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Hybrid Navigation Method for Multiple Robots Facing Dynamic
Obstacles

Kaidong Zhao and Li Ning�

Abstract: With the continuous development of robotics and artificial intelligence, robots are being increasingly used

in various applications. For traditional navigation algorithms, such as Dijkstra and A�, many dynamic scenarios in

life are difficult to cope with. To solve the navigation problem of complex dynamic scenes, we present an improved

reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic

obstacles are present. The method applies the gmapping algorithm as the upper layer input and uses reinforcement

learning methods as the output. The algorithm enhances the robots’ ability to actively avoid obstacles while retaining

the adaptability of traditional methods.

Key words: simultaneous localization and mapping (SLAM); reinforcement learning; multirobots; dynamic obstacles;

robot operating system (ROS); navigation

1 Introduction

Deep reinforcement learning (DRL), as an important
research direction in machine learning[1], is a
combination of the agent perception capability of
deep learning and the decision making capability of
reinforcement learning, directly through the learning
of high-dimensional perceptual inputs[2] to eventually
achieve the autonomous behavior control of an agent,
which continuously describes the process of an agent
for achieving a task. DRL has made breakthroughs in
areas such as unmanned vehicles, robotic transportation
systems, robotic systems, and games[3].

With the development of robotics and the need for
efficient manufacturing, several types of robots appear in
an increasing number of applications, such as logistics
and warehousing. For complex scene requirements, the
robot technology is gradually changing from single to
multiple robots. A key technology of large-scale robotics
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is multirobot path planning.
Two general approaches exist to implement

multirobots path planning methods, namely, using a
centralized or decentralized path planner. In a static
environment, the centralized planner[4] can plan a safe
path to the destination for each individual capability
when the environmental information and the intent of
all robots are known. However, when the number of
robots gradually increases, the computational burden of
the centralized planner becomes substantial. In addition,
to make the centralized path planner communicate
information with the agent, we need to configure a stable
and fast network environment[5–7]. Therefore, we focus
on the decentralized path planning method, which does
not rely on a reliable communication network between
robots.

Trajectory-based methods, such as the dynamic
window approach (DWA) and velocity barrier based
methods[8], perform real-time estimation of the motion
intent of the surrounding dynamic objects and then
search for a collision-free path. These methods either
require complete information about the surrounding
dynamic barriers (e.g., velocity and position) or real-
time modeling of the surrounding environment by its
own sensors to predict the trajectory of its motion[9].
In an experiment involving trajectory-based methods,



Kaidong Zhao et al.: Hybrid Navigation Method for Multiple Robots Facing Dynamic Obstacles 895

each agent makes decisions independently based on
its own local observations and policies. The key
point is what an agent should know and assume
about the dynamic obstacles surrounding it for other
agents. Some approaches assume that all obstacles
are static and reprogrammed at a high frequency
to avoid collisions, whereas others assume that the
agent uses an isomorphic policy and that dynamic
obstacles travel at a constant velocity. However, we argue
that, in practice, perfectly evaluating the intentions of
neighboring decision subjects without communication is
difficult. Therefore, unlike traditional path planning
methods, some recent approaches use reinforcement
learning to solve the robot navigation problem by
implicitly learning to handle the interaction ambiguity
of surrounding moving obstacles.

For tasks with sparse rewards, reinforcement learning
often struggles to achieve satisfactory performance. As
robotics advances and scales up, traditional centralized
path planning based methods[10] are gradually becoming
less applicable. Because decentralized path planning is
insensitive to changes in the number of robots and is
not extremely dependent on communication networks,
decentralized methods in multirobot dynamic scene path
planning are gradually becoming mainstream methods.
In this paper, the reinforcement learning method[11] is
combined with A�[12] and the adaptive Monte Carlo
localization (AMCL) methods for realizing a robot
navigation method in certain dynamic scenes.

In dynamic scenes, traditional methods suffer
modeling difficulties because of the numerous dynamic
obstacles around them[13]. Because of its characteristic
of optimizing continuous processes, reinforcement
learning can be used to dynamically fit the changes of the
surrounding environment using neural networks, thereby
allowing its navigation performance to be superior in
dynamic scenes and providing the ability to cope with
complex situations in the scene.

Reinforcement learning method can be applied to
multimodal sensor fusion methods, such as laser,
odometer, GPS, and camera, to better understand and
identify environmental information, and plan a collision-
free path by combining the relative position of oneself
and the target point.

Traditional grid-based global navigation methods,
such as Dijkstra and A�, have good adaptability to
various static scenes. In dynamic scenes, some local path
planning systems based on traditional algorithms, such
as DWA, are often used to achieve safe navigation. These

methods are effective in avoiding unmarked obstacles
in a static map during movement, especially when the
scene contains dynamic paths and numerous dynamic
obstacles of impact.

Therefore, in this paper, we propose a local navigation
method combining global navigation and reinforcement
learning. This method has high applicability to different
scenes. Furthermore, this method only requires one
training process to be performed in a specific scene, with
no additional neural network training processes needed
when changing the scene.

Contribution. Using A� combined with the deep
deterministic policy gradient (DDPG) method, the
cost of model migration between different scenarios is
reduced.

Using the asynchronous advantage actor-critic (A3C)
framework to centrally train the distributed execution
method, the single model is extended to multiple robot
models, thereby providing the algorithm with high
robustness to changes in the number of robots.

By disassembling the reward, a big goal is divided into
several small goals for critics to learn. In addition, we
also extend this method to more Atari games. As shown
in Fig. 1, we split the reward into positive and negative
cases. Experiments show that, in most scenarios, the
multicritic method can achieve the same results as the
single critic method and that, in some scenarios, the
multicritic algorithm can be remarkably accelerated.

2 Related Works

Stage is a simulator that can simulate mobile robots,
sensors, and objects in a three-dimensional environment.
Stage is designed to support the study of multiagent
systems; thus, it provides a simple and computationally
inexpensive model of several devices, rather than trying
to simulate any device with great fidelity. As the Stage
emulator provides a standard robot interface, little or
no change is required to move between simulation and
hardware. Many controllers designed in Stage have been
proven to work on real robots.

Robot operating system (ROS) is a distributed
framework of processes known as “nodes” shown
in Fig. 2, encapsulated in packages and packages
of functionality that can be easily shared and
distributed. This system also enables the collaboration
and distribution of projects. This design allows a
project to be developed and implemented completely
independently from the file system to the user interface
without the ROS limitations. Simultaneously, all projects
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Fig. 1 A3C algorithm is used to test the scores of a single critic (yellow) and a multicritic (blue) in different Atari scenes.

Fig. 2 Node communication diagram of a robot based on the robot operating system (ROS). Different nodes previously
communicated through the specified port. In this experiment, we collect pose data from adaptive Monte Carlo localization
(AMCL), map data from map server, and laser data from Stage, input them to the control node for calculation, and then apply
the calculated action to simulation environment.

can be integrated by using ROS-based tools. ROS is
licensed under the BSD (Berkeley Software Distribution)
open source license.

Gmapping is a simultaneous localization and mapping
(SLAM) algorithm based on two-dimensional (2D)
light detection and ranging (LIDAR) using the Rao-
Blackwellized particle filters (RBPF) algorithm to
complete 2D raster map construction. Its advantages are
that gmapping can build indoor environment maps in real
time with less computation in small scenes and higher
map accuracy and requires a lower LIDAR scanning

frequency. Its disadvantages are that as the environment
increases, the memory and computation required to
build the map considerably increases, making gmapping
unsuitable for large scene composition.

AMCL is a probabilistic positioning system for robots
moving in 2D. It implements an AMCL method that uses
a particle filter to track the position and pose of the robot
against a known map. In the real-time path navigation
problem, the accurate positioning of the robot itself is
very important because, if the robot locates in the wrong
position, the probability of successful path planning to
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the destination will be greatly reduced.
The navigation stack is a metapackage of ROS that

contains the ROS package in path planning, location,
maps, and abnormal behavior recovery. The main
purpose of the navigation stack is to plan the path,
usually by inputting data from various sensors and
outputting the speed. The main node in the navigation
stack is the move-base package[14] which is a powerful
path planner, shown in Fig. 3. The move-base package
provides an implementation of an action that, after
being given a target in the world, will attempt to reach
that target through a mobile base. The move-base node
connects the global and local planners to accomplish
their global navigation tasks.

In the ROS[15], the traditional navigation method uses
the A� algorithm to plan the path according to the global
map information. On the basis of the global path, the
DWA algorithm is used to calculate the local path in
real time for execution according to the information
captured using the sensor. The DWA[16] can correct
the difference between the real scene information and
the global map information to some extent. However,
today’s diverse scenarios may include several dynamic
obstacles in the environment, such as cats, dogs,
people not paying attention to the robot, and those
with disabilities. Consequently, a robot’s real-time path
planning is required to avoid obstacles of active collision
while following the global path planning result of a given
reasonable safe local path to reach its destination.

With the development of reinforcement learning[17],
digital simulation, and digital twin technology[18], many
researchers are using reinforcement learning and other
methods through digital simulation technology to enable
the robot to learn a large amount of specific real scene
information before use, so that the robot in the real scene
can quickly take action. However, using reinforcement

Fig. 3 Move-base package consists of three parts: A base
local planner, a base global planner, and a recovery behavior.
By selecting the appropriate component for each module, the
move-base package generates a path to the destination point.

learning for navigation and path control method has
some disadvantages, e.g., it takes a lot of manpower and
resources to set up different simulations, each time to
training a model requires much computing power and
time for training process according to the scene, and the
reinforcement learning method result is poor. Moreover,
models among different scenarios may be difficult to
migrate and have low reusability.

3 Method

In this paper, we propose a hybrid navigation method
based on reinforcement learning by combining the
characteristics of the A� and reinforcement learning
algorithm that can accommodate more dynamic
obstacles. Collision avoidance is the key problem when
multiple robots navigate in a specific area. We set the
safe radius of the robot R to prevent the robot from
colliding in motion. Each robot only knows its initial
coordinates, destination coordinates, and information
from the laser and odometer. The robot must build a
map of the scene in real time and must avoid all possible
collision objects while in motion.

The DDPG algorithm[19] is based on the actor-critic[20]

algorithm. In our method, shown in Algorithm 1, we
use two critics to accelerate the training of the model, as
shown in Fig. 4. One critic will estimate the probability
of collision and teach the actor how to avoid it. The
other critic will minimize the difference between the
input speed and the output speed and will also teach
the actor how to reach the destination. We use multiple
agents in the scenario to collect data to add to the public
memory bank and sample trajectories from it for the
training iterations of the algorithm. For execution, we
distribute the network parameters from the master agent
to each execution agent, thereby achieving a centralized
training distributed execution approach.

First, we must pass the map information M to the
robot. Second, at each timestep t , each robot uses the A�

algorithm to calculate the action gai
t to reach the target

point using the given map information and the target
point gi . Third, the i-th robot (1 6 i 6 N ) has access
to an observation O i

t and gai
t to compute an action ai

t to
avoid collision and reach the goal gi .

In our experiments, we attempted to match the robot
output to the global velocity by setting the reward
function with a smaller penalty, and a larger penalty
to enhance the ability of the robot to avoid collisions. At
the beginning of the training, we used a higher learning
rate in the critic to teach how to reach the target gi and
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Algorithm 1 Our method
Input: laser input O , destination g, robot initial pose p
Output: action a

1: Randomly initialize critic network Q.s; aj�Q/, and actor
�.sj��/ with weight �Q and ��

Initialize target network Q0 and �0 with weights �Q
0

 �Q,
��
0

 ��

Initialize replay buffer B
Initialize random process � for action exploration
Initialize map information(Provided by gmapping) M

2: for iteration D 1; 2; : : : do
3: Random set the pi and gi // for each robot
4: for t D 1; : : : ; T do
5: for robot i D 1; 2; : : : ; N do
6: Correction of robot position pi coordinates using

AMCL algorithm
7: Use the A� algorithm on M to generate the global

path action gait to reach the target point gi
8: Using Oi and gait as st input to the network
9: Sample action A D �.st j��/C �t according to the

current policy and exploration noise
10: Execute action a to the environment, get reward rt

and stC1
11: Store transition .st ; at ; rt ; stC1/ in B
12: end for
13: Sample a random minibatch of N

transitions.sj ; aj ; rj ; sjC1/ from B

14: Set yj D rj C Q0.sjC1; �0.sjC1j��
0

/j�Q
0

/

15: Update critic by minimizing the loss: L D 1
N

P
j .yj �

Q.sj ; aj j�
Q//2

16: Update the actor policy using the sampled policy
gradient:

r��J�
1

N

X
j

raQ.s; aj�
Q/jsDsj ;aD�.sj /r���.sj�

�/jsj

17: Update actor by minimizing the loss:L D 1
N

P
j .
gaj �

aj /
2

18: Update the target networks:

�Q
0

 ��Q C .1 � �/�Q
0

��
0

 ��� C .1 � �/��
0

19: end for
20: end for

a lower learning rate to teach how to avoid collisions.
Thus, the model can quickly determine how to reach the
target. Furthermore, a similar method was used to teach
the actors how to avoid obstacles on their way to the
target point.

The algorithm in this paper is a combination of the
reinforcement learning method and the A� algorithm. In
the algorithm, the move-base package plans the path to
the target point from the existing scene map according to
the A� algorithm, and the motion control instruction ga

is generated at the same time. Two convolution layers

Fig. 4 Architectural approach in this paper. The laser-input
is from the robot sensor. The navi-input is from global
navigation. The vel-output is used by the mobile base to
control the robot. The computed mean squared error (MSE)
and gradient are used to update the actors’ neural network.

extract features from the input data of the laser sensor.
The ga and the processed laser features are combined as
input through two layers of the fully connected network.
The network outputs the speed control command a

to the robot chassis through the DDPG reinforcement
learning algorithm. Finally, the odometer sends the
robot’s operating errors back to the AMCL algorithm
for error adjustment. This process enables closed loop
control of navigation.

In the actor network, as shown in Fig. 5, two one-
dimensional (1D) convolution layers are designed to
process the data obtained from the laser data. The
convolution layer uses 32 1D filters, with the kernel
size = 3 and stride = 2, covering three input scans,
and rectified linear unit (ReLU) is activated. A fully
connected layer with 128 units is used, and ReLU
activation is applied. The fully connected layer of the
output is concatenated with the other inputs and then

Fig. 5 Structure of the neural network to avoid collision
presented in this paper. The network input laser data have
a length of 360 with three channels and a speed length of 2,
generated by global navigation. The output speed is of the
same shape as that of the input speed and is used to control
the mobile base.
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fed into the last hidden layer (the fully connected layer
with 64 units); subsequently, it is activated with ReLU.
The output layer has two units, which are linear and
rotation velocity, activated with tanh[21]. We limited the
linear and rotational speeds to Œ�0:5; 0:8� and Œ�1; 1�,
respectively, which is a bit higher than the global
navigation speed scale.

The critic network has similarities to the actor network.
We first use the same two-layer 1D convolution as the
actor network to process the laser data. Second, the 128-
units full connection layer is used with ReLU activation.
The navi-input and vel-output are then concatenated to
another dense two-layer layer with 64 units and ReLU
activation. Finally, the output of the critic network is
used to update the actor network using a dense layer of
one unit.

4 Experiment
We use the A� and the static map to compute the
global path to allow the method we proposed to have
good applicability in the face of various untrained
scenarios. Based on these characteristics, we designed
and experimented with three scenarios that include a
single robot and multirobots. The network parameters of
the robot were trained only in the part one scenario and

were used in all three situations. Each scene adds 20 blue
obstacles that walk freely, and the obstacles can look at
walls and other obstacles to avoid collision into each
other, but they cannot notice the red robots. Therefore,
the key to solving this kind of problem is determining
how to actively avoid these obstacles. The network is
designed to safely and quickly navigate to a destination
despite the impact of a large number of jamming robots.

We designed three different experimental scenarios for
dynamic navigation of a single robot, as shown in Fig. 6.
Each of the three algorithms was implemented 100 times
in each test scenario. Each test randomly generated the
position and destination of the robot; the robot must
navigate within a radius of 0.5 m around the target
point to be considered successful. We tested the average
number of collisions and the success rate of navigation
of different algorithms during 100 navigations.

From Fig. 7 of the experimental results, we found that
the A� algorithm based on reinforcement learning can
perform better in navigation problems than the DWA in
dynamic environments. We also designed two different
experimental scenarios for multirobot navigation, as
shown in Figs. 8 and 9. In Fig. 8, we placed eight
identical robots in a blank scene map, each with the
same configuration and network parameters, trained in

Fig. 6 Three scenarios built for testing, from left to right: Scenarios 3, 1, and 2. We only conducted model training in the blank
scene (Scenario 1) and applied the model parameters to the tests of Scenarios 2 and 3. The red robot is the controlled robot, the
blue robot, which cannot observe the red robot, is the free walking robot.

Fig. 7 We tested our method, DWA method, and the average number of collisions and navigation success rate of blank control
in three scenarios, respectively. Because the DWA method is prone to triggering the maximum number of navigation failures, the
success rate of navigation is low. Since global navigation has no limit on the maximum number of attempts, it has a high success
rate but a large number of collisions.
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Fig. 8 An accessible robot cluster navigation test scenario. The robots start uniformly from an area and navigate to different
target points independently.

Fig. 9 A robot cluster navigation test scenario, in which 12 free-moving obstacles are placed within the scene. The robots start
uniformly from an area and navigate to different target points independently.

part one, and we set a random target point for each robot
in each experiment. In Fig. 9, we added 12 additional
randomly wandering obstacle bots to interfere with the
robot’s navigation.

In the above two scenarios, the experiments were
repeated 100 times to calculate the average collision
rate and the success rate; the experimental results are
shown in Fig. 10. As we can see in Fig. 10, there is little
variability between the two algorithms in multi agents
navigation without obstacles. However, in scenes with
obstacles, the obstacle avoidance effect based on the
DWA algorithm is worse. In particular, when passing
through some narrow intersections, the robots often

appear to gather and are unable to pass when obstacles
interfere. In the case of the proposed method, the robot’s
passage through the intersection is greatly improved.

5 Conclusion
This paper introduced a navigation method that combines
a traditional algorithm and a reinforcement learning
algorithm. Using A� as the path planning for global
navigation, the method has stable performance in
different static scenarios. We chose a local path planning
method using reinforcement learning that allowed
the robot to make the right decision in the local
range through a large number of experiments. The

Fig. 10 We tested the average number of collisions and navigation success rate of our method and DWA method in obstacle and
no-obstacles scenarios, respectively. It can be seen that the performance attenuation of DWA algorithm is particularly serious
when controlling multiple robots in an obstacle scene.
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reinforcement learning approach was experimentally
demonstrated to perform better for some scenarios in
a certain number of robot clusters. We hope to improve
the performance of the robot control algorithm for more
complex scenarios, such as revolving doors and no maps,
through some model-based pre-training methods.
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