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A Two-Stage Method for Routing in Field-Programmable Gate Arrays
with Time-Division Multiplexing

Peihuang Huang, Longkun Guo�, Long Sun, and Xiaoyan Zhang

Abstract: Emerging applications widely use field-programmable gate array (FPGA) prototypes as a tool to verify

modern very-large-scale integration (VLSI) circuits, imposing many problems, including routing failure caused by the

limited number of connections among blocks of FPGAs therein. Such a shortage of connections can be alleviated

through time-division multiplexing (TDM), by which multiple signals sharing an identical routing channel can be

transmitted. In this context, the routing quality dominantly decides the performance of such systems, proposing the

requirement of minimizing the signal delay between FPGA pairs. This paper proposes algorithms for the routing

problem in a multi-FPGA system with TDM support, aiming to minimize the maximum TDM ratio. The algorithm

consists of two major stages: (1) A method is proposed to set the weight of an edge according to how many times it

is shared by the routing requirements and consequently to compute a set of approximate minimum Steiner trees.

(2) A ratio assignment method based on the edge-demand framework is devised for assigning ratios to the edges

respecting the TDM ratio constraints. Experiments were conducted against the public benchmarks to evaluate our

proposed approach as compared with all published works, and the results manifest that our method achieves a

better TDM ratio in comparison.

Key words: Field-programmable gate array (FPGA) routing; time-division multiplexing; minimum Steiner tree; exact

algorithm; approximation algorithm

1 Introduction

With the developments in science and technology, the
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size of integrated circuits (IC) is rapidly shrinking. By
increasing the number of components on a single chip
and reducing its feature size of the chip, the density
and integration of the chip are increased. With the
increasing level of development and complexity of very
large scale integrated (VLSI) circuits[2], the design
and manufacturing costs of VLSI circuits are gradually
increasing[3]. Hence, it is necessary to find an effective
method to verify the effectiveness and efficiency of the
VLSI.

The first strategy of logic verification is software
simulation[4], which provides visibility and debugging
capabilities. However, it requires each logic gate
to be simulated individually, and would have a
considerable cost and a very long runtime when the
circuit size is very large. The second strategy is hardware
emulation[5, 6], which greatly reduces the runtime but
suffers a high implementation cost. The third method
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of logic verification is to use a field-programmable gate
array (FPGA) prototype system. The FPGA prototype
verifies the circuit through a configurable FPGA system,
achieving a better tradeoff between the cost and runtime.
Therefore, the FPGA prototype system has been widely
used in the industry[7–9].

To adapt to the design of the FPGA prototype system,
a large VLSI circuit must be divided into multiple sub-
circuits[10], each of which corresponds to an FPGA. As
the number of input/output (I/O) pins in FPGAs is fixed
and limited, routing signals usually exceed the number
of I/O pins. Babb et al.[11] introduced a time-division
multiplexing (TDM) technique that can transmit multiple
routing signals in one system clock cycle as shown in
Fig. 1. The technique increases the signal capability in
one FPGA and the high routability for the prototyping
system. However, this technique also slows down the
inter-FPGA signal delay[11].

Several works have targeted on the optimization
of inter-FPGA connections for logic verification. In
Ref. [12], an integer linear programming (ILP) based
method is presented to select I/O signals to achieve a
high frequency in 2-FPGA systems. However, due to
the sharp increase in the size of the internal signal of
the FPGA, the ILP-based method cannot easily generate
a promising solution within a reasonable runtime. To
optimize the TDM ratio, Pui et al.[13] presented an
analytical framework for a multi-FPGA based system.
However, in this architecture, only cross-FPGA networks
with the same direction and TDM ratio can be allocated
to the same line. In addition, the above work did not
consider the TDM multiplexing ratio as an even number,
which is an impractical hardware implementation of
multiple channels[14]. Therefore, the development of
an effective and efficient TDM based FPGA routing
algorithm is desirable.

1.1 Problem model

We model the system-level FGPA routing problem with
the following parts:
� An undirected graph G.V;E/, where V and E

are the set of FPGA components and the connections
between the FPGAs, respectively.
� A set of net accommodating the routing

requirements (“nets” for short when no confusion
arises) N , where each net N 2 N is a subset of V
indicating the terminals (vertices) to be connected by
the routing of N , respectively
� A set of groups P , in which each group P 2 P

is composed by a set of nets. Clearly, P � N holds.
Without loss of generality, we assume that all the nets of
the groups exactly compose exactly the set of nets N .
In the above setting, a vertex can be connected by one or
multiple nets, a net may belong to multiple groups, and
conversely a group can have many nets with identical
sets of terminals.

The challenge of system-level FPGA routing lies in
the side-effect of TDM. That is, the FPGA routing
can always be complete, but the inter-FPGA signal
delay could be huge as it depends on the TDM ratio[15].
Formally, the TDM ratio of edge e can be defined as
follows:

re D
demande
capacitye

(1)

where demande and capacitye are the demand of edge
e and the capacity of edge e, respectively, for which
we have demande 6 capacitye. In the problem, the
actual capacity of each edge is defined as 1, and the
TDM ratio is defined as a positive even integer number
because of the requirement of multiplexing hardware
implementation. The TDM ratio of each net is defined
as the sum of ratios of its edges, and the TDM ratio of
each group is defined as the sum of ratios of all the nets
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Fig. 1 Sample illustration of the TDM technique. CLK indicates clock.
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it contains. Thus, we have8̂̂<̂
:̂
rN D r.N / D

X
e2N

re;

rP D r.P / D
X
N2P

rN
(2)

where rN and rP denote the total TDM ratio of net N
and the total TDM ratio of group P , respectively.

Therefore, the problem can be formally described as
follows: Given a multi-FPGA platform with TDM wires
between FPGA connection pairs asG D .V;E/, a list of
nets N which is to be routed, a collection of groups P ,
the aim is to route the nets and assign a TMD ratio for
each connection in each routed net, such that the TDM
constraints are strictly satisfied and the maximum total
TMD ratio among the groups is minimized.

1.2 Algorithm flow

In this paper, we propose a two-stage efficient TDM-
based FPGA routing algorithm, where the first part
computes the topology accommodating each net of the
given groups, and the second part assigns ratio to each
edge of the nets according to the computed topology.
The detailed algorithm flow is as illustrated in Fig. 2.

1.3 Results

In this paper, we propose a TDM-based FPGA routing
method with a two-stage framework. We present new
techniques for both topology computation and ratio
assignment. The major contributions of our work can be
summarized as follows:
� For each iteration of processing a single group,

we introduce a simple but equivalent version of the
problem with respect to one group, and devise convex
programming (CP) for the computation against such
group with nets of identical source (or destination)
terminals. The CP has only a polynomial number of
constraints, which favorably compares to the exponential
size constraints of the existing mathematical programs

FPGA connections Nets Net-Groups

Routing result for logic verification with TDM ratio assignment

Net routing

Edge-Demand based ratio assignment

TDM ratio assignment

MST-based routing result generation

Fig. 2 Flow chart of the algorithm, where MST indicates
minimum spanning tree.

(MPs) originally designated for Steiner trees.
� We proposed a combinatorial algorithm for

computing disjoint paths, which can be combined
with the CP-based algorithm to alleviate its high
time complexity. Moreover, we used the combinatorial
algorithm as a building block to directly solve the
problem and achieve a solution quality better than that
of all existing algorithms.
� We proposed a ratio assignment algorithm based

on the dual ascending technique, which slightly
compromises the solution quality but has a better runtime
performance compared to the previous method based on
Lagrangian relaxation.
� We performed numerical experiments to evaluate

our approach with the results of the top two teams of
the 2019 Computer Aided Design (CAD) Contest at
International Conference On Computer Aided Design
(ICCAD) and the state-of-art algorithms.

The rest of this paper is organized as follows.
Section 2 introduces our CP and the combinatorial
algorithm for one single group and then presents an
algorithm to solve the problem with many groups.
Section 3 introduces the dual-ascending algorithm
for ratio assignment. Section 4 demonstrates the
experimental results. Lastly, Section 5 concludes the
paper.

2 Computation of Near-Optimal Topology
for the Nets of a Group

In the section, we shall first consider a special case of the
problem where there is only one group and accordingly
propose the mathematical programming formulation.
Then we devise an algorithm for constructing the
topology for routing the netlists by employing the
minimum Steiner tree algorithm as a key ingredient.
Lastly, by taking into consideration that there are many
groups, we use the algorithm for one group as a building
block to eventually construct the topology for all the
groups in iterations.

2.1 MPs for finding the topology of one single
group

We present a simple but equivalent version of our
problem with one single group and present MPs, solving
of which could result in a high quality solution.

Formally, the problem of constructing the topology
for routing the netlists of one single group can be stated
as follows:

Definition 1 (The soft-disjoint Steiner tree problem,
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SDST): For a directed graph G D .V; E/ with two sets
of terminals S; OS � V , and a set of netlists N in which
eachN 2 N is a requirement of connecting a terminal of
S to a subset of terminals of OS , the problem is to compute
a set of soft-disjoint Steiner trees T , such that there exists
a mapping between N and T , such that T .N / 2 T
connects the terminals of netlist N 2 N . The aim is

to minimize
X
e 2G

0@ X
T WT �feg; T2T

cT .e/

1A, where cT .e/

is the cost of edge e that appears on the tree T andX
T2T

1

cT .e/
6 1. In particular, cT .e/ D 0 holds for

8T 2 T , when e does not appear on any T 2 T .
Apparently, we have the following property for the

optimization objective:
Lemma 1 For any feasible topology for

the set of netlists N , the objective functionX
e 2G

0@ X
T WT �feg; T2T

cT .e/

1A attains the minimum

only if cT .e/ D cT 0.e/ for any pair of T and T 0

containing e.
Therefore, the objective of SDST can be equivalently

stated as follows:

� To minimize
X
e 2G

0@ X
T WT �feg; T2T

cT .e/

1A2 where

c.e/ is the number of Steiner trees containing edge e
in T .

The SDST problem is NP-hard, because when jN j D
1, i.e., there is only one netlist in N , it reduces to the
classical Steiner tree problem that is NP-hard. We can
directly devise MPs for SDST following the structure
of known Linear Programs (LPs) for Steiner trees as
in Ref. [16]. However, it is undesirable to directly
determine SDST by solving the programs because of
the exponentially many constraints of the MPs inhered
from the LPs. Inspired by the mainstream algorithms
for computing Steiner trees[16], we shall use soft-disjoint
shortest paths as a building block so as to eventually
construct SDST.

Definition 2 (The soft-disjoint shortest path
problem, SDSP): For a directed graph G D .V; E/

with a set of source vertex S D fs1; : : : ; skg � V and
a set of destination vertices OS D ft1; : : : ; tkg 2 V , the
problem aims to compute a set of soft-disjoint paths
P1; P2; : : : ; Pk with Pi connecting si to ti , such thatX
e2G

.c .e//2 attains the minimum, for c.e/ being the

number of times edge e appears on the k paths. In

particular, c.e/ D 0 when e does not appear on any of
the kpaths.

When c.e/ 6 1 is forced additionally, the problem
reduces to the classical disjoint path problem, a
fundamental problem in graph theory and networking
that remains NP-hard even when k D 2[17]. For the
case of unconstrained c.e/, we propose the following
formulation (MP1):

min
X
e 2G

 
kX

iD1

xi .e/

!2
(3)

s.t. 8i W
X

e 2 ıC.v/

xi .e/ �
X

e 2 ı�.v/

xi .e/ D8̂̂<̂
:̂
1; v D si I

�1; v D ti I

0; v 2 V n fsi ; tig

(4)

xi .e/ 2 f0; 1g

where xi .e/ indicates whether e appears on path Pi or
not. Constraint (4) is the flow conservation constraint
borrowed from flow theory[18].

Lemma 2 The MP1 is convex when xi .e/ is relaxed
to Œ0; 1�.

Following the above lemma, we can solve MP1 by
employing existing MP solvers, such as the Gurobi
solver�. Moreover, for the performance guarantee of
MP1, we have Lemma 3.

Lemma 3 An optimal solution to MP1 is an optimal
solution to SDSP.

Thus, when there is only one group and each net
within the group contains at most two terminals, we can
optimally solve the problem using MP1. We can directly
solve MP1 using the Gurobi solver and obtain a high-
quality solution. However, it requires a high runtime to
run the solver against the above MP even when it is with
a polynomial number of constraints and variables.

2.2 Fast combinatorial algorithm for finding the
topology against netlists

By observing the runtime hardness of the solver-
based algorithm, we proposed a fast algorithm by
approximating minimum Steiner trees and building up
the topology for the netlists. For the task, we first
presented a method to assign weight to the edges
according to the ratio. Second, we proposed an approach
incorporating the exact algorithm and two approximation
algorithms for the minimum Steiner tree problem. Lastly,
we gave an example for analyzing the gap between our

� https://www.gurobi.com/.
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solution and the optimum.

2.2.1 Setting the weight of the edges
Considering that the ratio sum of an edge e quadratically
depends on the number of topology of net topologies
that contain e, we devised a simple method for setting
the weight of e to capture the property: (1) We set the
weight of each edge e to 2. (2) Once an edge e is routed
by a net, we increased the weight of e by 2.

2.2.2 Combinatorial algorithms for computing the
topology

In this subsection, we employed two different algorithms
for computing the topology of Steiner trees for routing
the nets. On the one hand, for the small-size nets, we
used the exact algorithm for Steiner trees with a time
complexity ofO.3jV

0jjV jC2jV
0j.jV j log jV jCjEj//; on

the other hand, for large-size nets, for which the runtime
of the exact algorithm is unacceptable, we proposed
two improved forms of the factor-2 approximation
algorithm to ensure that the algorithm terminates in a
reasonable runtime. We only presented the details of our
tuned factor-2 approximation algorithm, since the exact
algorithm is the same as that in literature.

Algorithm 1 demonstrates the details of our factor-2

Algorithm 1 Approximation algorithm for computing
steiner trees with increasing edge weights
Input: A weighted undirected graphG.V;E;W /with a terminal

vertex set V 0 � V
Output: A set of edges E0 for connecting V 0

1: Select a vertex v0 2 V 0 and set U  fv0g0, while set U 0  
V 0 � U ;

2: Set P  ∅, U 0  V 0 � U ;
3: Add two auxiliary vertices s and t ;
4: while U 0 ¤ ∅ do
5: Add to Es the edges from s to the vertices in U with

weight 0;
6: Add to Et the edges from the vertices in U 0 to t with

weight 0;
7: Find the shortest path from s to t by Dijkstra’s algorithm,

and store the path in P ;
8: Remove the edges of Es and Et from P ;
9: Select a vertex of P without s; t as u;

10: Set E0  E0 C P ;
11: U  U C u;
12: U 0  U 0 � u;
13: Update the weight of edges of P through increasing its

weight by 2;
14: end while
15: return E0.

approximation algorithm. First, we constructed a set
U containing the set of vertices that are already routed;
while U 0 consists of the set of vertices that have not
yet been routed (as in Line 1). Inside each loop, we
first added auxiliary edges from the source vertex s to
vertices of U and the auxiliary edges leaving vertices
of U 0 to t . Then, we employed Dijkstra’s algorithm to
compute the shortest st-path (Lines 4–7). Lastly, we
updated U , U 0, and E 0 and the edge weight of G (Lines
8–11). For edge e used in the shortest path, we updated
its weight by setting the new weight as we D we C 2.

Figure 3 shows the routing process for a 3-FPGA net
using our approximation algorithm.

For the time complexity and correctness of
Algorithm 1, we have Lemma 4.

Lemma 4 Algorithm 1 runs in O.n2 logn C mn/
and deserves an approximation ratio of 2.

Proof The approximation ratio can be proven
following a similar line as for the factor-2 approximation
algorithm for minimum Steiner trees as in Ref. [16].

For the time complexity, the while-loop iterates for
at most O.n/ times, each of which consumes O.m C
n logn/ time for finding the shortest path. Other steps
consume a relatively trivial time. Therefore, the total
runtime of the algorithm is O.n2 lognCmn/.

Algorithm 2 illustrates another algorithm based on the
shortest disjoint path algorithm that routes multiple nets
at the same time. In Lines 1 and 2, we first construct a
set Uk and U 0

k
for each net, which represents the set of

routed vertices and the set of vertices that have not yet
been routed, respectively. For each loop, in Lines 8–13
we added the auxiliary edge from the source vertex sk
to vertices in Uk and also add the auxiliary edge from
vertexes in U 0

k
to sink vertex tk for each net. Afterward,

we added another s and t connected to all sk and tk .
Then we used the shortest disjoint path algorithm[19] to
find a path Pk for each net. In Lines 15–17, we update
Uk , U 0

k
, and E 0

k
.

We set a constant M . When the vertex number of
the net exceeds M , we used Algorithm 1; otherwise,
we used Algorithm 2. In our experiment M is equal to
2. In addition, in the implementation of our algorithms,
we used a Fibonacci heap[18] to accelerate the Dijkstra’s
algorithm. Similar to Lemma 4, we have Lemma 5.

Lemma 5 Algorithm 2 runs in O.ˇ .n lognCm//
and deserves an approximation ratio of 2, where ˇ DX
V 2V

jV j.
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Fig. 3 Routing procession for a 3-FPGA net.

Algorithm 2 Approximation algorithm combining KMB
algorithm with shortest disjoint path
Input: An undirected and weighted graph G.V;E;W /, a set

of net N D fn1; n2; : : : ; nkg with their vertex set V D
fV∞;V∈; : : : ;V‖g

Output: Sets of connecting edges fE0
k
g

1: Set V 0 D \V;
2: For each net, set Uk D ∅, U 0

k
D Vk � Uk and E0

k
D ∅;

3: while V 0 ¤ ∅ do
4: 8v0 2 V 0, V 0  V 0 � v0;
5: if v0 2 Vk , then
6: Uk  Uk C v

0;
7: U 0

k
 U 0

k
� v0;

8: add vertex sk and a set of edges Esk from sk to vertices
in Uk

with weight 0;
9: add vertex tk and a set of edges Etk from vertices in
U 0

k
to
tk with weight 0;

10: add vertex s and a set of edges Es from s to all sk
with weight 0;

11: add vertex t and a set of edges Et from all tk to t with
weight 0;

12: fPkg  shortest disjoint paths from s to t ;
13: fPkg  fPk � es! sk

�Esk � etk! t �EtkgI

14: uk  vertices in Pk ;
15: E0

k
 E0

k
C Pk ;

16: Uk  Uk C uk ;
17: U 0

k
 U 0

k
� uk ;

18: end while
19: return fE0

k
g.

2.2.3 Bad example
The proposed algorithms cannot guarantee to find
an optimal solution even when the requirements are
between two vertices (i.e., SDSP) and all source

terminals are identical, i.e., si D s1 D s2 D � � � D sk .
As illustrated in Fig. 4a, the origin graph is presented,
with two netlists requiring the connection of s to t .
The current cost of each edge is 2, and the remaining
bandwidth is uniformly 1=2. Figure 4b presents the
results outputted by the existing algorithm for finding
the two nets connecting s to t [20], where the orange
path is the first computed path and the green one is
the second. Figure 4c presents an optimal solution.
Compared with Fig. 4b, Fig. 4c has a smaller total
ratio, i.e., 16 whereas that of Fig. 4b is 18, with the
shared edge suffering a higher ratio 4 for each sharing.
Nonetheless, it is worth noting that the gap between our
produced solution and the optimum is small.

3 Ratio Assignment

After computing the topology for the nets, we commence
the stage of the TDM ratio assignment. The task is
to assign TDM ratio for each net edge, such that the
maximum TDM ratio in a group is minimized while the
ratio constraints are strictly satisfied.

We can easily model the optimization problem as in
the following formulations:

min maxP2P
X
N2P

X
e 2N

re

s.t. Re.re/ D
X 1

re
6 1; 8e 2 E

mod.re; 2/ D 0; 8e 2 E

re > 2; 8e 2 E (5)

where re and Re denote the TDM ratio of edge e in net
N and the reciprocal of the TDM ratio of the same edge
in all nets, respectively. Note that the value of Re is

S T

1/2 1/2

1/2 1/2 1/2

1/2

(b)

1/4

S T

1/2 1/2

1/2 1/2

1/2
1/21/2

1/2

(c)

S T

1/2 1/2

1/2 1/2 1/2

1/2
1/2

1/2

1/2

(a)

Fig. 4 A solution outputted by our algorithm vs. an optimal solution to SDSP. The orange path is the first computed path and
the green one is the second.
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bounded by 1.
Because modern circuits have a huge scale, using

the ILP-based algorithms[21] for the above assignment
problem would take a terrible runtime. Therefore, we
proposed a TDM ratio assignment algorithm based on
the group demand.

3.1 Group demand based ratio assignment

To prevent the distinct scales between different groups
from causing unbalanced ratios, we proposed a ratio
assignment scheme based on dual ascending with respect
to the group demand. We first defined the demand of the
net-group P as follows:

dP D
X
N2P

dN (6)

where dN is the vertex number of net n.
We used dP to predict the relative importance of group

P based on the observation that a group with a large
demand is more likely to eventually have a large TDM
ratio. Therefore, we presented the process priority (i.e.,
to assign ratio) to groups with large demands. More
precisely, we sorted all groups according to their demand
dP , and then repeated to find the group with the largest
demand and assign ratio to the edges of its nets. The aim
was to minimize the maximum ratio of the groups, so
we shall assign the ratio of each group in a way that the
gap between the largest group ratio and the ratio of any
other group is as small as possible.

We initially found the a group with the largest dN , i.e.,
Pmax. Then we set the TDM ratio of edge e in Pmax as
the number of nets containing e in Pmax.

re;Pmax D

X
N2Pmax

1 (7)

Then after the ratio assignment of Pmax, we assigned
the ratio to every other groups according to re;Pmax , and
for the already processed groups. For a group P , we
assumed Na.P / and Nna.P / as the sets of nets within
P that are assigned and unassigned. We introduce the
following formulation for predicting the relationship
between P and Pmax:

prioP D

rPmax �
P

N2Na.P /

rNP
eW e 2Nna and e appears inPmax

re;Pmax

(8)

where re;Pmax represents the ratio assigned to edge e in
Pmax. Then we calculated the ratio of the edge e in net
N as follows:

re;N D re;Pmax � prio (9)

Algorithm 3 summarizes the assignment of the ratio
to each edge of each net.

Algorithm 3 Ratio assignment respecting group demands
Input: A set of groups P D fP1; P2; : : : ; Plg and a set of net

N D fN1; N2; : : : ; Nkg, where for each P 2 P we have
P � N .

Output: All edges of the nets R D fR1; R2; : : : ; Rkg with
assigned ratio

1: Sort the groups of P according to their demand dP in
descending order and denote the sorted P;

2: Select the first group of P 0, say pmax;
3: P 0  P 0 n fPmaxg;
4: Set rPmax as the TDM ratio of Pmax;
5: for each N 2 Pmax do
6: Assign ratio to each edge of N by Eq. (7);
7: update RN ;
8: end for
9: for each P 2 P 0 re-ordered by their prio;

10: for each net N 2 P do
11: if N is not assigned then
12: assign ratio to each edge routed by N according

to Eq. (9);
13: update RN ;
14: end if
15: end for
16: if all nets of P are assigned then
17: Set P 0  P 0 � P ;
18: end for
19: return R.

3.2 Ratio legalization

We noted that
X
N2N

re;N > 1 may hold, which implies

a breach of the TDM constraints. For this problem, we
needed only to normalize the ratios of fre;N jN 2 N g for
each e, such that the TDM ratio constraints are satisfied.

More precisely, for each edge e and for each net N
containing e, we set the new ratio as

re;N D

2666666
X
N2N

1

re;N

1

re;N

3777777 (10)

After the reassignment of the ratio, we could guarantee
the following property:

Lemma 6 For each edge e, we have
X
N2N

1

re;N
61.

Proof The proof can be done via a calculation using
Eq. (10): X

N2N

1

re;N
D

X
N2N

1266666
P

N2N

1

re;N
1

re;N

377777
6
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N2N

1

re;N
P
N2N

1
re; N

D
1P

N2N
1
re;N

X
N2N

1

re;N
D 1:

There can be odd re;N , for which we need only to set:
re;N D re;NC1. Because re;N can only increase during

the above operation,
X
N2N

1

re;N
6 1 remains true. Then,

we had completed the assignment of the TDM ratio for
all groups satisfying the constraints of the TDM ratio.

4 Simulation Experiments

In this section, we evaluate our routing approach using
the benchmarks that simulate multi-FPGA systems
provided by the 2019 CAD Contest at ICCAD with
statistics parameters as shown in Table 1. The code
was implemented using C++ programming language and
run on ubuntu 18.04 with Intel-Xeon(R) E5-2620 v4 @
2.10 GHz CPU and 12 GB memory.

We compared our experimental TDM ratio results and
runtime with the top two teams of the 2019 ICCAD
CAD contest. As demonstrated in Table 2, our algorithm
achieves a better performance compared with “1st
place” and “2nd place”—we had achieved an average
improvement of 0.1% and 2.6%, respectively, in the
min-max TDM ratio. For pursuing a high solution
quality, our algorithm has a slightly long runtime, but
it is acceptable for the practical usage of large-scale
multi-FPGA systems.

5 Conclusion

In this paper, two effective approaches are proposed for

solving the system-level routing problem of multi-FPGA
systems, aiming to strictly satisfy the TDM constraints
while minimizing the maximum delay of the groups. For
computing the topology of accommodating the routing
requirement by the nets, we presented two approaches:
The first is based on our proposed CP formulation
and the second is based on the renowned MST-based
approximation algorithm but with the enhancement of
disjoint path. Then for assigning ratios according to the
topology, we designed a group-demand ratio assignment
scheme based on dual ascending by reassigning the
ratio to strictly meet the TDM constraints. Lastly, we
evaluated our algorithms against ICCAD benchmark
suites and demonstrate its practical performance gain
compared to the previous baselines.
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