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Multi-Clock Snapshot Isolation Concurrency Control
for NVM Database

Xuyang Liu, Kang Chen�, Mengxing Liu, Shiyu Cai, Yongwei Wu, and Weimin Zheng

Abstract: Multi-Clock Snapshot Isolation (MCSI) is a concurrency control mechanism that implements snapshot

isolation on a single-layer Non-Volatile Memory (NVM) database. It stores a single copy of data by using multi-version

storage to ensure durability and runtime access. With multi-clock transaction timestamp assignment, MCSI can

efficiently generate snapshots with vector clocks and use per-thread transaction status arrays to identify uncommitted

versions in NVM. For evaluation, we compared MCSI with the PostgreSQL-style concurrency control used in the

single-layer NVM database N2DB. The maximum transaction throughput of MCSI is 101%–195% higher than that of

N2DB for the YCSB workloads, and 25%–49% higher for the TPC-C workloads. Moreover, the transaction latency

of MCSI remains relatively stable as the thread count increases. With 18 worker threads, the average transaction

latency of MCSI is 65%–84% lower than that of N2DB for the YCSB workloads and 16%–43% lower for the TPC-C

workloads.

Key words: Non-Volatile Memory (NVM); snapshot isolation; Multi-Version Concurrency Control (MVCC); vector
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1 Introduction

Traditional DataBase Management Systems (DBMSs)
use a two-layer storage architecture. One layer is the
volatile, fast, byte-addressable main memory (DRAM),
and the other layer is the non-volatile, relatively slow,
block-addressed disk (HDD or SSD). Disk-oriented
DBMSs store all data on large but slow disks, and they
use buffer pools in the main memory to speed up data
access, while in-memory DBMSs store all the data in
the main memory and use disks to ensure durability.
In-memory DBMSs maintain two copies of data: in-
memory data for faster runtime access and on-disk data
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for durability.
Emerging Non-Volatile Memory (NVM) combines

the properties of the main memory and disks. It is byte-
addressable, persistent, and has a similar access latency
as DRAM. It has been used to replace components
in traditional database systems, such as on-disk file
systems[1–3], buffer pool memory[4, 5], checkpoint, log
storage[6–8], and index[9–11].

However, current works still rely on the traditional
two-layer database architecture, which is arguably not
ideal for NVM[4]. A more promising approach is to
abandon the traditional storage architecture and leverage
NVM properties to build single-layer databases, which
maintain only a single copy of the data for both durability
and runtime access. Multi-Version Concurrency Control
(MVCC) is a natural choice for such databases[12–14],
because the multi-version storage in MVCC allows
higher concurrency at runtime and is good for crash
recovery in NVM.

Concurrency control describes how transactions are
executed and coordinated to ensure certain guarantees,
such as atomicity, consistency, isolation, and durability.
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Isolation level defines the degree to which a transaction
is isolated from changes made by other transactions.
Snapshot isolation[15] is an isolation level in which
each transaction sees a consistent snapshot of the
database during its execution regardless of changes made
by other concurrent transactions. Snapshot isolation
is implemented in many real-world MVCC database
systems[16–18]. Supporting snapshot isolation in MVCC
databases is worthwhile for two reasons. First, with
snapshot isolation, transactions can leverage MVCC
versions in the snapshot to improve concurrency. Second,
when a stronger isolation level is needed, the database
can use serializable certifiers[19, 20] on top of snapshot
isolation to reach serializability. Therefore, efficiently
implementing snapshot isolation plays an important role
when building single-layer NVM databases with MVCC.

The concurrency control implementations from
traditional database systems may experience
performance problems when adapted to NVM
either because they focus on the in-memory data and do
not take persistence overheads into account or because
faster NVMs exaggerate the scalability issues in their
designs. For example, a previous single-layer NVM
database N2DB[14] used the snapshot isolation from
PostgreSQL[17]. Its snapshot generation process involves
taking a lock and scanning a global active transaction
list, which blocks concurrent transactions and is not
scalable. Also, N2DB adopted PostgreSQL’s commit
log for durability and crash consistency. However, such
a design experiences the false-sharing problem in NVM.

To solve these issues, we present Multi-Clock
Snapshot Isolation (MCSI), which efficiently
implements snapshot isolation in a single-layer
NVM database. MCSI stores a single copy of data in
NVM for both runtime access and durability. It handles
crash consistency by storing transactions’ commit
status in NVM to identify uncommitted changes after a
crash. Like in PostgreSQL, MCSI represents a snapshot
through all currently completed transactions in the
system. Each worker thread has its own local clock
for assigning transaction timestamps; thus, MCSI can
asynchronously scan the timestamp of the last completed
transaction from all threads to generate snapshots, and

each worker thread can use its own single-writer status
array in NVM to store the transaction status instead of a
shared commit log. Using those techniques, MCSI can
provide high throughput and low-latency transaction
processing. MCSI scales well and can maintain the
low transaction latency as the thread number increases.
Experiments using the YCSB and TPC-C benchmarks
on real hardware show that MCSI can achieve 25%
to 195% higher transaction throughput and 16% to
84% lower transaction latency compared with the
PostgreSQL-style snapshot isolation implementation in
N2DB.

The remainder of this paper is organized as follows.
Section 2 introduces the background. Section 3 describes
MCSI’s single-layer database storage in NVM. Section
4 discusses how we use multi-clock to implement
snapshot isolation. Section 5 evaluates MCSI against the
PostgreSQL-style snapshot isolation in N2DB. Section
6 presents the related work. Section 7 concludes this
paper.

2 Background

2.1 Non-volatile memory

Traditional databases are built on systems with fast,
volatile DRAMs and slow, non-volatile disks. With the
nature of the two-layer storage architecture, traditional
databases must store two copies of their data—one in
DRAM for fast access and one on the disk for durability.

Emerging NVM offers a promising blend of the two
types of storage devices. NVM devices are low-latency,
byte-addressable, and can be plugged in DIMM slots.
They are considered parts of the main memory and
are directly accessible by the CPU using load or store
instructions. They are also non-volatile, which makes
them a good replacement for disks to store persistent
data. A comparison of DRAM, Intel Optane DC NVMs,
and SSD is shown in Table 1.

Data written by using store instructions to NVM are
not guaranteed to be persistent due to the modern CPU
cache hierarchy. Data will be first buffered in the CPU
cache and kept volatile until they are flushed to NVM
either by an implicit cache eviction policy (not visible to
programmers) or explicit cache flush instructions such

Table 1 Characteristics of DRAM, NVM, and SSD.
Read latency Write latency Capacity Bandwidth Byte-addressable Non-volatile

DRAM 80–100 ns 57 ns 128 GB �10 GB/s
p

�

Optane DC NVM 170–300 ns 62 ns 512 GB 2–6 GB/s
p p

SSD 100 �s 14 �s Several TB �2 GB/s �
p
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as CLFLUSH, CLFLUSHOPT, and CLWB. CLWB is
preferred if available because it does not invalidate the
cache line. Other instructions are also applicable for
storing data in NVM. NTSTORE can bypass the cache
hierarchy and directly write to NVM, which is more
efficient for large writes[21]. Programmers must invoke
these instructions at appropriate times to ensure crash
consistency of their persistent data structures in NVM.

2.2 MVCC and snapshot isolation

MVCC has become the most popular transaction
concurrent control scheme for recent high-performance
database systems[22–25]. In MVCC, transactions always
create new physical versions of tuples (records) instead
of updating them in place directly when making
changes to the database. The database maintains multi-
version storage for tuples to keep both the new and
old versions[26]. MVCC databases typically implement
snapshot isolation, in which every transaction sees a
consistent snapshot of the database taken before its start
time.

MVCC has also been used to build single-layer
databases in NVM[13, 14]. The use of MVCC in NVM has
two advantages. (1) MVCC allows more concurrency
because while a record is being updated, its before-image
is always available, so concurrent readers may not be
blocked. With MVCC and snapshot isolation, read-only
transactions can make progress regardless of concurrent
writers. This feature is beneficial for fast NVM and
DRAM devices. (2) The second reason is related to crash
recovery. In a single-layer NVM database, transactions
will directly modify the data stored in NVM. If the
system crashes while a transaction is still running,
then we need to recover the data to a consistent state
before the transaction makes any modification. With
multi-version storage, we can discard the dirty changes
from interrupted transactions and read the previously
committed version. An additional recovery process like
ARIES is not needed[27].

2.3 Concurrency control for NVM databases

Concurrency control describes how the transactions are
executed and coordinated. Isolation level defines the
degree to which a transaction is isolated from changes
made by other transactions. Efficient implementation of
snapshot isolation plays an important role when building
single-layer NVM databases with MVCC. The snapshot
isolation concurrency control implementation used in
traditional MVCC databases is not well suited for NVM

because of two reasons. (1) The concurrency control
implementations of traditional databases mainly focus on
their in-memory part without discussing durability and
crash consistency. They leave those to another dedicated
recovery protocol, such as ARIES or write-ahead
logging. The situation is different in NVM databases
because a single copy of data is used for both runtime
access and durability. Ensuring crash consistency should
unavoidably be part of the concurrency control itself.
(2) Concurrency control methods from a two-layer
architecture have suboptimal performance when directly
applied to a single-layer NVM database. FOEDUS[28]

points out that centralized components, such as lock
manager and logs in traditional concurrency control
implementations, will cause performance bottlenecks
in a multicore NVM database. A previous NVM
database N2DB[14] adopted the concurrency control
from PostgreSQL[17] to implement snapshot isolation.
The concurrency control scheme from PostgreSQL uses
the currently completed transactions in the system to
represent a snapshot. When generating a snapshot, it
has to take a lock and scan the global active transaction
list. This approach blocks concurrent transactions and
is not scalable. N2DB also adopted the commit log
in NVM to persistently store transaction status for
crash consistency. The commit log is an array-like
structure and is write-shared by all threads, which limits
its scalability. Zen[29] also points out that traditional
concurrency control methods often need to modify the
tuple metadata not only by tuple writes but also by tuple
reads, which incurs expensive NVM writes.

3 Single-Layer Database Storage in NVM

3.1 Overview

The architecture of MCSI’s single-layer storage in NVM
is depicted in Fig. 1. NVM stores two types of data
for the database: tables and transaction status. Tables
maintain the multi-version records (tuples) in NVM.
The per-thread transaction status array in NVM stores
the status (initial, running, committed, and aborted) of
all transactions and is used to help atomically commit
transactions and handle aborted transactions. The same
copy of the data is used for both runtime access and
durability. Multiple worker threads run on top of the
storage layer to execute transactions, in which threads
can read or update records in the tables under snapshot
isolation.
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Record heads Record versions

Table storage

Worker threads

Transaction status arrays

Fig. 1 Single-layer NVM storage of MCSI. Tables maintain
multi-version records in NVM. Each worker thread has
a persistent array that stores the commit status of their
transactions, so we can identify uncommitted changes in the
database.

3.2 Multi-version storage

MCSI uses multi-version storage. When a transaction
needs to modify a record, it creates an updated new
version instead of overwriting the existing version.
Different versions of the same record are organized as a
lock-free singly linked list in an append-only and newest-
to-oldest fashion[26]. This singly linked list is called the
version chain (Fig. 2).

Records in the table are indexed by implicit primary
keys (record IDs). We locate a record by using its record
head. The record head contains the latest version pointer
pointing to the latest record version. Each record version
contains the payload data and a prev version pointer
pointing to its previous version in the chain. All the
information is durably stored in NVM, i.e., it can survive

Fig. 2 Version chain of a record. Different versions of the
record are organized as a newest-to-oldest linked list. Once
created, the version data will be read-only. The txid is the
unique identifier of the version’s creator transaction, so we
can look up the transaction status array to know if the version
has been committed. The D field marks the version as a
tombstone to indicate the record is deleted.

after system crashes and restarts.
When a new version of a record is created, it is inserted

into the front of the version chain, so the latest version
pointer in the record head points to it instead. The content
of inserted record versions will not be changed in the
future. A tombstone version is used to indicate the
removal of a record. Therefore, updating and removing
operations are the same.

3.3 Identifying committed versions

A record version is committed if its creator transaction is
committed. We need to identify committed versions in
the storage layer for two reasons. One is that to ensure
crash consistency, we have to identify and filter out
versions inserted by uncompleted transactions to make
sure we will not read them after recovery from a crash.
The second reason is to implement snapshot isolation, in
which a necessary requirement is that transactions can
only see committed versions in the database.

To determine if a record version is committed, the
status of its creator transaction is needed. We use a
similar approach as PostgreSQL[17] and N2DB[14] with
a simpler metadata structure. In the version chain, each
record version contains its creator transaction’s unique
identifier txid. We use transaction status arrays (see
Section 4.4) in NVM to store the status (initial, running,
committed, and aborted) of each transaction.

The status can be atomically updated, which is why
all its associated records can also change their states
atomically. Other transactions can use such information
to determine if versions are committed without a race
condition. Also, being able to atomically commit all
versions simplifies crash recovery because no write-
ahead logging is needed.

The txid fields and status arrays are stored in NVM
so we can correctly identify non-committed record
versions after recovery from a crash. In MCSI, txids
are two-dimensional and divided across different worker
threads (see Section 4.2), so each worker thread has
its own status array for its txid subset. This feature is
different from the writer-shared commit log as used in
PostgreSQL and N2DB.

4 Multi-Clock Concurrency Control

4.1 Snapshot isolation

MCSI implements snapshot isolation, an isolation level
that is widely used in multi-version databases because
it allows a high level of concurrency. Figure 3 depicts
the relationship between snapshots and transactions in
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Fig. 3 Relationship between the snapshots and transactions
in MCSI. Snapshots form a serial history of the database. The
x-th snapshot is denoted as Sx. A transaction has to start from
a snapshot Si, and its changes may be reflected in a future
snapshot Sj. All such transactions are denoted as fTijg.

MCSI. The snapshot (S0, S1, S2, . . . ) describes the
contents of the database at a specific time. S0 is the
initial empty state of the database. Each transaction sees
a snapshot Si that is generated before its start. If it is
not a read-only transaction, then it will insert or modify
one or several records by inserting newer versions to the
version chains. Those modifications will be reflected in
a future snapshot Sj after the transaction commits. We
use fTij g to denote all such transactions as indicated by
the arrows in Fig. 3, and Ci;j to denote their committed
changes. Note that write-write conflicts on the same
record are not allowed, i.e., a transaction Tij operating
on snapshot Si is not allowed to commit if a record being
updated by Tij has been changed by another transaction
since Si was taken.

In this model, transactions commit their changes
to the database between different snapshots, so all
snapshots together form a serial history of the database.
The snapshot Sx contains the contents of the previous
snapshot Sx�1 and the newly committed changes
between Sx�1 and Sx ,

Sx D Sx�1 C C0;x C C1;x C � � � C Cx�1;x (1)

from which we can induce that
Sx D S0 C

X
0<j6x

X
06i<j

Ci;j (2)

i.e., snapshot Sx consists of inserted changes from
all committed transactions before the snapshot time x.
Furthermore, the committed changes Ci;j in the multi-

version storage can be represented by the changes from
currently completed (including committed and aborted)
transactions Fi;j excluding the aborted changes Ai;j ,

Sx D S0 C

X
0<j6x

X
06i<j

Fi;j �

X
0<j6x

X
06i<j

Ai;j (3)

As a result, in the multi-version storage, we do not
need to create actual physical copies of the database to
represent snapshots. Instead, we can record all completed
(including committed and aborted) transactions in the
snapshot and filter out aborted ones by using the method
described in Section 3.3 (this is exactly what PostgreSQL
achieved). On the single-layer NVM storage engine, this
kind of snapshot implementation has to consider in the
following:
� Concurrent transactions start during snapshot

generation. During the generation of a snapshot, newly
started transactions should be carefully handled so they
do not end up recorded as completed transactions in the
generated snapshot.
� All snapshots together should form a serial

history of the database. All generated snapshots in
the system should fulfill the requirement in Eq. (1).
Transactions from different threads may have their own
snapshots at the same time, and we need to ensure that,
for any two snapshots, one of them strictly contains the
other.
� Transaction status storage, i.e., how to

implement the data structure that stores the status
of each transaction in NVM so that we can filter out
aborted versions when reading the multi-version storage.

Table 2 describes the main differences of the
snapshot isolation between PostgreSQL and MCSI. The
PostgreSQL approach is inefficient for the single-layer
NVM database storage engine. MCSI tries to eliminate
the snapshot generation bottleneck by using per-thread
clocks as discussed below.

4.2 Multi-clock timestamp allocation

In MCSI, each worker thread has its own local clock
which is a 54-bit monotonic increasing counter. When
a transaction starts, it is assigned a unique identifier

Table 2 Overview of different design choices between the PostgreSQL-style snapshot isolation and MCSI.
Concurrent transactions start during snapshot Ensuring serial history of snapshots Transaction status storage

PostgreSQL
Snapshot generation scans a global list to exclude
active transactions from the list, and at the same
time prevents new transactions from starting.

Snapshots are generated one after
another strictly.

A write-shared commit log to
store transaction status for all
worker threads.

MCSI

By using multi-clock timestamp assignment,
snapshot generation scans the last completed
timestamps of each thread, which allows new
concurrent transactions to start.

Generated snapshots are buffered in
the system. Concurrent attempts to
require a snapshot can use a buffered
one.

Each worker thread has a single-
writer status array to store the
status of transactions executed
in this thread.
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called txid, a 64-bit unsigned integer that is made
up of two parts. The first 10 bits are the clock id,
indicating the thread in which the transaction is executed.
The remaining 54 bits, clock ts, are the clock value
of the worker thread when the transaction is started.
After a txid is generated, the corresponding thread’s
local counter will be incremented by one. We use
T .clock id; clock ts/ to represent a transaction. When a
transaction is running, it uses the assigned txid to mark
its inserted, updated, and removed tuple versions.

Essentially, the txids from all threads form vector
clocks. We cannot determine the dependency between
transactions by comparing their txids. Assigning multi-
clock timestamps in this way helps us efficiently record
currently completed transactions without blocking new
transactions from starting when generating snapshots.

4.3 Snapshot generation

MCSI records the information of currently completed
transactions from all threads to describe a snapshot.
Each thread assigns monotonic increasing clock ts to its
transactions and executes them one after another; thus,
the range of all currently completed transactions on each
worker thread can be described by the local timestamp
(clock ts) of the last completed transaction in that thread
(last completed timestamp).

We maintain a global completed timestamp array to
store the current last completed timestamps for each
thread. The timestamps are simply stored as 64-bit
unsigned integers, but each of them is aligned to the
cache line size of the CPU to eliminate false sharing.
When a thread completes a transaction, it updates its last
completed timestamp in the array with an atomic write
instruction. When MCSI creates a snapshot, it scans
all the timestamps in the array by using atomic read
instructions. The created snapshots S can be essentially
seen as vector clocks: S D Œts0; ts1; ts2; : : : �, as
depicted in Fig. 4.

Scanning the entire completed timestamp array for
generating a new snapshot is not atomic. When another
thread is updating its last completed timestamp, two

Fig. 4 Snapshot vector clock. MCSI records the local
timestamp of every worker thread’s last completed
transaction in a snapshot.

concurrently generated snapshots in this situation may
not form a serial history. To deal with this issue, we
forbid concurrent snapshot generation, which is why
concurrent update and scan operations on the global
completed timestamp array are serialized. This approach
is sufficient to ensure that the relationships between
transactions and generated snapshots satisfy Eq. ((1)).

Figure 5a demonstrates an example with two worker
threads. We use Œts0; ts1� to denote their last completed
timestamps. Thread 0 completed transaction T .0; 4/ and
is updating its last completed timestamp ts0 from 3 to 4.
Thread 1 completed transaction T .1; 3/ and is updating
ts1 from 2 to 3. The two transactions are both based
on the previous snapshot S2 D Œ3; 2�. At the same time,
snapshot S3 is being generated concurrently. The update
from worker thread 1 is captured but the update from
worker thread 0 is not, so the generated S3 D Œ3; 3�.
The updated ts0 is delayed to a later snapshot S4 D

Œ3; 4�. The relationship between S2; S3; S4, and the two
transactions fulfill the requirements of snapshot isolation
described in Section 4.1, and is shown in Fig. 5b.

For comparison, PostgreSQL’s snapshot generation
blocks concurrent transactions from starting. PostgreSQL
uses a single global clock to generate transaction
timestamps and maintain a global active transaction

(a)

(b)

Fig. 5 Example of snapshot generation with concurrent
transaction commits. S3’s scanning of the completed
timestamp array captures T(1, 3)’s commit, but T(0, 4)’s
commit is not captured and delayed to a later snapshot S4.
This behavior does not violate the model of snapshot isolation
described in Section 4.1.
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list at runtime. The current completed transactions in
its snapshot are all transactions that have a timestamp
less than the current global clock value, excluding the
running ones in the global active transaction list. When
a snapshot is generated, a race condition exists in when
a concurrent newly started transaction increases the
global timestamp to allocate its timestamp but has not
inserted this timestamp to the active transaction list,
and the generated snapshot may incorrectly record it
as a completed transaction. To prevent this situation,
PostgreSQL has to block new transactions from starting
during snapshot generation.

Another design choice in MCSI is snapshot buffering.
When a transaction starts, it needs to obtain a snapshot
by scanning the global completed timestamp array.
However, as said before, concurrent snapshot generation
is not allowed, which is why we have to consider the
situation where a concurrent transaction also wants
to obtain a snapshot at the same time. With snapshot
buffering, the process of actual snapshot generation is
protected by a mutex that prevents concurrent scanning
of the global completed timestamp array. The database
maintains a global buffer to store generated snapshots
for concurrent transactions to use. Consider an example
with three transactions (TA, TB , and TC ). All of them
want to acquire a snapshot at their start time, and they
perform in the following timeline:
� For transaction TA, the try-lock succeeds. It

generates a snapshot, appends it to the global snapshot
buffer, and unlocks the mutex.
� Transaction TB starts after transaction TA is

finished. The try-lock also succeeds. It then proceeds
to generate a new snapshot, which will reflect the latest
state of the database.
� Transaction TC starts concurrently with transaction

TB . Transaction TB is already in the process of
generating a snapshot; thus, the try-lock will fail. In this
situation, transaction TC will use the previously saved
snapshot (generated by transaction TA) in the global
buffer instead.
� Transaction TB finishes generating the new

snapshot, appends it to the global snapshot buffer, and
unlocks the mutex.

With snapshot buffering, transaction TC can use the
buffered snapshot generated by an earlier transaction, so
it does not have to wait for the snapshot generation of
transaction TB to finish.

4.4 Transaction status arrays

To identify uncommitted record versions, we need to

check the status of their creator transactions. MCSI
stores this information by using status arrays in NVM.
As Fig. 6 depicts, each worker thread has its own
status array. The 2-bit transaction status (initial, running,
committed, and aborted) is packed into 64-bit words
(actually for 31 transactions, as explained below), and
we use a read-modify-write instruction to update each of
them. A status array will be modified only by its owner
thread but may be read by other threads, i.e., Multiple
Readers, Single Writer (MRSW).

To ensure consistency, write and read operations on
the status array should be durably linearizable[30], i.e.,
linearizable even when a crash occurs. Therefore, the
status array should make sure that the readers always
read the persisted status. However, when writing to the
status array, we need to use additional cache line flush
instructions, such as CLWB, to ensure data are persistent
in NVM because a store instruction buffers the data in
the CPU cache. These two steps are not atomic; thus, a
reader can read dirty information in between. To solve
this problem, we adopt the helping mechanism[31]. In the
status array, each 64-bit word has one dirty bit to indicate
whether it needs to be persisted. If a reader finds that it
has read a word with the dirty bit, then it issues a cache
flush instruction to help persist the word before the result
is returned to guarantee that persisted data are always
read. Algorithm 1 shows the pseudocode of setting and
getting transaction status on a persistent 64-bit word.
The most significant bit of each 64-bit word in the status
array is the dirty bit (Lines 1 and 2). The remaining bits
can hold the 2-bit status for up to 31 transactions.

For a status set operation, the writer provides an offset
(which can be calculated from the transaction txid) that
indicates the position of the bits to manipulate and a
2-bit status value to write (Line 3). The writer reads
the previous value of the word (Line 5), changes the

Fig. 6 MRSW status arrays in MCSI. The status of each
transaction takes up 2 bits.
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Fig. 6 MRSW status arrays in MCSI. The status of each
transaction takes up 2 bits.

i.e., linearizable even when a crash occurs. Therefore,
the status array should make sure that the readers always
read the persisted status. However, when writing to the
status array, we need to use additional cache line flush
instructions, such as CLWB, to ensure data are persistent
in NVM because a store instruction buffers the data
in the CPU cache. These two steps are not atomic;
thus, a reader can read dirty information in between.
To solve this problem, we adopt the helping mechanism
[31]. In the status array, each 64-bit word has one dirty
bit to indicate whether it needs to be persisted. If a
reader finds that it has read a word with the dirty bit,
then it issues a cache flush instruction to help persist
the word before the result is returned to guarantee that
persisted data are always read. Algorithm 1 shows the
pseudocode of setting and getting transaction status on a
persistent 64-bit word. The most significant bit of each
64-bit word in the status array is the dirty bit (lines 1
and 2). The remaining bits can hold the 2-bit status for
up to 31 transactions.

For a status set operation, the writer provides an
offset (which can be calculated from the transaction
txid) that indicates the position of the bits to manipulate
and a 2-bit status value to write (line 3). The writer
reads the previous value of the word (line 5), changes
the corresponding status bits without affecting other bits
(line 6), and writes the new value back with the dirty bit
set to 1 (line 7). This process indicates that this word
has been changed but not persisted. The writer then
persists the word by using a cache flush instruction (line
8) and clears the dirty bit (line 9).

For a status get operation, the reader also provides
the offset for the status bits in the word (line 10).
The reader reads the value of the word (line 12) and
extracts the corresponding status bits (line 13). Before
it returns, the reader needs to check the dirty bit of the

Algorithm 1  Persistent 64-bit MRSW word
1 uint64 t word;
2 const DIRTY BIT = 1 << 63; 
3 function set status(offset , status)
4 mask = 0b11 << offset;
5 old val = word.load();
6 new val = (old val & ∼mask) | (status << offset);
7 word.store(new val | DIRTY BIT);
8 cache flush(&word);
9 word.store(new val & ∼DIRTY BIT);

10 function get status(offset)
11 mask = 0b11 << offset;
12 res = word.load();
13 status = (res & mask) >> offset;
14 if (res & DIRTY BIT) {
15 cache flush(&word);
16 }
17 return status;

word it just read (line 14). If the dirty bit is 1, then the
reader may have read a yet-not-persisted value wrote
by a concurrent status set operation. In this case, the
reader helps persist the word it just read (line 15) before
the status is returned.

With only one writer thread on each status array, no
concurrent updates can occur on the same 64-bit word.
Therefore, the read and write operations on our status
arrays are wait-free. They are much faster than the
commit log in PostgreSQL that is write-shared by all
threads.

For each transaction, once it reached the committed or
aborted status, its status is finalized and will not change
anymore. We then inline these two final statuses in
the record versions to reduce unnecessary status array
reading.

4.5 Transaction Execution

This section describes the transaction execution
protocols in MCSI.

Transaction start. When a worker thread wants
to start a transaction, it first generates a txid for the
transaction and sets the transaction status to running
in the status array. Then, it acquires a snapshot of
the database either by scanning the last completed
timestamp of each worker thread or grabbing the most
recently generated one in the global snapshot buffer.

Reading a record. With snapshot isolation, when
a transaction wants to read a record, it needs to find
the correct version in the version chain of this record
by using the visibility rule described below. It first

corresponding status bits without affecting other bits
(Line 6), and writes the new value back with the dirty
bit set to 1 (Line 7). This process indicates that this
word has been changed but not persisted. The writer
then persists the word by using a cache flush instruction
(Line 8) and clears the dirty bit (Line 9).

For a status get operation, the reader also provides
the offset for the status bits in the word (Line 10). The
reader reads the value of the word (Line 12) and extracts
the corresponding status bits (Line 13). Before it returns,
the reader needs to check the dirty bit of the word it just
read (Line 14). If the dirty bit is 1, then the reader
may have read a yet-not-persisted value wrote by a
concurrent status set operation. In this case, the reader
helps persist the word it just read (Line 15) before the
status is returned.

With only one writer thread on each status array,
no concurrent updates can occur on the same 64-bit
word. Therefore, the read and write operations on our
status arrays are wait-free. They are much faster than
the commit log in PostgreSQL that is write-shared by all
threads.

For each transaction, once it reached the committed or
aborted status, its status is finalized and will not change
anymore. We then inline these two final statuses in
the record versions to reduce unnecessary status array
reading.

4.5 Transaction execution

This section describes the transaction execution
protocols in MCSI.

Transaction start. When a worker thread wants

to start a transaction, it first generates a txid for the
transaction and sets the transaction status to running
in the status array. Then, it acquires a snapshot of the
database either by scanning the last completed timestamp
of each worker thread or grabbing the most recently
generated one in the global snapshot buffer.

Reading a record. With snapshot isolation, when
a transaction wants to read a record, it needs to find
the correct version in the version chain of this record
by using the visibility rule described below. It first
determines which record versions are inserted before
its snapshot was taken by comparing their txids with
the snapshot vector clock. The transaction chooses the
first committed version in them as the version to read.
An example is shown in Fig. 7. If no visible version is
found or the visible version is a tombstone that indicates
that the record has been deleted, then the record does not
exist for this transaction.

Updating a record. With snapshot isolation, we need
to prevent conflicting updates on the same record. For
a transaction to successfully update a record, no other
committed version must exist after its visible version in
the version chain. We also assume a version inserted by
another running transaction will soon commit. Under
such conditions, the updating operation will conflict and
the later transaction has to abort. Examples are given in
Fig. 8.

This checking process and the actual update operation
are also not atomic. To deal with this situation, an
updating transaction first reads the latest version pointer
in the record head before the check. If it passes the
check, then the transaction creates an updated record
version and atomically inserts it to the front of the
version chain. The transaction first properly sets the
previous version pointer of the new record version, then
atomically changes the latest version pointer of the
record head to the new version by using a Compare-And-
Swap (CAS) instruction, as depicted in Fig. 9. The CAS
instruction compares against the latest version pointer
the transaction read before the check and if it fails, then
it means a concurrent update has been inserted after the

Fig. 7 Finding the visible version when reading a record.
A transaction will read the first committed version inserted
before its snapshot is taken.
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(a) A newer version has been inserted (b) A newer version is being inserted

(c) No newer version has been inserted (d) Newer insertion has aborted

Fig. 8 Preventing conflicting updates on the same record. If
a transaction wants to update the record, then we ensure no
newer committed version is present in the version chain. We
also assume a version inserted by a running transaction will
soon commit. The updating transaction will abort in cases (a)
and (b), and continue in cases (c) and (d).

Fig. 9 Atomically insert an updated record version to the
version chain. We create a new version that contains the
updated data and points to the previous version in the chain.
The new version is persisted in NVM and we insert it to the
front of the version chain by using a CAS instruction. Finally,
we persist the latest version pointer of the record head.

check and the current transaction has to abort.
To ensure durability and crash consistency, we persist

the data and pointers after they are changed. Before
Step 2 in Fig. 9, we persist the whole new version
(including the previous version pointer) to NVM by
using the CLWB instruction. After Step 2, we persist
the latest version pointer of the record head. If a crash
happens, then the latest version pointer in NVM either
points to the previous version or the new version; in
either case, the entire version chain is crash consistent.

Committing and aborting. For read-only
transactions that make no changes in the database,
their committing and aborting are just no-ops. For a
transaction that has changes in the database, we have to
set its status to committed or aborted in the status array,
then publish its clock ts as the last completed timestamp
of its worker thread. The vector clock in later generated
snapshots will include this transaction.

5 Evaluation

In this section, we evaluate the performance of MCSI.
To compare it with a traditional concurrency control
scheme from two-layer databases, we use the NVM
database N2DB[14], which adapts the concurrency

control implementation from PostgreSQL to single-
layer NVM storage. Experimental evaluation shows
the benefits of MCSI; when the worker thread number is
low, it has a similar performance as N2DB, but MCSI is
much more scalable when the thread number increases.

All experiments use a single server equipped with
Intel Xeon Gold 5220 CPUs. Each socket has 6 Intel
Optane Persistent Memory modules attached with an
interleaved configuration. The remote access of NVM
across NUMA nodes is extremely slow[21], which is why
we run the evaluation on a single socket only.

5.1 YCSB experiments

We run the YCSB[32] benchmark to highlight the
scalability of MCSI’s snapshot isolation implementation.
YCSB is a widely used benchmark in key-value storage
systems and is also used to evaluate transactional
databases. The YCSB benchmark uses a single table of
1 million tuples, each with a primary key and 10 string
columns. The size of each string column is 100 bytes,
so the size of each tuple is about 1 KB. The total size
of the table is about 1 GB. In our experiment, each
transaction randomly chooses 1 to 5 records in the table
and performs read or update operations. The original
YCSB test defines 5 workloads; the first three workloads
A, B , and C are used to evaluate MCSI under different
read/write ratios (Table 3). Workloads D and E are not
implemented because functions such as range scans are
not yet implemented in our storage engine.

We measured the throughput (transaction per second)
under different thread counts and the results are shown
in Fig. 10. When only one worker thread is present,
MCSI and N2DB achieve about the same performance
in all three workloads. However, the performance of
MCSI scales well as the number of threads increases,
while N2DB achieves its maximum throughput at 7 to
10 threads, after which the performance drops. The
maximum transaction throughputs that can be achieved
by MCSI and N2DB are shown in Table 4. The
maximum throughput of MCSI is improved by 101%
to 195% compared with N2DB in our YCSB test.

Two factors make MCSI faster than the PostgreSQL-
style concurrency control scheme in N2DB: snapshot

Table 3 Different YCSB workloads.
Workload Transaction operation

A – Update heavy 50% reads, 50% updates
B – Read heavy 95% reads, 5% updates
C – Read only 100% reads
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(a) Workload A

(b) Workload B

(c) Workload C

Fig. 10 YCSB throughput results.

Table 4 Maximum throughput (YCSB).

Workload MCSI (�106 tps) N2DB (�106 tps)
Improvement

(%)
A 1.035 (18 threads) 0.515 (10 threads) 101
B 2.379 (18 threads) 0.886 (8 threads) 169
C 3.026 (18 threads) 1.025 (7 threads) 195

generation and the data structure for transaction
status storage in NVM. With multi-clock and
snapshot buffering, MCSI’s snapshot generation
is asynchronous and does not block concurrent
transaction starts. However, the PostgreSQL-style
snapshot generation process will block concurrent
transaction starts. Therefore, it is not scalable.

For the transaction status storage, MCSI uses per-
thread transaction status arrays in NVM. Each of them
has only a single writer, so no write contention occurs
on them as the thread number increases. N2DB adopted
the writer-shared commit log from PostgreSQL. The
PostgreSQL-style concurrency control scheme uses a
central global clock to generate transaction timestamps.
As a result, concurrent transactions are more likely to
have timestamps that are close to each other, hence being
more likely to write to adjacent locations in the commit
log when they are committing or aborting. This behavior
leads to write contention and false-sharing problems in
the CPU cache.

To derive some insight into the performance problems

of the PostgreSQL-style concurrency control scheme,
we profiled MCSI and N2DB under different worker
thread numbers. The detailed performance breakdown
is shown in Fig. 11. As we can see, the commit log in
NVM accounts for the largest overhead in N2DB as the
thread number increases. However, Workloads B and
C have many read-only transactions that do not make
changes to the database. Therefore, they do not need to
update their status in the commit log when they complete,
putting less pressure on the commit log than Workload
A. This feature highlights the performance issues with
its snapshot generation at 16 threads.

5.2 TPC-C experiments

TPC-C[33] is an OnLine Transaction Processing (OLTP)
benchmark for database systems. Transactions in TPC-C
are much more complicated than those in YCSB. Each of
our TPC-C experiments consists of 45% New-Order and
55% Payment transactions. A configurable number of
warehouses is available in the TPC-C benchmark. Each
worker thread mostly interacts with its local warehouse,

(a) Workload A

(b) Workload B

(c) Workload C

Fig. 11 YCSB performance breakdown.
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but 10% of New-Order and 15% of Payment transactions
access a remote warehouse. By adjusting the number
of warehouses, we can control the workload contention.
We evaluate three different contention configurations:
1 warehouse, 4 warehouses, and the uncontended
configuration where the number of warehouses equals
the worker thread number. The results are shown in
Fig. 12.

With snapshot isolation, transactions are more likely to
abort under higher contentions because of write conflicts.
For the contended workloads, snapshot generation
and commit log writing of aborted transactions in
N2DB has negative performance impacts on concurrent
transactions. As a result, the total throughput drops
when the thread number increases. In MCSI, the
snapshot buffering and single-writer status maps can
tolerate the extra overhead of aborted transactions.
Thus, the throughput remains relatively stable as more
worker threads are added. Also, for the uncontended
configuration, MCSI can scale well, while N2DB
encounters the same problems in the YCSB tests; thus,
its throughput eventually decreases. The maximum
transaction throughput that MCSI and N2DB can achieve
is shown in Table 5. The maximum throughput of MCSI
is 25% to 49% higher than that of N2DB in the TPC-C
test.

(a) 1 warehouse

(b) 4 wareshouses

(c) uncontended (warehousesD thread count)

Fig. 12 TPC-C throughput.

Table 5 Maximum throughput (TPC-C).

Workload
MCSI

(�103 tps)
N2DB

(�103 tps)
Improvement

(%)
1 warehouse 57.38 (12 threads) 45.82 (7 threads) 25
4 warehouses 116.15 (18 threads) 78.08 (12 threads) 49
uncontended 137.57 (18 threads) 110.28 (17 threads) 25

5.3 Latency experiments

Having low transaction latency is important for an NVM
database because NVM has a lower write latency than
disks. We tested the average latency of transactions in
the YCSB and TPC-C workloads with different worker
thread counts. MCSI and N2DB have about the same
low transaction processing latency in all workloads
when only one thread is present. The measured latency
includes the time of persisting modified data and
transaction status to NVM. As Fig. 13 depicts, when
the thread number increases, the transaction processing
latency in MCSI remains relatively low, but the latency
in N2DB increases by several times. Table 6 presents a
comparison of their average transaction latency with 18
worker threads. The average latency of MCSI is 65% to
84% lower than that of N2DB in the YCSB workloads
and 16% to 43% lower in the TPC-C workloads. The
latency results show the advantage of MCSI’s low-
overhead snapshot generation and transaction status
arrays on NVM.

(a) MCSI latency

(b) N2DB latency

Fig. 13 Transaction latency results.
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Table 6 Transaction latency with 18 threads.
Workload MCSI (�s) N2DB (�s) Reduced (%)

YCSB-A 16.7 48.1 65
YCSB-B 7.4 34.4 78
YCSB-C 5.8 36.2 84

TPC-C (1 warehouse) 71.3 111.0 36
TPC-C (4 warehouses) 77.1 135.2 43
TPC-C (uncontended) 86.2 102.5 16

6 Related Work

Serializable certifiers: Our protocol implements
snapshot isolation. Existing research has discussed
serializable certifiers, which can be used to implement
the serializable isolation level on top of weaker
isolation levels. SSI[19] is an algorithm that ensures
serializability on snapshot isolation by checking
“dangerous structures” in a dependency graph and
aborting involved transactions. Neumann et al.[24] used
a technique called precision locking to guarantee
serializability on top of snapshot isolation in HyPer.
Wang et al.[20] proposed serial safety net, which is a
serializable certifier that can be applied on top of various
isolation levels (such as snapshot isolation and read
committed). Our work can also be extended to support
serializability by using serializable certifiers.

Databases designed for NVM: In recent years,
researchers have proposed new NVM-based database
designs. Zen[29] is a log-free OLTP engine for NVM.
Zen has a two-layer storage design. It maintains a
multi-version tuple heap in NVM and uses tuple-level
caching in DRAM. Unlike N2DB and MCSI, the two-
layer storage design of Zen decouples concurrency
control from durability and crash consistency. Zen
runs the concurrency control in the DRAM rather
than directly on NVM and ensures the atomicity of
committed transactions by appending modified tuples
to the NVM tuple heap and atomically setting a Last
Persisted (LP) bit for the transaction. The LP bits serve
a similar purpose of atomically committing transactions
as the commit log in N2DB and the status arrays in
MCSI. MCSI performs concurrency control directly on
NVM; thus, the status arrays are also used to determine
uncommitted data at run time.

Snapshot isolation concurrency control in NVM:
Snapshot isolation has also been used in other NVM-
related works. Pisces[34] is a persistent transactional
memory that leverages snapshot isolation in NVM to

improve concurrency. It uses Dual-Version Concurrency
Control (DVCC), i.e., only two versions of each object
are kept to limit the searching time in the version chain.
However, if long-running transactions take place, then
write operations in Pisces will be delayed because the
snapshot held by long-running transactions will prevent
the DVCC versions from being recycled. Pisces also
generates timestamps with a single clock and uses the
commit timestamp on versions to determine if they are
in the snapshot. Therefore, when a transaction commits,
it has to atomically update the timestamp of the versions
it created, during which concurrent read operations are
blocked.

7 Conclusion and Future Work

This paper presents MCSI, a snapshot isolation
implementation that can eliminate the performance
bottlenecks of the PostgreSQL-style concurrency control
scheme in the single-layer NVM database. MCSI uses
multi-clock timestamp allocation, so snapshots can be
represented as vector clocks. MCSI scans a global
completed timestamp array to generate snapshots. With
the use of snapshot buffering, transaction starts will
not be blocked by a concurrent snapshot generation.
Multi-clock also enables per-thread transaction status
arrays; each of them has only a single writer and is more
efficient than a write-shared commit log. The maximum
transaction throughput of MCSI is 101%–195% higher
than that of N2DB for the YCSB workloads, and 25%–
49% higher for the TPC-C workloads. Moreover, the
transaction latency of MCSI remains relatively stable
as the thread count increases. With 18 worker threads,
the average transaction latency of MCSI is 65%–84%
lower than that of N2DB for the YCSB workloads, and
16%–43% lower for the TPC-C workloads.

As NVM technologies develop, how to use them to
build new databases will be an interesting topic for the
academia and the industry. Our future work includes
implementing serializable certifiers in MCSI to achieve
a stronger isolation level. We will also study the NUMA
effects in MCSI and use MCSI as a building block for
distributed NVM databases.
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