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Observation-Driven Multiple UAV Coordinated Standoff Target
Tracking Based on Model Predictive Control

Shun Sun, Yu Liu�, Shaojun Guo�, Gang Li, and Xiaohu Yuan

Abstract: An observation-driven method for coordinated standoff target tracking based on Model Predictive Control

(MPC) is proposed to improve observation of multiple Unmanned Aerial Vehicles (UAVs) while approaching or loitering

over a target. After acquiring a fusion estimate of the target state, each UAV locally measures the observation

capability of the entire UAV system with the Fisher Information Matrix (FIM) determinant in the decentralized

architecture. To facilitate observation optimization, only the FIM determinant is adopted to derive the performance

function and control constraints for coordinated standoff tracking. Additionally, a modified iterative scheme is

introduced to improve the iterative efficiency, and a consistent circular direction control is established to maintain

long-term observation performance when the UAV approaches its target. Sufficient experiments with simulated and

real trajectories validate that the proposed method can improve observation of the UAV system for target tracking

and adaptively optimize UAV trajectories according to sensor performance and UAV-target geometry.

Key words: coordinated tracking; standoff tracking; observation-driven; Model Predictive Control (MPC); multiple
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1 Introduction

Cooperative target tracking has emerged as a topic
of interest to the information fusion and control
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community[1]. When a fixed-wing Unmanned Aerial
Vehicle (UAV) continuously tracks a target at economical
cruising speed, it should maintain a distance from the
target to ensure continuous, persistent, efficient situation
awareness and safety of the UAV itself. This strategy
introduces standoff target tracking, especially for the
coordinate tracking of multiple UAVs.

Methods based on Lyapunov Vector Field Guidance
(LVFG)[2–4] are globally stable and easily implemented
onboard. By decoupling the heading control and the
speed control, LVFG-based methods achieve stable
standoff tracking and phase keeping[5–7]. Alternatively,
methods based on Model Predictive Control (MPC)[8, 9]

can yield optimal control to minimize an objective
function and are further developed for standoff target
tracking. For example, tracking control of ground
moving targets was achieved using a single fixed-
wing UAV[10]. A performance function is constructed
to describe standoff distance and phase constraints
between two UAVs and the target, and nonlinear MPC
was employed for coordinated standoff tracking[11].
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However, the above methods ignore the effect of sensor
performance and geometry between multiple UAVs
on the observation performance for target tracking,
regardless of whether the UAVs approach the target or
steady hover on the circular orbit.

To determine the effect of the UAV geometry
and sensor performance on the observation capability,
some indices such as the Cramér-Rao Lower Bound
(CRLB)[12], Fisher Information Matrix (FIM)[13–15],
target state estimated covariance[16], and related
variants[17], are used to measure the target observation
capability during tracking. According to accuracy
analysis with two UAVs[18], the bearing measurements
require a 90ı line-of-sight angle between the two UAVs
and target, and the distance between the UAV and
target should be a minimum, which is equal to the
standoff radius in the standoff tracking. The radial
distance measurement only requires the angle between
the sightline of UAVs to be 90ı, which is insensitive
to the target-UAV distance. Therefore, the optimal
position distribution of two UAVs measuring both
bearing and distance is that UAVs fly on the standoff
circle, and their phase difference is 90ı. Bishop et
al.[19] further provided the optimal geometries for more
UAVs. Therefore, optimal target observation requires
consideration of the sensor accuracy and the geometry
between UAVs for a coordinated standoff tracking
system. By introducing accuracy analysis to existing
multiple UAV coordinated standoff tracking based on
LVFG or MPC, the observation of the UAVs can be
improved and close to optimum, only on the loitering
orbit. However, because these methods rely on prior
analysis under specified parameters, their adaptability
to the number of UAVs is limited, especially for those
equipped with asymmetric sensors.

When the target position is unknown, or the UAVs
follow a high-speed target, a team of UAVs commonly
approaches the target from a long distance. However, the
UAVs cannot achieve optimal UAV-target configuration
in a short time, and static accuracy analysis cannot
guide the observation improvement with saturation
input of UAV either. Therefore, it is critical to find a
way to quickly improve observation within the limited
maneuverability of UAVs in coordinated tracking.

To address these problems and limitations, the
observation capability of the UAVs system can be used
to structure the objective function for closed-loop control
optimization. To this end, standoff tracking and collision
avoidance can be achieved using potential fields[16], and

gradient-based control law can be used to iteratively
solve the control problem. However, this approach
is similar to a single-step search, and the resulting
trajectories lack prediction. Additionally, the MPC-based
optimal cooperative reconnaissance method[20] uses the
summary of weighted cost functions to describe target
information, high-risk zones, and vehicle constraints.
However, it is the same as other MPC-based methods[11]

in which the weighted penalty/cost functions are used to
constrain the UAV behavior, and the expression of UAV
observation performance is distorted. Consequently, the
optimal observation improvement of UAVs cannot be
guaranteed when they fly to the target.

Inspired by an end-to-end concept and MPC-based
methods, the FIM determinant is used as a computable
observation metric of multiple UAVs to drive UAV
trajectory optimization for improving coordinated
tracking. In this study, an observation-driven MPC-
based method is proposed to significantly improve
the observation capability for standoff target tracking
using multiple fixed-wing UAVs. The optimal control
of each UAV can be determined according to the
sensor performance and UAV-target geometry in the
decentralized architecture, where optimal control means
the fastest improvement observation of the UAV
system for target localization and tracking. To facilitate
observation optimization, only the determinant of the
FIM is used to derive the performance function and
control constraints for coordinated standoff tracking.
Moreover, a modified iterative scheme is introduced to
improve the iterative efficiency, and a consistent circular
direction control is established to maintain long-term
observation performance when the UAV approaches its
target. Simulated and semi-simulated experiments are
used to verify the performance of the proposed method.

The main contributions of this method can be
summarized as follows:
� The determinant of the FIM is adopted to measure

the observation of the UAV system with a local fuzed
target state estimate. In the decentralized architecture,
a novel performance function based on FIM for
coordinated standoff tracking is derived, which quickly
drives UAV trajectories to an observation improvement.
� A constraint scheme is introduced to describe the

saturation of UAV control commands. The scheme
avoids the impact of weighted penalty functions on
control optimization direction for standoff tracking.
� The gradient in the control optimization step is

reconstructed with normalization and sign functions
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to improve iterative efficiency. A new termination
criterion for iteration and an iterative initialization for
the control sequence are presented to ensure the control
accuracy and improve the computational efficiency of
the optimization process. Additionally, the inconsistent
motion direction of UAVs on the standoff circle is
corrected to break the limit of the MPC-based method
for long-term prediction.
� Two UAV situations with different measurement

errors and initial distances indicate the proposed
method is adaptive to approach optimal observation.
Experiments with different UAVs illustrate the
scalability of the proposed method. Semi-simulations
using a real ground vehicle trajectory in GeoLife are
followed to further verify effectiveness and efficiency.

The remainder of this paper is organized as follows.
Section 2 describes the coordinated standoff tracking
problem, UAV kinematic model, and target state
estimation. Section 3 details the proposed method and
its iterative solution in the decentralized architecture.
Improved optimization schemes and consistent circular
direction control are presented in Section 4. Sufficient
simulations and analysis in Section 5 demonstrate the
effectiveness and advantages of the proposed algorithm.
Finally, conclusions are summarized in Section 6.

2 Problem Statement

Multiple UAV collaboration can enhance the continuity
of standoff target tracking and situational awareness.
Assume that multiple UAVs fly at a fixed altitude on
a plane. To ensure safety and an adequate field of
view, standoff tracking requires the UAVs to maintain a
constant distance from the target. In addition, the UAV
team aims to maintain angular separation to obtain more
comprehensive information on the target or environment.

2.1 UAV kinematic model

The kinematic model of a UAV can be established as
follows:2666664

Pxk

Pyk

P'k

Pvk

P!k

3777775 D fd .xk;uk/D

2666664
vk cos'k
vk sin'k
!k

1
�v
.uv;k � vk/

1
�!
.u!;k � wk/

3777775 (1)

where xk D Œxk; yk; 'k; vk; !k�T are the inertial
position, heading, speed, and yaw rate of the UAV,
respectively, and �v and �! are time constants for
considering actuator delay. The UAV state update
equation is xkC1 D fk D xk C Ts fd .xk;uk/, and Ts

denotes a sensor sampling time. Vector uk D

Œuv;k; u!;k�
T represents the speed and turning rate

commands constrained byˇ̌
uv;k � v0

ˇ̌
6 �vmax (2)ˇ̌

u!;k
ˇ̌
6 !max (3)

where v0 is a nominal speed of UAV, and �vmax and
wmax are the maximum speed change and turning rate of
UAV, respectively.

2.2 Target state estimation

Assume multiple UAVs perform coordinated standoff
moving target tracking. Each UAV can sense the target
and collect bearing and radial distance measurements
to locate the target based on extended Kalman filter[21],
where the corresponding measurement functions can be
defined as

h.xt;k; xi;k/ D

"
�i;k

ˇi;k

#
D

"
kxt;k � xi;kk

arctan yt;k�yi;k
xt;k�xi;k

#
(4)

where xt;k and xi;k are the position state of the target
and UAV i , respectively.

The target state estimate results of each UAV
can be transmitted to each other via communication
links. When a UAV receives the estimates from its
neighbors, the estimation accuracy can be improved by
fuzing estimations from different UAVs via suboptimal
distributed fusion[21], fusion rule based on Kullback-
Leibler divergence[22], or cooperative target tracking in
wireless sensor networks[23, 24]. In this paper, the fuzed
target state estimate with respect to UAV i is given as

xFi;k D PFi;k

0@X
j2N

P�1j;kxtj;k

1A (5)

PF i;k D

0@X
j2N

P�1j;k

1A�1 (6)

where N is the set of UAVs, and xtj;k and Pj;k are the
target position state estimate and its error covariance of
UAV j , respectively.

The specific scenario schematic diagram of the target
state estimation and fusion for multiple UAV coordinated
standoff tracking is presented in Fig. 1.

3 Observation-Driven Coordinated Standoff
Tracking

3.1 Performance function

The observation capability of the UAV tracking
system for a target is affected by the measurement
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Fig. 1 Specific scenario schematic diagram, where two
UAVs perform coordinated standoff tracking, estimate the
target state based on an extended Kalman filter locally, and
then improve the estimation accuracy with distributed fusion
via communication links.

type, random measurement error, and the geometry
between multiple UAVs and the target. The FIM[13–15],
CRLB[12], localization error covariance matrix[16],
and related variants[17] can be used to describe the
effect of observation capability on target localization
and tracking. As the prediction of localization error
covariance requires intermediate results in the tracking
filter, it increases the communication burden between
UAVs. The CRLB is equal to the inverse of the FIM
and denotes the minimum variance of the unbiased
estimator; therefore, FIM is a metric to measure
the observation performance and avoids the inverse
operation. Trace, determinant, and maximum eigenvalue
are usually used as scalar evaluations of the FIM. The
maximum eigenvalue may lose secondary information
corresponding to the non-maximum eigenvalue, and the
calculation of its derivative is not concise. For the trace
of FIM, the sum of the matrix traces is equal to the trace
of the sum of the matrices. If we take the derivative of
the amount of FIMs with respect to the UAV state, the
effect of the other UAVs on the observation is ignored.
The determinant of the FIM is inversely proportional to
the uncertainty area of the estimator and characterizes
the nature of the likelihood function of the target position
state given the measurement. Therefore, the FIM is an
available scalar functional measure of the observation
capability for the multiple UAV system.

In a decentralized sensor network composed of UAVs,
each UAV can obtain the target state estimate and the
corresponding error covariance, and predict control
sequences of other UAVs via communication links. Each
UAV can then fuze state estimation of the target with
high accuracy and measure the observation performance
of the UAV system. FIM Mi;k of UAV i for the target at

time k can be expressed as
Mi;kDHT

xt;kR�1i;kHxt;k (7)

where xt;k is the UAV position estimated based on GPS
or inertial measurement unit, Hxt;k is the Jacobian matrix
of measurement equations h.xt;k; xi;k/ with respect to
the target position state xt;k , and Ri;k is the measurement
covariance of the sensor on UAV i . As the true position
of the target is unknown, the fuzed target state xF i;k of
each UAV substitutes xt;k for algorithm execution.

The aim is to improve observation of multiple UAVs
for the target by minimizing a performance function
that accounts for the effect of sensor performance and
geometry between the UAVs and the target. Therefore,
the negative determinant of the sum of the FIM for all
UAVs is adopted as the performance metric,

Li;kD�

ˇ̌̌̌
ˇ̌X
j2N

Mj;k

ˇ̌̌̌
ˇ̌ ; 

xF i;k � xi;k



 > rd (8)

where rd is the standoff distance.
The above metric only measures the current

observation of the UAV system. The actual observation
capability is difficult to measure during the whole
tracking process, because the real target state, dynamic
model, and its process noise are unknown, disturbance
from background wind is time-varying, and UAV self-
positioning contains errors. However, the performance
metric in Eq. (8) can approximatively predict the greatest
change in observation performance at a future moment
using state extrapolations based on predefined dynamic
models. If the UAVs move according to the greatest
observation increment at each time step, the UAV system
obtains approximated optimal observation during the
entire tracking process.

Furthermore, to maintain a predefined distance
between each UAV and the target for coordinated
tracking (i.e., to maintain UAVs outside the standoff
circle), when UAV i is inside the standoff circle, the
determinant of its FIM is selected as the performance
metric,

Li;kD
ˇ̌
Mi;k

ˇ̌
;


xF i;k � xi;k



 < rd (9)

Along with a receding horizon control with respect to
UAV i , the performance function driven by the UAVs
observation in the decentralized architecture is given by

Ji D

kCNrX
lDk

Li;l (10)

where Nr is the receding horizon length.
The design of Eq. (10) considers two main aspects.
A penalty function with minimum values on the
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standoff circle is usually added to the performance
function to achieve loitering movement, such as the
Lyapunov function in LVFG[16]. A choreographed
weight is required to adjust the magnitude of the penalty
function, limiting generalizability and applicability. If
the value of the weighted penalty function is large, the
many iterations may slow the convergence and even lead
to divergence. Otherwise, the constraints from penalty
functions may not be reflected in the solution. The
proposed performance function designed with piecewise
can improve coordinated observation of multiple UAVs
in the loitering pattern whether the UAV is inside or
outside the standoff circle.

Alternatively, the determinant of the FIM is inversely
proportional to the squared distance from the UAV to
the target for radar sensors. Therefore, the performance
function value varies over a large range for different
performances of sensors installed on the UAVs and
different parameters in standoff tracking for different
targets or mission types. When control commands
are optimized near the standoff circle by minimizing
the performance function in Eq. (10), the absolute
values of the performance function derivative have
a similar magnitude. Therefore, control commands
can be optimized radially away from the target
when the UAV is inside the standoff circle. The
above features of the established performance function
can avoid incorrect optimization directions for UAV
coordination and improve the efficiency of iterative
optimization. Additionally, the features also contribute
to the generalizability of standoff tracking.

A similar strategy for iterative optimization is adopted
to handle saturation constraints of the UAV control input.
According to Eqs. (2) and (3), the penalty functions for
the control constraints are expressed as

g.ui;k/ D

"
gv.uvi;k/

g!.u!i;k/

#
6 0 (11)

The coordinated standoff tracking control driven by
observation can then be constructed as a nonlinear
optimal control problem that minimizes the objective
function under constraints,

U�i;k D arg min
Ui;k

Ji ; i 2 N (12)

subject to
fi;k � xi;kC1 D 0 (13)

g.ui;k/ 6 0 (14)

where U�i;k D fu�
i;l
; l D k; : : : ; k CNr � 1g is the

optimal control sequence for UAV i .
Incorporating the UAV kinematic model and

inequality constraints of saturation, an augmented
performance function can be expressed as follows:
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(16)
where Hi;l is the following Hamiltonian function,
���lC1 2 R5�1 is a Lagrangian multiplier, and ���l 2
RC2�1 is a weight vector of positive real numbers. The
optimization problem in Eq. (12) can be transformed
into

U�i;k D arg min
Ui;k

kCNr�1X
lDk

Hi;l ; i 2 N (17)

3.2 Solution to optimal control

The variation of the augmented performance function in
Eq. (15) yields
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Let the Lagrange multiplier be

���
T
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D
@Li;kCNr
@xi;kCNr

(19)
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T
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The variation of the augmented performance function
is

dJa;i D
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When


xF i;l � Oxt;l



 > rd , by substituting Eq. (8), we

obtain
@Li;l

@xi;l
as follows:
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where vec.�/ represents column stacking vectorization
and R�1i;l is a real symmetric matrix.

Similarly, when kxF i;l� Oxt;lk < rd , we have
@Li;l

@xi;l
D 2

ˇ̌
Mi;l

ˇ̌
vec

�
R�1i;l Hxt;lM

�1
i;l

�T @vec.Hxt;l /

@xi;l
(27)

A gradient descent method can be iteratively applied
to optimize control commands by minimizing the
Hamiltonian function as follows:

utC1
i;l
D uti;l ��

t
i;l
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i;l

@ui;l
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where t is the iteration number and�t
i;l

is the step length
of the iteration.

The variation of the augmented performance function
becomes

dJa;i D �
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lDk

(
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The saturation constraints of the UAV are generally

expressed as a switching penalty function. When a
control term satisfies the saturation constraint, its penalty
function is set as zero; otherwise, the penalty function
performs a suppression effect on the performance
function with a positive value. The design of a
penalty function and its weight are also sensitive to
control scenarios; hence, a strategy similar to that in
Eqs. (8) and (9) is applied. When the control satisfies

the saturation constraint ���T
lC1

@fi;l
@ui;l

. Otherwise, the

optimization direction for control is reversed. The

calculation of
@H T

i;l

@ui;l
can be modified with sign functions

as
@H T

i;l

@ui;l
D ���

T
lC1

@fi;l
@ui;l

"
g�v .uvi;l/ 0

0 g�!.u!i;l/

#
(31)

g�v .uvi;l/ D sign
�
�vi;max �

ˇ̌
uvi;l � vc

ˇ̌�
(32)

g�!.u!i;l/ D sign.!i;max �
ˇ̌
u!i;l

ˇ̌
/ (33)

4 Improved Optimization and Circular
Direction Control

After obtaining the gradient direction of control
commands using Eq. (31), the control sequence can be
obtained by the iterative method with appropriate step
length to make the performance function continuously
decrease. As a result, the observation of the UAV
system can be improved in the optimal direction. Some
improved optimization schemes and consistent circular
direction control are presented.

4.1 Gradient normalization

Each element in the negative gradient direction

�
@H T

i;l

@ui;l
represents an optimization direction of the

performance function for the corresponding control
command. Therefore, on the same scale, different
magnitudes indicate the contributions of different control
commands to the observation improvement. However,
as control inputs uvi;l and u!i;l are independent
and have different ranges for UAV i , the direction
(positive or negative) of each element in the gradient
vector is more important than its absolute value for
control optimization. Therefore, normalization and sign
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functions are introduced and the iterative optimization
step in Eq. (28) is updated as

utC1
i;l
D uti;l ��

t
i;ldiag.���i /sign

 
@H T

i;l

@ui;l

!
(34)

where the normalization factor ���i D
�
�vi;max

!i;max
; 1

�
.

4.2 Termination criterion

In existing MPC-based methods, when the performance
function varies less than a threshold, the iterative
process terminates, ensuring acceptable optimization
accuracy. However, this is not available for the
proposed method, whose performance function exhibits
discontinuity points on the standoff circle. When a UAV
is close to the standoff circle, the performance function
changes greatly, impeding algorithm termination using
the threshold criterion. Instead, the iteration step length
is selected as a termination criterion. When the
performance function increases rather than decreases
in the iterative step, the step length decreases, and a
sufficiently small length indicates a low optimization
effect on control. Thus, it is appropriate to terminate the
algorithm when a small step length is reached.

4.3 Iterative initialization of the control sequence

Before executing the proposed algorithm, the control
sequence is initialized as

U0i D fu
0
i;l ; l D k; : : : ; k CNr � 1g (35)

where the value of the control command is initialized as
u0
i;l
D Œvc ; 0�

T. Notice that the initialization of the turning
rate with 0 ensures that the motion direction of the UAVs
on the standoff circle is not predefined, but adaptively
selected to improve the observation performance. If the
current control sequence after optimization is U�i;k D
fu�
i;k
;u�
i;kC1

; : : : ;u�
i;kCNr�1

g, the control sequence in
the next time step is iteratively initialized as U0i;kC1 D
fu�
i;kC1

; : : : ;u�
i;kCNr�1

;u�
i;kCNr�1

g.

4.4 Consistent circular direction control

The MPC-based method has poor results on long-term
control because of the limited record horizon length.
For the proposed method, when the UAV is close to
the standoff circle, its motion direction is determined
only according to the observation performance of the
record horizon. However, if the circular direction of
the UAVs is inconsistent, their phase separation will
periodically vary, as well as the observation capability
of the UAVs system because of maintaining the standoff
distance. Therefore, when the UAV is close enough

to the circular orbit, its tangential velocity relative to
the target should be consistent with the first UAV that
hovers on the standoff orbit or a manual setup in advance.
Detection of the circular direction is triggered when the
distance between the UAV and target is less than rthres,
where rthresDrd C rturn, and rturn is the turning radius at
the current speed. If the circular direction is inconsistent
with other UAVs or a manual setup, the LVFG-based
method is used to calculate the turning rate command
at the current moment, where the direction of the vector
field should agree with the desired circular direction.
Concurrently, the turning rate commands in the control
sequence are initialized as 0, except the current moment
and the speed commands remain unchanged.

Through communication, each UAV can mutually
transfer the motion state, sensor performance,
observation for the target, and the control sequence
of the UAV at the last moment. The distributed state
estimate can then be used to fuze multiple measurements
and improve the estimation accuracy of the target state.
Each UAV optimizes the control sequence using the
above information in the decentralized architecture. In
the process of the control sequence iteration, there is
no communication among the UAVs, so the proposed
method can effectively reduce the communication
burden, and it is easy for engineering practice. The
specific multiple UAV coordinated tracking system
architecture is present in Fig. 2.

The algorithm flow is illustrated in Algorithm 1 to
state the proposed method more clearly.

5 Simulation Experiments and Analysis

The performance of the proposed method is presented
and verified with a ground vehicle target trajectory.
Multiple UAVs are used to perform the standoff target
tracking mission. Initially, the first UAV position is
initialized at (0, 0) m, and the other UAVs line up west
with an interval of 100 m. All of the UAV head 0ı to the

Fig. 2 Multiple UAV coordinated tracking system
architecture.
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Algorithm 1 Proposed method for UAV i at time k
Input: Fuzed target state estimate xFi;k , each UAV state xi;k and
its corresponding control sequence U�

i;k�1
, and the measurement

covariance matrix Ri;k .
Output: Optimal control sequence U�

i;k
.

Step 1: If �i;k 6 rthres and circular direction is inconsistent, then
compute uwi;k based on LVFG, reset the control sequence as
Section 4.4, then terminate the algorithm.
Step 2: If �i;k > rthres or circular direction is consistent, initialize
the control sequence as Section 4.3.
Step 3: Extrapolate target state xFi;l and UAV state xj;l
according to target and UAV dynamic models, where l D

k; : : : ; k CNr , j 2 N .
Step 4: Calculate Lagrange multipliers ���l by Eqs. (19) and

(20), l D k C 1; : : : ; k C Nr , and gradient
@H T
i;l

@ui;l
by Eq. (31),

l D k; : : : ; k CNr � 1.
Step 5: Calculate performance function by Eq. (10).
Step 6: If performance function decreases, then execute iterative
optimization step by Eq. (34), otherwise, reduce the iterative step
length.
Step 7: If the iterative step length is less than the termination
threshold, terminate the algorithm, otherwise, go to Step 3.

east at cruising speed of 20 m � s�1 with a maximum
speed variation �vmax D 5m � s�1 and a maximum
turning rate of!max D 30

ı � s�1. In addition, we assumed
a target moving at a constant speed with initial position
(2000, 400) m and a velocity of (4, 3) m � s�1. In the
simulation, each UAV is equipped with radar sensors
to measure the bearing and radial distances between
UAVs and the target for localization and tracking.
The standard deviations of bearing and radial distance
measurement noise are �ˇ D 1ı and �� D 60m,
respectively. The sampling time is Ts D 0:5 s. For
implementing the proposed method, the length of the
receding horizon is set as Nr D 9 (equivalent to 4.5 s)
to ensure that the UAVs have sufficient time to predict
possible turns. The initial optimization step �0

i;k
was

set to 0.02 and the iteration termination threshold was
" D 0:001. The above simulation parameters are listed in
Table 1. The circular motion direction of multiple UAVs
is consistently determined by the first UAV arriving at
the standoff circle.

5.1 Comparison with different methods

The proposed method is compared with LVFG-based
multiple UAV standoff tracking. The simulation results
from a single run are shown in Figs. 3 – 7. The UAV
trajectories obtained from the evaluated control methods
are shown in Fig. 3, along with target tracking filter
results and the standoff circle at the last moment,

Table 1 Simulation parameters.
Parameter Value Unit

Target initial position (2000, 400) m
Target initial velocity (4, 3) m � s�1

�vmax 5 m � s�1

!max 30 ı � s�1

�ˇ 1 ı

�� 60 m
Ts 0.5 s
Nr 9 N/A
�0
i;k

0.02 N/A
" 0.001 N/A

Note: N/A denotes not applicable.

whereas Fig. 3b shows the trajectories of the UAVs
relative to the real target position. Figures 4–7 present
control commands, the radial distance between UAVs
and target, the phase difference between UAVs and
CRLB versus time, respectively, where CRLB curves
are calculated with the real target position and resulting
trajectories of different methods.

As shown in Fig. 3, the resulting trajectories of
different methods can approach the target and achieve

(a) Resulting trajectories and standoff circle at last moment

(b) Resulting trajectories relative to real target

Fig. 3 UAV trajectories and target estimate results, where
x and y denote the horizontal and vertical positions,
respectively.
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(a) Speed control command of UAVs

(b) Turning rate control command of UAVs

Fig. 4 Control commands of different methods versus time.

Fig. 5 Distance between UAVs and target versus time.

standoff target tracking from their initial positions.
Although the control commands of the LVFG-based
method are smoother because of its decoupling, as shown
in Fig. 4, the difference in sensor performance leads to

Fig. 6 Phase difference between UAVs versus time.

Fig. 7 CRLB curves of different methods versus time.

poor observation. For the proposed method driven by
observation, UAVs tend to approach the target at the
maximum speed with the expansion of phase separation.
Therefore, target localization can be greatly promoted in
the initial tracking stage, although the control commands
are fluctuating in a small range. Some factors may
lead to fluctuation, such as target state estimate error
and convergence accuracy of the control commands
caused by a large optimization step or early iteration
termination. In flight control system, the fluctuation
can be weakened by reducing the step or increasing
the number of iterations, even introducing some control
signal filters. After quickly arriving at the standoff circle,
UAVs have better distance and phase keeping, as shown
in Figs. 5 and 6, considering the prediction of the target
state. �ˇk is the phrase difference from the two UAVs
to the target. These advantages achieve better CRLB
with the proposed method, as shown in Fig. 7.

To further demonstrate the advantage of the proposed
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Table 2 Performance evaluation of different algorithms.
Algorithm CS (m � s�1) CT (rad � s�1) Arrival time (s) Average of DE (m) Average of PDE (ı) Elapsed time (s)

LVFG
UAV 1 2510.0 37.4 216.12 17.96 0.51 5.69
UAV 2 0 32.6 204.49 15.06 0.51 5.69

Proposed
method

UAV 1 944.5 36.5 84.18 0.67 0.23 58.31
UAV 2 887.0 37.6 87.97 0.75 0.23 58.31

method, 100 Monte Carlo simulations are executed
to evaluate control consumptions, arrival time, stable
tracking performance, and elapsed time. The specific
results are listed in Table 2, where control consumptions
of speed (CS) and turning rate (CT) are computed
with the time integration of

ˇ̌
uvi;k � vc

ˇ̌
and

ˇ̌
u!i;k

ˇ̌
during the entire tracking, stable tracking performance
is measured by the average of Distance Error
(DE) j�k � rd j and Phrase Difference Error (PDE)
j�ˇk � 90j after arrival time, and the time when
j�k � rd j is first less than 5% rd is defined as the arrival
time. The Root Mean Square Error (RMSE) of target
localization is presented in Fig. 8.

LVFG-based multiple UAVs standoff tracking and its
phase control are achieved by decoupling the heading
control from the speed control, which significantly
reduces computation time and results in low target
localization performance. In contrast, by optimizing
control, the proposed MPC-based method obtains the
optimization direction for control using the performance
function describing observation. Although control
commands are coupled and the elapsed time is long,
the proposed method has the advantages of stable
tracking performance and arrival time with comparative
control consumptions. The RMSE of target localization
significantly improves between 60 s and 200 s, benefiting
from the observation improvement between 20 s and 250
s, as shown in Fig. 7.

Fig. 8 RMSE of target localization versus time.

5.2 Performance under different conditions

The performance of the proposed method with different
sensor performance, initial conditions, and numbers
of UAVs is further evaluated. The UAV trajectory
results under different measurement standard deviations
of radial distance and bearing are shown in Fig. 9.
The circular directions are different under different
conditions; however, the two UAVs have consistent
directions benefiting from the consistent control shown
in Section 4.4.

When the noise of radial distance is low (bearing noise
is large), corresponding closely to the pure ranging,
the two UAVs first separate and increase the phase
separation to triangulate the target, and then fly close to
the target while maintaining a 90ı phase difference. As
the noise of distance measurement increases (bearing
noise decreases), the resulting trajectories begin to
trade off separation and approach the target. When
��=60 m in Fig. 9 (�ˇ=0.5ı in Fig. 10), the UAVs
prioritize toward the goal and then increase the phase
difference. Furthermore, when �� is large (�ˇ is small),
the observation system closely corresponds to the
bearing-only system. The UAV trajectories tend to
balance the radial and tangential velocity components.
Because of the poor observability of gathering UAVs
for the target, phase separation needs to increase more
urgently to improve their observability as �� increases

Fig. 9 UAV trajectories under different radial distance
measurement errors (���̌

ˇ̌
DDD1ııı).
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Fig. 10 UAV trajectories under different bearing
measurement errors (������=20 m).

(�ˇ decreases), which means a larger tangential velocity
component. However, the tangential velocity will not
be significantly larger than the radial velocity like pure
ranging.

When the initial distance between the UAV and the
target is different, the UAV trajectory results are present
in Fig. 11, where the target is fixed at (4500, 0) m, and
the initial horizontal positions of the first UAV are 0 m,
1000 m, 2000 m, 2500 m, and 3000 m. Driven by the
improvement in the observation capability, UAVs try to
arrive on the standoff circle more directly when they are
close to the target, whereas UAVs tend to increase the
phase separation first because the bearing measurement
has poor localization for the remote target, so UAVs
separate to improve observation as pure ranging.

A nondimensional parameter[18] is defined as �D
��

ˇ

��
,

Fig. 11 Different initial distances between the UAV and the
target (������=7 m, ��� ˇ̌̌=1ııı).

where � denotes the distance between the UAV and
the target. As parameter � becomes smaller, the
observation system goes from closing pure ranging to
range-bearing, then to bearing-only. The tendencies
of the corresponding UAV trajectories are separation
first, a tradeoff between separation and approaching,
approaching target first, and a tradeoff between them
again. UAV trajectories remain unchanged if standard
deviations of distance and bearing measurements
proportionally change, such as UAV trajectories with
��=10 m in Fig. 10 and �

ˇ
=2ı in Fig. 11, except for

tiny variations caused by errors of target state estimates
because of measurement noise.

The trajectory results using different numbers of UAVs
are shown in Fig. 12, and the corresponding CRLB
curves are presented in Fig. 13. Three UAVs separate
first; then adjacent UAVs maintain a phase difference of
60ı to approach the target and perform steady tracking.
For four UAVs, the UAVs are divided into two equal
teams and approach the target with phase separation
of 90ı between the teams. When five UAVs perform
standoff tracking, UAVs split into three teams of 2,
1, and 2, and approximately maintain 60ı to arrive
on the circular orbit. When four or five UAVs are
on the standoff circle, the maximum phase difference
is between 125ı and 180ı. The phase separations of
adjacent UAVs are non-uniform, presumably because
the observation performance function is relatively flat.
Specifically, the contribution of the phase separations to
observation may be weak.

As shown in Fig. 13, the observation capability during
the entire tracking process can be improved with more
UAVs; however, the improvement gradually decreases.
Compared with two UAVs, the addition of a third UAV
can improve CRLB by 16.93%. Adding the fourth UAV
improves by 13.74%, and the fifth additional UAV only
improves by 11.38%. Thus, the formation with two or
three UAVs is a common solution for target localization
and tracking, balancing between efficiency and tracking
performance.

Table 3 lists the Average Elapsed Time (AET)
at the different steps of the proposed algorithm on
a single UAV. Benefiting from the advantage of
the decentralized control architecture, as the number
of UAVs increases, the total AET increases slowly.
Although the calculations of gradient and performance
function consume the most time because of multiple
iterations, derivation, and vectorization, there is still
plenty of room to optimize code execution efficiency.
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(a) Three UAVs

(b) Four UAVs

(c) Five UAVs

Fig. 12 Trajectory results with different numbers of UAVs.

The maximum elapsed time of a single run is also listed
in Table 3, and it is no greater than 200 ms, which
indicates the proposed method is a real-time method.

An iterations histogram with/without gradient

Fig. 13 CRLB with different numbers of UAVs.

normalization is shown in Fig. 14, where capital L stands
for consistent circular direction control and simulation
time is 1000 s.

For visual presentation, the frequency axis is set to
logarithmic scaling. Figure 14 indicates the frequency
components mainly concentrate on 5–9 iterations with
gradient normalization, and frequency with an iteration
number no less than 13 is 62 times. Without gradient
normalization, an iteration number greater than 9 times is
more frequent. Moreover, the frequency with an iteration
number no less than 13 achieves 295 times, which is
nearly 5 times as large as the proposed method. The
proposed gradient normalization can reduce the number
of iterations and significantly improve the convergence
efficiency of the proposed method. Additionally, there
is no impact between the consistent circular direction
control and gradient normalization.

5.3 Verification with the real ground vehicle
trajectory

To further verify the practicability of the proposed
method, noisy measurements are generated with real
trajectory data points of a ground vehicle selected from
the GeoLife GPS Trajectories dataset[25, 26], which is
displayed in Fig. 15 with Google geographic satellite
data overlaid.

This GPS trajectory dataset was collected in the
(Microsoft Research Asia) GeoLife project by 182 users
in a period of over three years. The selected continuous
trajectory data contains 853 time-sampled points with
a total distance of approximately 42.4 km and a total
duration of 68 minutes, which records a ground vehicle
route from pickup to the airport at midnight in Beijing,
May 21, 2009. The main difficulty of real trajectory data
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Table 3 AET at different steps of the proposed algorithm.
(ms)

Number of
UAVs

Target state
extrapolation

UAV state
extrapolation

Gradient
calculation

Performance function
calculation

Control
iteration

Total
AET

Maximum single
run time

2 0.06 0.47 9.61 5.66 0.04 15.83 73.05
3 0.06 0.46 11.23 7.16 0.04 18.95 71.38
4 0.06 0.47 12.39 8.44 0.03 21.39 92.05
5 0.06 0.49 14.07 10.04 0.04 24.70 130.55

Fig. 14 Iteration histogram with/without gradient
normalization.

is twofold. On the one hand, the trajectory data have a
slight disturbance in the low sampling rates (every 2–5 s
per point), and 94% of the trajectory is 5 s per point. On
the other hand, the car target on the traffic includes the
maneuver of steering, brake, and acceleration according
to traffic jams and signal lamps.

To address the stop-and-go target tracking, a
maneuvering target tracking based on the Singer
model[27, 28] was introduced to adapt to the strong
maneuvering change of the target. Similarly, the
corresponding target state transfer matrix and process
noise covariance matrix were modified[27], where

the maneuvering time constant is set to 0.9, and
the initial covariance of the target state estimate is
set as Pt D diag.105; 103; 10; 105; 103; 10/. The target
tracking based on the Singer model is a mature
technology, and a detailed model is not provided given
space limitations. The noise standard deviations of
bearing and radial distance measurements are 1ı and
10 m, respectively. The initial positions of the first UAV
and ground vehicle are set as (2000, 0) m and (0, 0) m,
respectively. The other conditions remain unchanged.
UAVs trajectory results and some details using different
methods are presented in Fig. 16, followed by the
corresponding distance curves between UAVs and the
target in Fig. 17, where critical road conditions and the
target maneuver are labeled. The improved performance
is measured with a CRLB ratio of LVFG for the proposed
method. The larger CRLB ratio implies the improvement
of the observation capability of the UAV system. The
CRLB ratio is also plotted in Fig. 17, and its y-axis is
shown on the right side to clearly demonstrate its change
with the target motion.

Although the ground vehicle target presents frequent
strong maneuvers because of traffic and road conditions,
the vehicle can be tracked by the target state estimator

Fig. 15 Ground vehicle trajectory on a road of Beijing with geographic satellite data overlaid.
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(a) LVFG method

(b) Proposed method

Fig. 16 Resulting trajectories with generated noisy measurements.

Fig. 17 Distance between UAVs and target, CRLB ratio, and target motion label.

based on the Singer model, and the UAV can perform
standoff tracking for the fuzed target position estimate.
When the target runs at low speed, i.e., steering at the
crossing or crawling because of road congestion, the
two methods all perform well by maintaining a stable

distance. However, when the ground vehicle speeds
up and drives close to or faster than the cruising speed
of the UAV, the LVFG method causes the UAVs to
fall behind the target. The decoupling control scheme
limits the speed control input range of the first UAV
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and slows convergence of the vector field to the standoff
circle[4], which results in frequently pursuing the target
and increasing the CRLB ratio that is most obvious
between approximately 2350 s and 3300 s. Alternatively,
the proposed observation-driven method maintains a
stable distance with the target, despite the high speed
of the target, which makes the CRLB ratio greater
than 1. When the target speed is approximately equal
to the maximum speed of the UAV, UAVs pursue the
target via an accompanying flight because of the abrupt
acceleration of the ground vehicle. The proposed method
also performs well in the process of approaching target
at the initial stage and pursuing stage. Specifically, the
experiment with the real trajectory further illustrates the
proposed method is effective and practical.

6 Conclusion

(1) An observation-driven multiple UAV coordinated
standoff tracking is proposed to optimize trajectories of
UAVs and achieves optimal observation improvement
during the approach to or loitering over a moving
target. Moreover, the method can be further extended
to multiple target tracking with the addition of target
programming.

(2) Under the effect of sensor performance and
UAV-target geometry on target localization and
tracking, a novel performance function is proposed
with the determinant of the FIM to improve target
observation in the decentralized architecture. Moreover,
an optimization scheme is designed to meet saturation
constraints for heading and speed control without
weighted penalty functions that may impact the
optimization direction.

(3) A modified iterative process accelerates the
convergence and iteration speed, and consistent circular
direction control guarantees stable observation in the
long term.

(4) Results from sufficient simulations and real ground
vehicle trajectory verify that the proposed method is
real-time and adaptive for different numbers of UAVs,
sensors performance, and geometries between the UAVs.
The UAV trajectories can also be effectively optimized
to achieve stable standoff target tracking and high
observation performance.
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