
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/18 pp105–116
DOI: 10 .26599 /TST.2021 .9010088
Volume 28, Number 1, February 2023

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

ETS-TEE: An Energy-Efficient Task Scheduling Strategy in a Mobile
Trusted Computing Environment

Hai Wang�, Lu Cai, Xuan Hao, Jie Ren�, and Yuhui Ma

Abstract: A trusted execution environment (TEE) is a system-on-chip and CPU system with a wide security solution

available on today’s Arm application (APP) processors, which dominate the smartphone market. Generally, mobile

APPs create a trusted application (TA) in the TEE to process sensitive information, such as payment or message

encryption, which is transparent to the APPs running in the rich execution environments (REEs). In detail, the REE

and TEE interact and eventually send back the results to the APP in the REE through the interface provided by the TA.

Such an operation definitely increases the overhead of mobile APPs. In this paper, we first present a comprehensive

analysis of the performance of open-source TEE encrypted text. We then propose a high energy-efficient task

scheduling strategy (ETS-TEE). By leveraging the deep learning algorithm, our policy considers the complexity of TA

tasks, which are dynamically scheduled between modeling on the local device and offloading to an edge server.

We evaluate our approach on Raspberry Pi 3B as the local mobile device and Jetson TX2 as the edge server. The

results show that compared with the default scheduling strategy on the local device, our approach achieves an

average of 38.0% energy reduction and 1.6×speedup. This greatly reduces the performance loss caused by mobile

devices in order to protect the safe execution of applications, so that the trusted execution environment has both

security and high performance.

Key words: trusted execution environment; mobile system; task scheduling strategy; optimization of energy

efficiency

1 Introduction

Nowadays, mobile applications (APPs) have become the
main carrier of Internet information services. According
to a report, the number of monitored APPs in China’s
domestic market is 3.45 million in 2020[1]. In addition,
affected by the COVID-19 epidemic in 2020, people’s
demands for telecommuting, online education, and
online medical treatment keep growing. As of December
2020, the number of online education and online medical
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treatment users in China is 342 million and 215 million,
respectively, accounting for 34.6% and 21.7% of the
total users[1]. However, at the same time, a large amount
of user privacy and important data related to the vital
interests of users is generated in the process of using
mobile APPs, and any device with such data may become
a target of criminals. Personal information leakage
is a primary network security problem encountered
by mobile users[1]. IBM’s 2020 annual data report
shows that the average cost caused by data breaches
to enterprises has reached $3.86 million[2]. In addition
to the data storage vulnerabilities of developers, the
privacy information of mobile devices also has the risk
of being stolen. To ensure the security of user data in
mobile devices, the traditional method uses encryption
technology to store encrypted data locally or send it to
other devices. However, some security problems are
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encountered in this process: The data encryption process
is easily monitored by malicious APPs. The key lacks
unified management. Key distribution and ciphertext
transmission may be attacked.

To address this problem, the Open Mobile
Terminal Platform working group proposed the trusted
execution environment (TEE) system for storing and
processing user-sensitive information. Accordingly,
major enterprises have achieved exclusive TEEs, such as
Huawei iTrustTEE, ZTE ZTEE, and Samsung TEEgris.
Furthermore, ARM Co. proposed TrustZone technology
to build a TEE by providing a hardware (HW) isolation
mechanism. TrustZone provides two virtual cores:
nonsecure (NS) core and secure core. The NS kernel
can only access the system resources of NS, whereas
the security kernel can access all resources. The two are
converted by the monitor mode[3]. APPs in the general
world enter the monitor mode using a subset of Secure
Monitor Call instructions or HW exception mechanisms.
TrustZone technology is widely used for its high
efficiency, lightweightness, and security, which can be
deployed in heterogeneous mobile systems[4, 5] and smart
homes[6], such as Qualcomm SEE architecture, Kinibi
microkernel, Trusty, and open-source (OP)-TEE. Among
them, OP-TEE is an open-source implementation of TEE
developed by STMicroelectronics and Linaro. It has
basic microkernel functions and is widely run in mobile
systems[7]. Therefore, it has become the first choice
for scholars to study the internal mechanisms of TEE.
OP-TEE has the following features[7]:

Isolation. The TEE provides isolation from NS
operating systems (OSs) and protects loaded trusted
applications (TAs) from one another using an underlying
HW support.

Small footprint. The TEE should remain small
enough to reside in a reasonable amount of on-chip
memory as found on Arm-based systems.

Portability. The TEE aims at being easily pluggable
to different architectures and available HW and has to
support various setups, such as multiple-client OSs or
multiple TEEs.

The realization of the specific functions of OP-TEE
needs to rely on client application (CA) and TA. The
core functions are realized in the TA, and the CA obtains
the results through the interface of the TA function.
Figure 1 presents the communication process between
the TA and CA. A complete function call is initiated
by the CA: The CA first opens the OP-TEE driver file
to obtain the operation handle connected to the trusted

Fig. 1 Communication process between TA and CA.

environment (TEEC InitializeContext). Then, OP-TEE
builds a channel to call the TA (TEEC OpenSession)
based on the universally unique identifier (UUID)
provided by the CA. Then, the UUID, instructions,
and parameters of the specific function are passed to
the TA (TEEC InvokeCommand). At this point, OP-
TEE completes the preparation, and the TA executes
the call to the corresponding functions according to the
instructions. When the TA is executed and the execution
result is returned to the CA, OP-TEE enters the end:
First, the communication channel between the CA and
TA is closed (TEEC CloseSession). Then, the previously
established handle is removed (TEEC FinalizeContext).

To ensure the security of mobile APPs, they first
need to establish a connection with TEE and then
communicate with the TA in TEE to inform the TA what
task needs to be done. Such an operation leads to a huge
overhead for mobile devices (see Section 2.3 for details).
In this paper, we propose an adaptive task scheduling
strategy to optimize the allocation of system resources
so that the mobile system can maintain a short response
time and high throughput.

The rest of this paper is organized as follows:
Section 2 introduces the background, including the
research status at home and abroad, scheduling
algorithm, and experimental motivation of this paper.
Section 3 summarizes the idea of the ETS-TEE
strategy and introduces the implementation process
with the fingerprint recognition task as an example.
Section 4 introduces the dataset and evaluation
indicators. Section 5 introduces the selection process of
the prediction model in detail and compares and analyzes
the experimental results. Section 6 gives the conclusions.

2 Background

2.1 Related work

TEE is widely used. Over the years, scholarly research
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on TEE has mainly focused on safety protection. Fan
et al.[8] proposed a fine-grained access control scheme
based on ciphertext-policy attribute-based encryption
and TEE to protect user information and reduce sensitive
information attacks. Lee and Park[9] proposed the
software framework SofTEE that supports the trusted
execution of user APPs. By entrusting the privileged
operation in the kernel to a special module called
the security monitor, the confidentiality and integrity
of the user information in the APP can be ensured.
To reduce the switching overhead between the kernel
and security monitor, the address space identifier
management mechanism is proposed. In addition, Oh
et al.[10] combined TEE with field-programmable gate
arrays to ensure the security of remote computing by
providing a trust anchor for the APP. Wang et al.[11]

proposed Hybridchain, which combines blockchains
with TEE. Hybridchain decouples computation from
consistency, uses hierarchical networks, and executes
most of the weight computation from outside the chain
to minimize the computational burden and delay of
execution on the chain.

Lee and Park[9] and Oh et al.[10] mentioned the
program execution overhead in their studies. However,
there are only a few studies on the TEE energy efficiency,
which is an important part of system analysis[12]. Suzaki
et al.[13] constructed the compiler-based performance
measurement method TS-Perf. TS-Perf accesses HW
timestamp counters in TEE and REE and maintains
accurate logs. The measurement code is inserted into
the TEE binary file by the compiler option. TS-
perf mainly measures the performance of the TEE
internal application programming interface, matrix
multiplication, memory access, and storage access, and
the comparison results show the performance difference
between TEE and REE. Suzaki’s measurement method
is rigorous, and the results are obvious; the method
aims to understand the performance of different task
loads in TEE and to provide the internal operating
overhead information for programmers and architecture
developers. Amacher and Schiavoni[14] studied the
switching between TEE and REE, secure storage, and
CPU benchmark in TEE, but the measurement was not
comprehensive. Similarly, no optimization method was
proposed. Based on the research of Suzaki et al.[13] and
Amacher and Schiavoni[14], we extended the benchmark,
added tests on high concurrent programs, implemented
and deployed a TA, executed basic operations in the TA,
and scheduled threads in the corresponding CA. Each

thread opened up and interacted with the TA once, and
each thread sequentially allocated mutually exclusive
locks. When 10 threads, 100 threads, 103 threads, and
104 threads were opened, the operation of the program
was tested with the increase in mutually exclusive lock
resources. Figure 2 shows the changes in the thread
benchmark test execution time (Fig. 2a) and power
(Fig. 2b) with the changes in the thread number and
mutual exclusion (mutex) number.

The experimental results show that, on the whole,
the larger the number of threads opened is, the greater
the time and energy consumption of the program is.
That is, the performance of TEE thread scheduling
mainly depends on the number of threads opened by the
program. When the number of mutually exclusive locks
is less than the number of threads, mutually exclusive
locks are “in short supply” for threads. Therefore,
threads must wait for the execution of other threads
to be completed. After releasing mutually exclusive
locks, they can be used, resulting in the consumption
of the program running time and energy consumption.
When the number of mutually exclusive locks is greater
than or equal to the number of threads, threads do
not have to wait, can successfully execute, and will
not have a significant impact on the execution time.
However, creating new mutexes and initializing them is
also a resource-consuming operation, but the proportion
is small and the longest execution time is 2.04 ms

Fig. 2 Experiment with thread benchmark.
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(when 104 mutexes are applied to run 104 threads
simultaneously).

From another point of view, TEE can be understood
as dual OSs, so the optimization of these systems
can be analogous to TEE. Xie et al.[15] proposed a
method combining preemptive priority scheduling and
time slice rotation scheduling to schedule tasks in dual
OSs. Ran[16] proposed a task scheduling algorithm
based on the improved deep Q-learning algorithm. Chen
et al.[17] used Hypervisor to sample the running state
parameters of virtual resources and used a long short-
term memory recurrent neural network to establish the
virtual machine energy consumption model. Inspired
by the above studies, ETS-TEE is proposed to optimize
the TA execution energy efficiency. By using the deep
learning algorithm and considering the complexity of
TA tasks, TA tasks are dynamically scheduled between
local device modeling or unloading to edge servers.

2.2 Scheduling policy

Linux supports SCHED OTHER, SCHED FIFO, and
SCHED RR scheduling strategies to select one in
multiple executable processes and allocate system
resources for it[18]. The details are presented as follows:
Linux has the default scheduling strategy, which always
leads to high energy consumption. Therefore, in TEE,
we use the machine learning algorithm to select the
optimal scheduling mode for TAs to reduce the extra
overhead of TEE.

SCHED OTHER. The scheduler traverses the tasks
in the ready queue and calculates the dynamic priority
of each task by Eq. (1).

Priority D counterC 20 � nice (1)
where counter is the execution time of the task on the
CPU and nice is the Priority of the task (between –20
and 19). When the task with the largest Priority is run,
when the counter is reduced to zero, or when the CPU is
voluntarily abandoned, the task will be placed at the end
of the ready queue (the time slice is run out) or waiting
for the queue (the CPU is abandoned due to the waiting
for resources).

SCHED FIFO. The scheduler traverses the ready
queue and calculates the scheduling weights in Eq. (2)
according to the real-time priority.

Weight D 1000C rtpriority (2)
where rtpriority is the real-time priority (between 1 and
99). The highest Weight task is selected using the CPU,
and the CPU is always occupied until a higher-priority
task is ready or given up (waiting for resources).

SCHED RR. The scheduler traverses the ready

queue, calculates Weight according to Eq. (2), and selects
the task with the highest Weight to use the CPU until the
end of a time slice. If the round robin (RR) task time
slice in the ready queue is zero, then the time slice of
the task is set according to the nice value, and the task is
placed at the end of the ready queue.

As can be seen from Eq. (2), the acquisition of Weight
is only related to rtpriority. If two or more processes
have the same rtpriority, then the same Weight will occur.
At this point, the selection of a process to be executed
is unfair for other processes because they have the
same priority. In TEE, to avoid the above problems
and ensure the fairness of trusted task scheduling, the
“TA execution times” is introduced as a calculation
item in the calculation of the process priority. The high
frequency of the TA execution reflects that trusted tasks
are often used by users. Therefore, the trusted task
should be given a higher priority to improve the user
experience. Specifically, the unique UUID of each TA
is used to generate a symbol to identify the number of
uses of the TA and reset the value after a period of time.
We define the TA counter./ function, which is called
each time the process weight is calculated to obtain the
number of execution TAcounts of the current TA. Based on
this, a first-in, first-out (FIFO) based on the TA execution
frequency (FIFO TAF) and an RR based on TA execution
frequency (RR TAF) are proposed on the basis of the
Linux scheduling strategy. Both of them use Eq. (3) to
calculate the weights of TAs.

weight D 1000C rtpriority C TAcounts (3)

Then, the highest weight task is selected using the
CPU until a higher-priority task is ready or a time slice is
over. The improved scheduling model not only improves
the fairness of trusted task scheduling but also realizes
personalized customization based on different user habits
for TEE. Algorithm 1 shows the operation logic of the
improved priority calculation function TA goodness().

2.3 Motivation

The mobile user experience is highly sensitive to

Algorithm 1 Function TA goodness algorithm
Input: x is the set of TAs
Output: MAX.Weight/

1: for each xi 2 X do
2: TAcounts D TA counter.xi UUID/I��

3: Weight D 1000C rtpriority C TAcounts // Eq. (3)
4: end for
5: for each xi 2 X do
6: select MAX.Weighti ; Weightj ; : : : ; Weightn/

7: end for
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performance-energy constraints[19, 20], but there are only
a few system analyses on the performance of OP-
TEE until now. The motivating example attempts to
perform a comprehensive analysis on OP-TEE by taking
the text encryption operation, which is a commonly
used operation on mobile devices. We use cipher
block chaining (CBC), electronic codebook (ECB), and
counter (CTR) to encrypt the 4 KB text content in the OP-
TEE and REE, respectively, and calculate the elapsed
time and energy consumption. In addition, without
considering the communication overhead between the
CA and TA, only the time for the TA to perform core
functions is measured separately. The experimental
results are shown in Fig. 3.

Figures 3a, 3c, and 3e present that the average
times of the complete running of the CBC (143.28 ms),
ECB (138.92 ms), and CTR (131.04 ms) encryption
programs in OP-TEE were 39.91, 41.35, and 39.95
times higher than the times spent in REE (CBC: 3.59 ms,
ECB: 3.36 ms, and CTR: 3.28 ms), respectively. The
average times to execute the TA (core TA) were 5.91,
5, and 2.73 times higher than those in REE. Figures 3b,
3d, and 3f show the energy consumption of the OP-
TEE and RPi 3B (change to REE) for performing
the same function. The results show that the energy
consumption and latency of the three commonly used
encryption algorithms in OP-TEE are higher than those
in REE. This is due to the OP-TEE execution encryption
algorithm through the allocation of encryption resources,
key loading, initialization vector (IV) reset, and input
buffer encryption to the output buffer in four processes.
Each process requires permission verification before
execution. The OP-TEE definitely provides a reliable
runtime environment, but the runtime performance
penalty and energy consumption are not negligible.

Figure 4 presents the latency and energy of CBC with
three different task scheduling strategies. The FIFO has
the minimum delay, and RR achieves the lowest energy
loss among all of the strategies.

Essentially, the optimal task scheduling strategy
is different and not always the default strategy[21, 22].
Hence, we leveraged the machine learning techniques
and predicted which strategy to use for the coming task
based on the task workload and user experience.

3 Our Approach

Our goal is to reduce the overhead of executing tasks in
TEE. Thus, we propose ETS-TEE. Figure 5 presents the

Fig. 3 OP-TEE vs. RPi 3B for running the same encryption
algorithm.

Fig. 4 Execution time and energy of CBC in different
scheduling modes.
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Fig. 5 Fingerprint identification task scheduling strategy
based on edge devices.

overview of ETS-TEE.
�Mobile APP input fingerprint identification task.
� Extract mobile APP running task features and

feed them into the local decision maker, which makes
decisions on the task (which policy to use or unload)
according to the hrtimer value of the task and the
specified threshold, and schedule the classified tasks
to the edge server or local.
� If executed locally, then use the system default

scheduling policy (whose target is the minimum delay)
or schedule tasks through the local model (whose target
is the lowest energy loss). Otherwise, extract and send
task features to the edge.
� Input task features into the edge server training

model on the edge server.
� Edge server model outputs scheduling pattern labels

for current tasks based on the task complexity.
� Return results from the local model or edge server

model.

4 Predictive Model

4.1 Feature selection

According to the characteristics of the TA runtime in
OP-TEE, multiple features were selected. The Pearson
correlation coefficient was used to reflect the similarity
between features, and the correlation coefficient matrix
was constructed. The correlation coefficient value is
between –1 and 1. The greater the absolute value of the
correlation coefficient between features, the stronger the
correlation; that is, the closer the correlation coefficient
of the two features is to 1 or –1, the greater the
correlation. Deleting one of the two features with a
strong correlation will not affect the performance of
classification results. In the depth model training process,
the feature correlation is a strong linear correlation when
it is greater than 0.75, so the feature with an absolute
correlation greater than 0.75 is deleted.

A chi-square test was used to sort the features, and the

top 10 features were retained for importance screening.
The screening method is as follows: For the above ten
features, one feature is deleted in each experiment, and
the effect of missing this feature on the accuracy of the
model is observed. As shown in Fig. 6, the influence of a
single feature on the classification accuracy of the model
is shown from large to small, and the first six features
that have a great influence on the model accuracy are
retained as the final feature input (as shown in Table 1).

At the same time, to avoid the masking of a feature
with a small value due to a large eigenvalue and affect
the prediction results of the model, we normalize the
feature data through the discrete standardization method,
as shown in Eq. (4).

xnormalization D
x �Min

Max �Min
(4)

Because the TA is scheduled to the edge server or
local device according to the prediction results of ETS-
TEE, if better prediction results can be obtained with a
low complexity feature set, then the prediction delay of
the model will also be reduced to some extent. Thus,
we combined the six features shown in Table 1 to
construct feature set A, which contains only one feature

Fig. 6 Influence of features on model accuracy.

Table 1 Model features.
Feature name Description
softirq entry Number of software interrupts.

cache alloc
Number of cache allocations while the program

is running.

page alloc
Number of pages allocated while the program

is running.

pagemap lru
Number of memory pages accessed by the

program.
syscalls Number of system calls.

rcu utilization RCU usage.
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of softirq entry. Then, we built feature set B and added
cache alloc feature on feature set A, which contains
two features. We constructed feature set C and added
the page alloc feature to feature set B, which contains
three features. By analogy, feature set F is the most
complex feature set that contains all the features in
Table 1. Table 2 describes the feature sets with different
complexities.

4.2 Model selection

The selection of a suitable machine learning algorithm
in resource-constrained smart mobile terminals needs to
consider three factors: fast execution time, low energy
consumption, and high accuracy. In this study, the K-
Nearest Neighbor (KNN), Decision Tree (DT), Naı̈ve
Bayesian (NB), and Support Vector Machine (SVM) are
used to predict the optimal scheduling strategy for TAs.

Among them, the selection of the K value in the KNN
model will have an impact on the classification process.
For example, a too-small K value means that the overall
model becomes complex and is prone to overfitting,
whereas a too-large K value will lead to simplification
and loss of significance of the model. The DT model
makes decisions based on the structure of the tree.
When making decisions, the optimal partition attribute
is selected, and the dataset is segmented by the optimal
attribute. Each subset of the segmentation recursively
calls this method until the termination condition (e.g.,
prepruning condition) is reached. NB is a classification
method based on the Bayesian theorem and independent
assumption of feature condition. For a given training
dataset, the joint probability distribution of input/output
is first learned based on the independent assumption of
feature conditions. Then, based on this model, for a
given input x, the output y with the maximum posterior
probability is obtained using the Bayesian theorem. NB
commonly uses three models: the Gaussian model,
polynomial model, and Bernoulli model. Among them,
the Gaussian model is used to deal with continuous
feature variables. When this model is used, the feature
is assumed to be a Gaussian distribution, and then
the mean and standard deviations of the feature are

Table 2 Sets of model feature groups.
Set name Feature groups within set

A softirq entry
B A + cache alloc
C B + page alloc
D C + pagemap lru
E D + syscalls
F E + rcu utilization

calculated based on the training samples to obtain the
prior probability of each attribute value under this feature.
Contrary to the Gaussian distribution, the polynomial
model is mainly applicable to the prior probability
calculation of discrete features. The Bernoulli model
is a random variable distribution model with only “yes”
or “no” results. When the model is used, the value of
all features becomes 0 or 1. If the feature itself is not
0 or 1, then a threshold is automatically set, which is
set to 0 below the threshold and 1 above the threshold,
so the feature is 0 – 1. Then, the probability of 0 – 1
is calculated in all training samples as the conditional
probability of the feature. SVM is a binary classifier.
When dealing with multiclass problems, it is necessary
to construct a suitable multiclass classifier. At present,
two main methods are used for constructing an SVM
multiclass classifier: OvO SVM and OvR SVM. OvO
is one versus one. A classifier is built between any
two types of samples, and N � .N � 1/=2 classifiers
are needed for N categories. OvR is one versus the
rest, which classifies a class of samples into one class,
and the remaining samples into another class. For N

classes, only N classifiers are needed. According to
the characteristics of different algorithms, we adjust
the parameters of the four algorithms and select the
parameters with the best model effect for training.

4.3 Dataset

We built a cross-compiler environment on Ubuntu 16.04
and recompiled the Perf performance test tool with the
same cross compiler as when compiling OP-TEE so that
it can run in a TEE. We used the recompiled Perf tool
to record OP-TEE built-in Xtest set running as a dataset.
The dataset contains the operation characteristics of
101 TAs, including 75 TAs in the training set and 26
TAs in the test set. In this study, we evaluated the
model classification effect via 10-fold cross-validation.
Specifically, after the dataset was randomly disrupted,
10% of the data were randomly selected as the test
set, and the remaining dataset was used as the training
set. This process was repeated ten times, and the
classification algorithm was evaluated according to the
average accuracy.

4.4 Metric

We took the latency and energy consumption as the
starting points. The execution time of TA x is denoted
as Tx , which is defined as Eq. (5).

Tx D T conn
x C T exec

x C T upload
x C T model

x (5)
where T conn

x is the interaction time of establishing a
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connection between the REE and TEE, T exec
x is the

execution time of TA, T
upload
x is the transmission time

of the edge server of the task upload, and T model
x is the

inference time of the latency model. Specifically, the
value of T

upload
x is defined as Eq. (6).

T upload
x D

Sx

Bw
(6)

where Sx is the relevant data size of TA x and Bw is
the network bandwidth between the mobile device and
edge server. At the same time, the operating energy
consumption of the TA x is expressed as Ex , which
is defined as Eq. (7).

Ex D Econn
x CEexec

x CEmodel
x (7)

where Econn
x is the energy consumption of establishing

a connection between the REE and TEE, Eexec
x is the

execution energy consumption of the TA, and Emodel
x is

the inference energy consumption of the energy model.
Therefore, the prediction model was built with

the highest response speed (i.e., Min.Tx/) and
lowest operating energy consumption (i.e., Min.Ex/)
as the objectives. Optimal scheduling strategies are
recommended for TAs under different metrics.

5 Experimental Evaluation

5.1 Setup

HW platform. We used the NVIDIA Jetson TX2
embedded platform as the edge server, which is equipped
with dual-core Denver2 and four-core ARM Cortex-A57.
The mobile terminal uses a Raspberry Pi 3 Model B
embedded platform, which is equipped with a 64-bit
four-core A53 processor and 1 GB of RAM. At the same
time, the experiment used the external HW measurement
tool Power-Z KM001 device to measure the power
consumption of RPi 3B in real time.

Software platform. Jetson TX2 runs Ubuntu 16.04.
Python scikit-learn builds a prediction model. RPi 3B
runs OP-TEE compiled by aarch64-linux-gnu cross
compiler.

5.2 Trusted application scheduling policy for low
latency

To speed up the TA response and reduce energy
consumption, ETS-TEE is proposed, which specifies
the task scheduling process. Among them, a low
delay trusted application scheduling strategy based
on Edge server (LD-TA-Edge based) is proposed for
the minimum latency target of ETS-TEE. Figure 7
presents its workflow. The strategy uploads the runtime

Fig. 7 LD-TA-Edge based execution process.

characteristics of the program to the edge server, which
is deployed through the Wi-Fi network. The machine
learning model deployed in the edge server will use the
feature set to reason and output the reasoning result; that
is, the scheduling mode label with the lowest running
time, and the trusted task will be executed according to
the label.

5.2.1 Latency model
The low-delay prediction model takes the optimal delay
as the goal, inputs the program feature set with different
complexities, and outputs the scheduling pattern label
with the lowest running time.

As shown in Fig. 8, KNN, DT, NB, and SVM
are used to construct low-delay prediction models,
and the classification effects of these algorithms are
compared. Among them, the NB classifier uses three
different models[23], and Fig. 8c shows that the NB
classification with a Gaussian distribution as the prior
has the best effect. SVM has two strategies for multiclass
classification[24]: OvO, which is to design an SVM
between any two classes of samples, and OvR, which is
to classify a class of samples in turn during training and
the remaining samples into another class. For the two
strategies, a grid search algorithm was used to optimize
the penalty factor and kernel function parameters of

Fig. 8 Classification accuracy of different classifiers on time
feature sets.
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SVM[25]. Figure 8d shows the classification accuracy of
the two strategies, which shows that SVM-OvO is better
than SVM-OvR.

The models with good results are compared together,
and the results are shown in Fig. 9. In Fig. 9, the SVM
algorithm has the highest accuracy (96.15%) when the
feature set E is inputted. Therefore, SVM based on the
grid search algorithm is selected as the core algorithm
of the LD-TA-Edge based execution process.

5.2.2 Inference latency and energy consumption
Figure 10a shows the comparison of the time overhead
of the LD-TA-Edge based execution process and the
reasoning time of SVM + E executed locally. The graph
shows that the time cost of the LD-TA-Edge based
execution process (1.71 s) is 3.6x higher than that of
SVM + E (6.21 s). Figure 10b shows the comparison
of the energy consumption between the two strategies.
Figure 10b also shows that the energy consumption of
the LD-TA-Edge based execution process is only 2.68 J,
which is 73.2% less than that of the local SVM + E
(10.01 J).

The average execution delay of the LD-TA-Edge
based execution process is 37.4% lower than that of
TAs. As described in the motivational experiment in
Section 2.3 of this paper, the average time consumptions
of the fully running CBC (143.28 ms), ECB (138.92 ms),

Fig. 9 Summary of classification model accuracy on time
feature sets.

Fig. 10 LD-TA-Edge based versus SVM+E.

and CTR (131.04 ms) encryption programs in the TEE
are 39.91, 41.35, and 39.95 times higher than those in
the REE, respectively. By using the LD-TA-Edge based
strategy, the average time consumption of the above
encryption algorithms (CBC: 90.41 ms, ECB: 86.69 ms,
and CTR: 85.18 ms) is reduced by 36.9%, 37.6%, and
35.0%, respectively, compared with that in the ordinary
environment (25.18, 25.80, and 25.97 times), which is
14.73, 15.55, and 13.98, respectively.

5.2.3 Overhead
The proposed low-delay prediction model only needs
offline training and deployment once, without repeated
training. Therefore, the proposed LD-TA-Edge based
scheduling strategy has a low running overhead, which
only includes the overhead of the task upload. The
overhead in different network environments is shown
in Table 3.

5.3 Trusted application scheduling policy for low
energy consumption

To speed up the TA response and reduce energy
consumption, ETS-TEE is proposed, which specifies
the task scheduling process. Among them, a local low-
energy TA (LE-TA) scheduling strategy is proposed
for the low-energy-consumption target of ETS-TEE.
Figure 11 presents its workflow.

This strategy uses the machine learning model
trained with the optimal energy consumption as the
goal to complete the reasoning of the optimal energy
consumption operation mode of the trusted task through
the task feature set locally and specify the trusted task
to run according to this mode to consume the lowest
energy.

5.3.1 Energy model
The low-energy-consumption prediction model takes

Table 3 Energy consumption of LD-TA-Edge based in
different network environments.
Network environment Upload limit (bps) Upload energy (J)

WIFI 1.9�106 0.000 37
Good 4G 1.0�106 0.000 71

Regular 4G 1.28�105 0.005 66

Fig. 11 LE-TA execution process.
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the optimal energy consumption as the goal, inputs
the program feature set with different complexities,
and outputs the scheduling mode label with the lowest
running energy consumption. The experimental results
are shown in Fig. 12.

As shown in Fig. 12, KNN, DT, NB, and SVM
are used to construct the low-energy-consumption
prediction models, and the classification effects of
different algorithms are compared. Among them, Fig.
12c shows that the Naı̈ve Bayesian classification with
a Gaussian distribution as the prior is the best. Figure
12d shows that the SVM-OvO classification is generally
the best. The models with good results are compared,
and the results are shown in Fig. 13. As shown in
Fig. 13, the KNN algorithm has the highest accuracy
(95.24%) when the feature set F is inputted. Therefore,
the KNN is selected as the core algorithm of LE-TA in
this study.

5.3.2 Inference time and energy consumption
LE-TA has a low time cost (16 ms) and low energy
consumption (0.024 J), so choosing a local LE-TA
strategy can achieve a good performance.

The experiment shows that the energy consumption of

Fig. 12 Classification accuracy of different classifiers on
energy feature sets.

Fig. 13 Summary of classification model accuracy on energy
feature sets.

LE-TA is reduced by 38.0% compared with the default
execution of the TA. As described in the motivation
experiment in Section 2.3 of this paper, the average
energy consumptions of the complete operation of the
CBC, ECB, and CTR encryption programs in the TEE
are 0.2279 J, 0.2178 J, and 0.2000 J, respectively.
Through the scheduling of the LE-TA strategy, the
average energy consumption of the above encryption
algorithms (CBC: 0.1431 J, ECB: 0.1348 J, and CTR:
0.1262 J) is reduced by 37.2%, 38.1%, and 36.9%,
respectively.

6 Conclusion

In this work, the proposed ETS-TEE (energy-efficient
task scheduling strategy) effectively reduced the
overhead of executing tasks in TEE. In detail, according
to the expectation of time and energy consumption, we
propose the LD-TA-Edge based strategy (low-delay TA
scheduling strategy based on the edge server) and LE-TA
scheduling strategy deployed on NVIDIA Jetson TX2
and Raspberry Pi 3B platforms. The experimental results
show that the low-delay trusted task scheduling strategy
based on the edge server is 3.6 times faster than the local
running speed, and the energy consumption is reduced
by 73.2%. Compared with the default execution of TAs,
the proposed LE-TA strategy saves 38.0% energy and
the LD-TA-Edge based strategy speeds up by 37.4%.
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