya Zhou received the BEng degree
in computer science from Anhui Normal
University, Wuhu, China, in 2005, and
the PhD degree in computer science from
Southeast University, Nanjing, China, in
2013. He is currently an associate professor
with the School of Computer Science and
Technology, Soochow University, Suzhou,

China. He has co-authored more than 60 papers in these
areas, many of which have been published in top journals and
conferences such as ACM CSUR, INFOCOM, ICDE, ICDCS, and
ICPP. His research interests include cloud and edge computing,
network embedding, online social networks, and data center
networking.

Wenqi Wei received the BEng degree
from Huazhong University of Science and
Technology, Wuhan, China. He is currently
pursuing the PhD degree at the School
of Computer Science, Georgia Institute
of Technology, Atlanta, GA, USA. His
research interests include data analytics,
data privacy, AI security, and machine

learning.

Baolei Cheng received the BS, MS, and
PhD degrees in computer science from
Soochow University, Suzhou, China,
in 2001, 2004, and 2014, respectively.
He is currently an associate professor
in computer science at the School of
Computer Science and Technology,
Soochow University, Suzhou, China. His

research interests include parallel and distributed systems,
algorithms, interconnection architectures, and software testing.

