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A Survey of Human Action Recognition and Posture Prediction

Nan Ma�, Zhixuan Wu, Yiu-ming Cheung, Yuchen Guo, Yue Gao, Jiahong Li, and Beijyan Jiang

Abstract: Human action recognition and posture prediction aim to recognize and predict respectively the action and

postures of persons in videos. They are both active research topics in computer vision community, which have

attracted considerable attention from academia and industry. They are also the precondition for intelligent interaction

and human-computer cooperation, and they help the machine perceive the external environment. In the past decade,

tremendous progress has been made in the field, especially after the emergence of deep learning technologies.

Hence, it is necessary to make a comprehensive review of recent developments. In this paper, firstly, we attempt to

present the background, and then discuss research progresses. Secondly, we introduce datasets, various typical

feature representation methods, and explore advanced human action recognition and posture prediction algorithms.

Finally, facing the challenges in the field, this paper puts forward the research focus, and introduces the importance

of action recognition and posture prediction by taking interactive cognition in self-driving vehicle as an example.

Key words: human action recognition; posture prediction; computer vision; human-computer cooperation; interactive

cognition

1 Introduction

The development of human society in recent years is
known as the “AI Era”, in which the development
of intelligent technology needs self-learning and self-
cognition abilities[1]. The study of human action
recognition and posture prediction enables machines to
understand human behaviors and intentions and has been
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broadly applied in many fields[2–6]. Research on human
action has two basic topics: Human action recognition
and posture prediction.

Human action recognition involves detecting and
classifying human actions from a time series (video
frames, human skeleton sequences, etc.) that contains
complete action execution, as shown in Fig. 1. For
example, the result of human body movement can be
obtained by detecting the dynamic relationship between
the static characteristics of the same frame and several
adjacent frames (as shown in Fig. 1, to shake hands).

Human posture prediction automatically recognizes
the current posture from temporally incomplete time

Fig. 1 Example of human action recognition. Human action
recognition involves detecting and classifying human actions
from a time series (video frames, human skeleton sequences,
etc.) that contains complete action execution.
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series (video frames, human skeleton sequences, etc.),
as shown in Fig. 2. For example, self-driving vehicles
can predict traffic police’s actions, understand police’s
intentions, and make a judgment in advance (as shown
in Fig. 2, to traffic police change lane gesture).

The key difference between human action recognition
and posture prediction is when making a judgment
about an action[7]. Human action recognition is usually
extrapolated from an entire video to an action tag.
It is generally used in non-urgent scenarios, such
as video surveillance and monitoring[8], and human
action analysis[9–11]. Posture prediction is to infer the
result before the action is completed, generally using
to localize human body joint positions. For example,
self-driving vehicles can predict pedestrian movements,
conduct interactions between people and machines,
understand people’s intentions, and avoid dangerous
accidents. It is typically used in application scenes
with real-time requirements, such as human-vehicle
interaction[12, 13], human parsing[14, 15], and human
activity monitoring[16].

As noted above, the problems of human action
recognition and posture prediction are prevalent research
topics. Nevertheless, there are still great challenges for
researches:

(1) Large intra-class variation and inter-class
similarity. For example, in the traffic police dataset,
“stop” and “pull over” both involve movements with
the right hand raised, this similarity is also involved
in other actions. This issue is one of the challenges
in recognizing human action recognition. Therefore, a
framework that can connect actions needs to be built to
adequately identify an action.

(2) Complex scenarios lead to reduce accuracy.
Since the motion vector is noisy and has substantially
reduced resolution, these deviate accuracies. On account
of the complexity of scenes, it is impossible to accurately
extract the action features. In order to extract action

Fig. 2 Example of human posture prediction. Human
posture prediction automatically recognizes the current
posture from temporally incomplete time series (video
frames, human skeleton sequences, etc.).

features adequately, it is also a challenge for human
action recognition and posture prediction in complex
scenes.

(3) Long untrimmed sequences exist in many
datasets. Although some existing methods have
introduced semi-supervised training methods to some
datasets, they cannot make full use of the rich advantages
of video context in some aspects and may even impair
recognition accuracy if they are not properly designed
for raw videos. Moreover, great differences exist in the
content of real actions. Therefore, designing human
action recognition algorithms that can learn actions from
both marked and unmarked data is imperative.

(4) Long-tailed distributions. There are lots of data
on some human actions (such as standing, walking,
sitting, etc.) while little on other human actions (such
as traffic police action), and obviously, the significant
long-tail distribution is found in data distribution. To
overcome the imbalance problem caused by the long-tail
distribution, we need to further improve the learning of
the classifier and expand the tail data.

Many relevant new ideas, frameworks, and approaches
have been proposed in certain area. To better inspire
future research and reveal the key trends of these
fields, the study attempts to present the background,
make a research overview and discuss progresses,
datasets, various typical feature representation methods,
and a variety of advanced human action recognition
and posture prediction algorithms in recent years and
other aspects. In addition, it is also pointed out that
some future directions of human action recognition
and posture prediction. The goal of this paper is to
contribute to the field of computer vision, from theory,
methodology, and system perspectives. It is believed that
this survey can contribute to the field of computer vision,
from theory, methodology, and system perspectives as
well.

This paper is organized as follows: Section 2 presents
commonly used datasets for human action recognition
and posture prediction. Section 3 discusses the methods
of human action feature representation and human action
recognition, and summarizes the common algorithms
of human action recognition. Section 4 explores
the methods of human posture prediction. Section 5
provides a summary, reviews and looks forward to future
research.

2 Common Datasets

From a data perspective, data can be divided into RGB
and RGB-D datasets. RGB datasets contain basic color
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images composed of red, green, and blue channels.
Compared with RGB datasets, RGB-D datasets have
an extra depth data channel, which provides scene
structure. A comparison of benchmark datasets for
human action recognition and posture prediction is
shown in Fig. 3 and the main characteristics of these
datasets are summarized in Table 1. These datasets differ
in the number of backgrounds, perspectives, and humans,
and are widely used to compare various algorithms.
Selecting appropriate datasets for model training is
convenient for researchers.

2.1 RGB datasets

(1) UCF-101[25] has 13 320 video samples. It is collected
from YouTube with real action videos of 101 types
of actions (playing guitar, playing piano, playing
violin, etc.). The 101 action categories are divided
into 25 groups, and each group can contain 47 action
videos. Videos from the same group may have some
common characteristics, such as similar backgrounds
and perspectives. This dataset is mostly used in single-
person or multi-person human action recognition.

(2) J-HMDB[28] has 31 838 annotated frames, which
mostly come from movies, with a small proportion
coming from public databases. It includes 21 action
categories, each containing a minimum of 101 clips
(smiling, laughing, chewing, talking, etc.). This dataset
is mostly used in single-person or multi-person human
action recognition.

(3) Human3.6M[31] has 3.6 million human poses and
corresponding images. This dataset is organized into
15 training scenarios including 17 types of actions
(discussing, eating, sporting, greeting, etc.). And it also
provides synchronized 2D and 3D data (including time

of flight, high-quality image, and motion capture data),
and accurate 3D human models (body surface scans) of
the actors. This dataset is mostly used in 3D posture
prediction.

(4) MPII[32] has about 25 000 image samples. It
includes 410 types of actions (dancing, walking, running,
bicycling, etc.), and more than 40 000 people with
annotated human joints. The test set has rich annotations,
including occlusion of body parts, 3D torso, and
head orientation. This dataset is mostly used in 2D
whole body, single-person or multi-person human action
recognition or posture prediction.

(5) MS COCO[33] has more than 330 000 image
samples. It is mainly derived from complex daily scenes,
and the targets in the images are calibrated by precise
segmentation. The image includes 91 types of targets
(vehicle, person, sports, etc.). And it includes 328 000
videos, and 2 500 000 labels. This dataset is mostly used
in 2D whole posture prediction.

(6) Charades[38] has 9848 video samples, which is
from daily indoor activities collected through Amazon
Mechanical Turk. It includes 157 types of actions
(holding, closing door, taking, eating, etc.). The dataset
contains 66 500 temporal annotations for 157 action
classes, 41 104 labels for 46 object classes, and 27 847
textual descriptions of the videos. This dataset is mostly
used in single-person or multi-person human action
recognition.

(7) MPI-INF-3DHP[39] has more than 1 300 000 image
samples. It includes 8 types of actions (walking, sitting,
running, etc.). This multi-view dataset contains both
true 3D annotations and a skeleton compatible with
the “universal” skeleton of Human3.6M. This dataset
is mostly used in posture prediction.

Fig. 3 Compared datasets of various types. (a) Datasets with 2D and 3D; (b) datasets of single-person scene and multi-person
scene; (c) datasets of swing shooting and natural shooting scenes; (d) datasets of interactive and datasets without interactive
scenes.
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Table 1 Common datasets used in action recognition and posture prediction research.
Dataset Year Number of samples Number of action types Number of views Type Task
KTH[17] 2004 2391 6 1 RGB Action recognition

IXMAS[18] 2006 390 13 5 RGB Action recognition
Collective Activity[19] 2009 44 5 – RGB Action recognition

Hollywood2[20] 2009 3669 12 – RGB Action recognition
MuHAVi[21] 2010 952 17 8 RGB Action recognition

UT-Interaction[22] 2010 20 6 – RGB Action recognition
CCV[23] 2011 9317 20 – RGB Action recognition

HMDB51[24] 2011 6849 51 – RGB Action recognition
UCF101[25] 2012 13 320 101 – RGB Action recognition

UTKinect-Action3D[26] 2012 10 10 – RGB-D Action recognition
CAD-120[27] 2013 120 10 – RGB-D Action recognition
J-HMDB[28] 2013 33 183 21 – RGB-D Action recognition

Florence-3D Action[29] 2013 215 9 – RGB-D Action recognition
Penn Action[30] 2013 2326 15 RGB Posture prediction
Human3.6M[31] 2014 3 600 000 17 15 RGB-D Posture prediction

MPII[32] 2014 25 000 410 – RGB Action recognition
MS COCO[33] 2014 328 000 – – RGB Posture prediction
ActivityNet[34] 2015 27 801 203 – RGB Action recognition

SYSU-3D Human-Object
Interaction[35] 2015 – 12 – RGB-D Action recognition

YouTube-8M[36] 2016 8 264 650 4800 – RGB Posture prediction
NTU RGB+D[37] 2016 56 880 60 – RGB-D Action recognition

Charades[38] 2016 9848 157 – RGB Action recognition
MPI-INF-3DHP[39] 2017 >1 300 000 8 14 RGB Posture prediction

JAAD[40] 2017 346 – – RGB Posture prediction
PKU-MMD[41] 2017 5 400 000 51 – RGB-D Action recognition
TotalCapture[42] 2017 1 892 176 4 8 RGB Posture prediction
Kinetics-600[43] 2018 500 000 600 – RGB Action recognition

AVA[44] 2018 – 80 – RGB Action recognition
PedX[45] 2019 5000 – 2 RGB Posture prediction

Moments-in-Time[46] 2020 1 000 000 339 – RGB Action recognition
Kinetics-700[47] 2020 650 317 700 – RGB Action recognition

NTU RGB+D-120[48] 2020 114 480 120 – RGB-D Action recognition
TAPOS[49] 2020 16 294 21 – RGB Action recognition

FineGym[50] 2020 – 10 – RGB Action recognition

(8) Kinetics-700[47] has 650 317 video samples. It
includes 700 types of actions (digging, chasing, spraying,
cutting, etc.). For an action class, all clips are from
different YouTube videos. This dataset is mostly used in
single-person or multi-person human action recognition.

(9) FineGym[50] has about 708 hours of video samples.
It includes 10 types of actions (vault, floor exercise,
uneven-bars, balance-beam, etc.). It is a new dataset
built on top of gymnastics videos and records 303
competitions. This dataset is mostly used in single-
person human action recognition.

2.2 RGB-D datasets

(1) UTKinect-Action3D[26] has 10 video samples. It
includes 10 types of actions (walking, sitting down,

standing up, etc.). Three channels were recorded: RGB,
depth, and skeleton joint locations. This dataset is
mostly used in single-person human action recognition.

(2) CAD-120[27] has 120 RGB-D action videos. The
dataset consists of 10 action types (rinsing mouth,
talking on the phone, cooking, etc.) performed by 4
subjects. The videos are captured using the Kinect sensor.
Tracked skeletons, RGB images, and depth images are
provided in the dataset. This dataset is mostly used in
single-person human action recognition.

(3) Florence-3D[29] has 215 video samples. It includes
9 types of actions (waving, drinking from a bottle,
answering phone, clapping, tying lace, sitting down,
standing up, reading watch, and bowing). 3D data
acquisition can be performed through a variety of
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methods, including 2D images, collected sensor data
and field sensors. Compared with 2D acquisition, 3D
acquisition data have more information of a one-
dimensional depth, which can improve the accuracy of
data recognition. This dataset is mostly used in 3D whole
body, single human body action recognition.

(4) NTU RGB + D action recognition[37] has 56 880
video samples. It includes 60 types of actions (reading,
writing, clapping, jumping, etc.). The dataset contains
RGB video, depth map sequences, 3D bone data and
infrared video actions for each sample. The 3D bone
data contain the 3D positions of the 25 main body joints
of each frame. This dataset is mostly used in single-
person or multi-person human action recognition and
posture prediction.

3 Human Action Recognition

Human action recognition methods are various, but
recognition steps are roughly the same. In the process
of human action recognition, on account of the
diverse direction and position of human action, it
is still a challenging problem to find a general and
reliable solution. In modeling, the characteristics or
forms of actions should exhibit strong discriminative
ability to enable action that have similar temporal and
spatial aspects to be distinguished[51]. Human action
recognition usually includes two main parts: Human
action representation and classification. The feature
representation step is performed to extract representative
human action information, distinguish it from action
videos and convert it into feature vectors[52]. Then the
action classification step is performed to identify and
label human actions in a large candidate label set. In
this section, the discussion will be extended to important
human action representation and recognition methods.

3.1 Human action feature representation

Representation of action characteristics is the key to the
accuracy in human action recognition. Many kinds of
features exist in human actions, and human action feature
representation methods mainly deal with the problem of
a single feature incompletely describing human action
features. Human action feature representation methods
can be divided into global feature representation methods
and local feature representation methods.

(1) Global feature representation method: The
global feature representation method is based on the
entire moving human body[53]. Generally, the entire
human body of interest is detected by background

clipping or tracking. Usually, the silhouette, optical
flow, and other information are widely used, which is
elaborated below.

Global silhouette based feature representation
methods have been used in the early papers. These
methods usually detect human behavior areas by using
background clipping, human contour silhouette, etc.;
then they extract features for the detected area as
behavioral features[54], as shown in Fig. 4. For example,
Singh et al.[55] used an adaptive background foreground
separation technique to extract motion information
and generate human silhouettes from the input video;
then, they derived directional feature vectors from
contour, and clustered and distinguished different data
in vector space. This method could be used for front
and side views of most activities. Jiang and Tian[56]

proposed a moving human target detection algorithm that
combined spatio-temporal background difference and
closed contour fitting. The algorithm obtained the initial
target area by background difference and constructed
a weighted multi-directional Gaussian filter to filter
the initial target area to obtain the edge information,
finally constructed the closed contour to extract the
complete moving target, and marked the target position.
Asumang et al.[57] proposed a seed image pruning
technique, which mainly described as the maximum
angle between boundaries along this contour shared
by two parts, such as upper and lower arms. In 2020,
Abdelbaky and Aly[58] proposed a Principal Component
Analysis Network (PCANet), which used a motion
energy template to appropriately represent the time
information of the input video, and calculated Multiple
Short-Time Motion Energy Image (ST-MEI) templates to
capture human movement information. Global silhouette
feature representation methods describe information in
details and can easily extract the Region of Interest
(RoI) in a simple background, it relies heavily on
stable segmentation, which may fail in complicated
scenes, such as in INRIA[59] and USC-HAD[60] datasets.
However, it has difficulty extracting contour features in

Fig. 4 Global silhouette based feature representation. (a)
Background image; (b) target image; (c) result image.
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a complex background and has large limitations.
Human action has a strong temporal and spatial

correlation, so researchers usually use optical flow
based representation methods to obtain spatio-temporal
features. As shown in Fig. 5, the optical flow based
human feature representation methods not only contain
the velocity and direction of moving objects, but
also the relationship information with the surrounding
environments, both of which are important information
for recognizing human actions. Ali and Shah[62]

proposed action features derived from optical flow
for human action recognition in video. It includes
divergence, vorticity, symmetric, and antisymmetric
optical flow fields. These features are computed by
performing Principal Component Analysis (PCA) on the
spatio-temporal volumes of the kinematic features. Lu
et al.[63] used optical flow information to represent the
action information of human behavior, and used a 3D
convolution network feature extractor to extract deep
RGB features and deep optical flow features. Then,
deep RGB features and deep optical flow features
are cascaded and fused as a joint feature that is
expected to have stronger recognition ability. Ullah
et al.[64] used Convolution Neural Networks (CNNs)
based optical flow model FlowNet2[65] to extract
time features. They fed two consecutive frames into
pretrained FlowNet2 CNN model, and then extracted the
feature maps from final convolution layers of FlowNet2.
In 2020, Rashwan et al.[66] proposed Histograms of
Optical Flow Co-Occurrence (HOF-CO) to form the
overall motion feature histogram of action. Optical
flow based representation methods do not require
background representation, thus it is the advantage of
dealing with motion background. However, this kind
of method will be affected by the noise of the dynamic
environment background, which makes it work poorly
in conditions with noise, multiple light sources, shadow,
and occlusion.

(2) Local feature representation method: The
local feature representation method is used to detect
and identify parts with significant changes in moving

Fig. 5 Characteristic representation of the optical flow
field[61]. (a) Real human action sequence; (b) optical flow.

human bodies. Generally, they extract points or blocks
of interest in the human body. Unlike global feature
representation, local feature representation does not
require accurate human positioning and tracking, hence
having better stability[67]. Local feature representation
can be divided into the following two methods: Local
feature detectors and local feature descriptors for human
action recognition.

Local feature detectors for human action recognition
construct the entire video as a distribution set of local
feature points along the time dimension[68]. These
methods are widely used in image retrieval, video
analysis, feature matching, lipreading[69], and target
recognition[70–72]. Gopalakrishna et al.[73] introduced
a method based on Laplace of Gaussian (LOG)
and angle-based distance similarity measurement
technology for multiple moving target recognition
in video sequences. This method extracted feature
vectors through appropriate LogGabor approach to
test the purpose of moving object image sequence,
so it has better recognition accuracy. Gabor filters
provide excellent spatial and frequency information
for object localization in scenes, which could improve
the performance of moving target detection and
recognition under certain circumstances such as target
occlusion. This method could be used in research on
intelligent video surveillance systems. Paul et al.[74]

used Harris corner detection and Scale-Invariant Feature
Transform (SIFT) to feature matching. This method
performed a heuristic search and generated a real nearest
neighbor or data point close to it, which improved
the result quality of the algorithm. In 2019, Vaghela
et al.[75] proposed a Morphological Retina Keypoint
Descriptor (MREAK). This method effectively matches
key points and detects new key points by implementing
selected morphological operations, and adopting a
neighborhood sampling model. It also improves the
accuracy of key point matching and reduces calculation
time. Piergiovanni and Ryoo[76] proposed a learnable
convolutional representation flow layer trained in an end-
to-end fashion. It computes the flow on a CNN tensor
with a smaller spatial size and benefits its speed. Local
feature detectors mainly highlight the local particularity
of the images and improve the performance of human
action recognition. However, the feature points extracted
by the local feature detectors are sparse, which will bring
a considerable information loss.

Local feature descriptors for human action recognition
involve taking the visual observation object as a
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whole and extracting human action features. Feature
descriptors mostly adopt Histogram of Oriented
Gradients (HOG), Gray-Level Co-occurrence Matrix
(GLCM), Speeded-Up Robust Features (SURF), and
Graphics and Intelligence based on Scripting Technology
(GIST) or their deformation. The main purpose is
to extract descriptors from an RGB video after
background subtraction and to create the smallest
bounding box around human objects[77]. Zhao et al.[78]

proposed an improved SURF, which uses Binary Robust
Independent Elementary Feature (BRIEF) to generate
feature descriptors, determine matching points and
optimize images, and then conduct feature tracking
and feature extraction on images. Dusmanu et al.[79]

proposed a novel approach to local feature extraction.
This method uses a describe-and-detect methodology
to describe higher-level information and obtain better
features. Experimental results show that it could improve
the real-time performance of feature extraction. In
2020, Sadhukhan et al.[77] used an effective sparse
filtering method to describe the local feature points of
human movement, and reduce the number of features by
eliminating redundant features and assigning weight to
the remaining features after elimination. Local feature
descriptors can handle more complex situations such as
occlusion and complex backgrounds. However, these
methods gain in robustness comes at the price of higher
matching time and memory consumption[79], and will
also produce great differences in the same local image
content rotation changes.

3.2 Human action recognition methods

After feature representation, action classification should
be performed. We divided human action classification
methods into two categories: Shallow learning methods
and deep learning methods.

(1) Shallow learning methods: Traditional shallow
learning methods are usually divided into direct
recognition and sequential recognition.

Direct recognition: The method refers to the
representation of the entire video sequence as a feature
vector. Typical methods include template matching and
Support Vector Machine (SVM)[17, 80, 81].

Template matching method aims to identify the object
in a given pattern, compare the similarity with the
prestored pattern in the recognition process, and select
the smallest distance from the test sequence as the
recognition result of the test sequence[82–84]. Bobick
and Davis[85] first proposed Motion Energy Image

(MEI) to describe action recognition by describing
how an object moves and where it moves in space.
Motion History Image (MHI) was generated based
on the action energy map. MHI is a vision-based
template method that represents the target action in
the form of image brightness by calculating the pixel
changes at the same position during a certain time
period. Therefore, MHI images can characterize the
recent movements of the human body during an
action. Weinland et al.[18] proposed Motion History
Volumes (MHV) on the basis of MHI for human
behavior in multiple calibrated cameras with background
subtraction. Zernetsch et al.[86] proposed a method for
detecting the starting intention of a bicycle on the basis
of MHIs. This method could detect the initial action
in the image sequence and classify MHIs frame by
frame. It is used to detect the use of a wide-angle stereo
camera system at urban intersections. Common template
matching methods include Dynamic Time Warping
(DTW). Vajda[87] proposed an action recognition method
based on fast DTW and feedforward neural network.
This method used the modified FastDTW (approximate
value of DTW) to classify the movements of various
parts of the human body. Chang et al.[88] proposed
Discriminative Differentiable Dynamic Time Warping
(D3TW) algorithm which is a weakly-supervised method.
This method attempts to solve sequence alignment
problem and weakly supervised action alignment and
segmentation in videos. In 2021, Yang et al.[89] extracted
the normalized features of actions and selected inner
class center features to construct a template library of
actions. They used action detection, action filtering, and
adaptive weight shift templates to recognize the actions
in video sequences. The experimental recognition
accuracy reached 96.74%. The template matching
method is easy to understand. However, the algorithm
calculation is relatively large, and it does not consider
the time and space correlation in the actual situation.

SVM is a widely-used classifier[90–92]. On the basis
of its kernel tricks, it can handle high-dimensional
feature in a nonlinear space. It has achieved great
success in many computer vision and machine learning
tasks before deep CNNs and is also widely used in
human action recognition. For example, Li[93] proposed
a human action recognition method based on fuzzy
SVM. Koppula et al.[27] proposed a combination of
HOG descriptor and SVM recognizer by using the
structure SVM method to solve the problem of joint
labeled object provision and human activity in an RGB-
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D video. The method described the problem as a Markov
Random Field (MRF), where nodes represent objects
and sub-activities, and edges represent relationships
between objects, their relationships with sub-activities,
and their evolution over time. Experiments showed
that this method performed well in activity recognition
of different marked objects. Uslu and Baydere[94]

proposed an SVM-based activity detection. The method
that combines feature extraction with a classifier, and
proposed the idea that the best classification feature
could be determined without experiments on multiple
features. This method can be used to help people who
need assistance in their daily lives, monitor and detect
their activities, and generate their context information,
so as to ensure their security. In 2020, Wang et al.[95]

proposed to connect local features to form a global
representation, and used these features to train Linear
Support Vector Machine (LSVM) to perform action
recognition using all the contexts of a video. SVM
can avoid information redundancy in the process of
feature extraction and is capable of accurate and fast
classification, thereby accurately recognizing most
human movements[96]. However, if the amount of action
recognition data to be processed is large, the training
time of SVM will be long, and it is difficult to solve
multi classification problem.

Sequence recognition: The method uses holistic
features from frames to model, and then selects an
appropriate classifier on recognition. Some common
methods include probabilistic Latent Semantic Analysis
(pLSA)[97, 98], Hidden Markov Model (HMM)[99–101],
Conditional Random Fields (CRF)[102–104], and so on.
Tan et al.[98] proposed a method, which used pLSA
for human action recognition. To address the inability
of pLSA to guarantee the implicit topic correctness,
the algorithm correlated the topic with the action
label “one-to-one”. And it not only obtained the
topic through the supervised method, but also ensured
the correctness of the topic during training. Yamato
et al.[105] used HMM to determine the number of
states that are most suitable for the model on the
basis of the number of key poses of human action
and to fully express the intrinsic correlation between
features. To apply HMMs, they converted a set of
time series images into image feature vector sequences,
and converted the sequences into symbol sequences
by vector quantization[106]. When learning human
movements, they optimized the parameters of HMMs so
that they can best describe the training sequences in the

category. Liu et al.[107] proposed a behavior recognition
method based on a human 3D skeleton and Multiple
Conditional Random Fields model (MCRF). First, this
method divided human action into global action, arm
action, and leg action, which can form multiple types of
feature sets. Second, it used a CRF model for each
feature set based on 3D skeleton division. Third, it
integrated all CRF models to obtain the MCRF model,
and finally used for behavior recognition. Chereshnev
and Kertész-Farkas[108] proposed a method of modeling
the distribution of raw data in a half-second context
window on the basis of dynamic Bayesian networks for
mobile real-time human action recognition. In 2020,
Ali and Bouguila[109] proposed variational-based Beta-
Liouville hidden Markov models, which considers the
prior knowledge, under fitting and over fitting in the
training process for human action recognition.

Others: Numerous shallow learning methods such as
machine learning exist. Many works utilize unsupervised
learning or Semi-Supervised Learning (SSL) framework
for human action recognition, which can significantly
reduce the labeling effort. Generally, unsupervised
learning is when the input data are unlabeled; that
is, no corresponding output variable exists. Unlabeled
data are used to classify the observations. Shi et al.[110]

proposed conditional Variational Auto-Encoder (VAE)
to learn model the class-agnostic frame-wise probability
conditioned on the frame attention of human actions and
solved the action-context confusion issue.

SSL is a learning method that combines supervised
learning and unsupervised learning[111, 112]. SSL uses
limited labeled samples and a large number of unlabeled
samples for model learning. Unlabeled samples can
also provide extra knowledge about the data and
thus improving model performance because of some
probabilistic or geometric information in unlabeled
samples or between labeled and unlabeled samples. SSL
is also widely used in human action recognition. In
fact, because almost unlimited unlabeled video data
exist, SSL could be a good way to achieve good
accuracy with limited labeled data. Tang et al.[113]

proposed a human action recognition method based
on Multiview Semi-supervised Learning (MVSL). In
this paper, they proposed three kinds of view data,
which are skeleton joint point view data, RGB color
image view data, and depth image view data. This
method used the complementary expression ability
of views to comprehensively represent human action,
and used the classifier level fusion technology and
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the prediction ability of three views to effectively
solve the problem of unmarked sample confidence
evaluation. Pikramenos et al.[114] proposed a semi-
supervised automatic retrieval adaptive skeleton method,
which not only improved the accuracy of action
recognition, but also realized data enhancement. SSL
is very advantageous in making full use of unlabeled
data, but the current method is not suitable for long-term
skeleton sequence learning.

Some researchers have studied sensor based human
action recognition methods that can establish links
between different data[115–118]. Lei et al.[119] studied the
use of RGB-D cameras for fine-grained recognition of
kitchen activities. This method is set to combine shape
and appearance to locate hands and track changes in
object motion to identify objects and their functions.
Ranjan et al.[120] confirmed that Radio Frequency
Identification (RIFD) is used for location-based behavior
recognition, which has higher accuracy for people
moving at home. Killijian et al.[121] introduced a new
technique for capturing hypotheses about the behavior of
human groups. The framework provides a customizable
layered approach that allows comparison and inference
of models and tracking. Jeong et al.[122] proposed a
method of classifying walking activities using eight-
foot pressure sensors embedded in smart shoes. These
methods have high requirements for sensors, and cannot
fully achieve outdoor real-time recognition.

(2) Deep learning methods: Deep learning methods
are an abstract representation based on the multilayer
representation of the complex relationship between
learning data. In these methods, continuity is used
to express the close degree between the extracted
features and the semantic space. Therefore, the gap
between observation, representation, and semantic
spaces would be decreased[123]. Deep learning has
achieved remarkable results in image recognition, object
detection, scene recognition, and other fields with
its excellent performance[124–127]. Therefore, many
researchers attempted to combine deep learning with
human action recognition. Human action recognition
is also a video-based computer vision task, and deep
learning is expected to achieve promising performance.
In most cases, convolutional neural networks are used
for visual feature extraction and classification. Recurrent
neural networks are also utilized to model the temporal
dynamics.

Convolutional neural networks: Simonyan and
Zisserman[128] proposed a two-stream convolutional

network architecture that incorporates spatial and
temporal networks. The spatial stream performs human
action recognition from still video frames, while the
temporal recognizes human actions in the form of dense
optical streams, and then combines the two through
post fusion, which is achieved a good recognition
effect. In Ref. [129], the traditional CNNs were
extended to 3D-CNN with temporal information, and
feature calculation was performed on the temporal and
spatial dimensions of the video data. The feature map
in the convolution process was connected with the
data in several consecutive frames[129]. This paper[129]

also compared methods based on manual features
and methods based on deep learning (RNNs and
CNNs), the experimental results show that 3D-CNN
is more effective as a representation of spatiotemporal
information. Huynh-The and Kim[130] proposed an
efficient skeleton action recognition method based on
CNNs which used image encoder to convert skeleton
coordinate data into image forming data. Li et al.[131]

designed a two-dimensional CNNs, which extracted the
action mode through the action vector. As a supplement
to the pseudo three-dimensional CNNs, CNNs made
up for the information lost in the RGB image. In 2020,
Yang et al.[132] resolved the costly multi-branch network
problem and proposed a generic Temporal Pyramid
Network (TPN) at the feature-level. In 2021, Jiang
et al.[133] used 3D convolutional neural networks as
baseline to recognize action, which includes efficient
and temporal efficient two attention modules, and these
attention modules could effectively model actions in
spatial and temporal. Kumawat et al.[134] proposed
spatio-temporal Short-Term Fourier Transform (STFT)
convolutional neural networks to reduce parameters for
action recognition, which is better than the conventional
3D convolutional layer and its variants by experiments.
Liu et al.[135] proposed to a two-stream convolution
neural network to recognize single person behavior and
interaction behavior, which could improve the accuracy.

Recurrent neural networks (RNNs): RNNs are
suitable for temporal problems. Thus, the human
action recognition network based on Long-short Term
Memory (LSTM) is developed[136, 137]. Doahue et
al.[138] proposed a Long-term Recursive Convolutional
Neural network (LRCN), which combined CNNs and
LSTM network to perform feature representation on
video data. Single-frame image information obtained
features through CNNs. The output of the CNNs was
passed through the LSTM in chronological order, so
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that the video data are finally characterized in the
spatial and temporal dimensions. The network can
deal with little input preprocessing and no manual
design features. In Ref. [139], CNNs were to obtain
the global description. With parameters being shared
in time series, both feature aggregation and LSTM
architecture were kept as a function of video length.
Li et al.[140] proposed an adaptive learning framework
based on the RNN tree (RNN-T) for bone based human
action recognition. This method used RNN-T model
and its associated action category hierarchy was used to
distinguish fine-grained action classes that are difficult
to handle with a single network, and extend existing
models to accommodate new action classes[141]. Liu
et al.[141] proposed the global context aware attention
LSTM network, which could selectively focus on
the information nodes in each frame by using the
global context memory unit. They also introduced a
recursive attention mechanism, which could gradually
improve the attention performance of the network. In
2020, Ji et al.[142] proposed Action Genome to enhance
the correlation of movement time characteristics and
capture changes between objects and their pairwise
relationships while an action occurs. Ullah et al.[143]

proposed a Conflux LSTMs Network to recognize
actions from multi-view cameras. Compared with the
latest data, the experimental results of the benchmark
dataset show that the northwest UCLA and MCAD
datasets increased by 3% and 2%, respectively. These
methods can be used in intelligent video surveillance,
human-computer interaction, video retrieval and other
applications[1, 144–146]. In 2021, Wang et al.[147] proposed
a recurrent neural network for spatiotemporal predictive
learning (PredRNN) to learn sequential actions.

3.3 Summary

Table 2 summarizes different improved algorithms
mentioned. Findings show that researchers tend to focus
on deep learning, but this does not mean that shallow
learning is not good. As for the mainstream algorithms
for human action recognition, different algorithms have
their own structure and datasets. Therefore, different
algorithms require different feature representation
methods. The applications of the algorithms also have
certain differences. The latest methods (Unsupervised
Domain Adaptation (UDA)[172], TPN[132], Action
Genome[142], Symbiotic Graph Neural Networks (Sym-
GNN)[6], etc.) have been used well in action recognition.

At present, action recognition is divided into the
following research directions:

(1) Spatio-temporal networks for action
recognition. The most remarkable feature of human
action is that it contains not only static information in
the spatial but also motion information in the temporal.
Recent works[142–167] improved the understanding of
temporal from this task. Some works[173, 174] proposed
innovative two-stream fusion schemes, and some
studies[175, 176] set up pipelines to connect spatial and
temporal information. Others[177–179] studied the spatial
hierarchy and temporal series characteristics of skeleton.
All in all, these works aim at recognizing the actions of
interest that present in both space and time.

(2) Recognize specific action segments for
untrimmed action video. Action recognition models
have been widely studied, most of which are based
on trimmed videos, while many video datasets
are untrimmed. Therefore, in recent years, weakly
supervised learning has been successfully exploited for
recognition in untrimmed videos[110, 180].

(3) Interaction for action recognition. In real world
applications, it includes interactions between humans,
between human and objects, and between human and
environment. Many existing works are observed to
attempt to explore interactions in videos[181, 182].

(4) Joints correlation in skeleton-based human
action recognition. Human skeleton information is
a kind of graph structure data, human actions are
usually dependent on two or more neighbor-connected
joints. Therefore, it is of great significance for us
to explore the dependency information of skeleton
based action recognition. Some researchers[183–186] have
constructed a more effective graph structure on human
skeleton information and achieved great performance
improvement.

After years of research on human action recognition,
there are still some problems, which we summarize as
the following six points and they are sorted out in future
work.

(1) Spatio-temporal learning is still an urgent problem.
Many works isolate spatial learning and temporal
learning, which is why a spatial and temporal fusion
occurs at the last level. A loss occurs each time the spatial
and temporal features are extracted separately[173]. An
effective simulation module can provide valuable clues
by integrating motion modeling into the whole spatial-
temporal feature learning method.

(2) Using weakly supervised learning method to learn
untrimmed dataset need to be further improved. For
many applications large amount of video data need to be
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Table 2 Common algorithms used in action recognition research.
Dataset Year Author Method Accuracy (%)
KTH 2011 Zhang et al.[148] Boosted co-EM (shallow learning) 94.50
KTH 2013 Tan et al. [98] pLSA (shallow learning) 91.50
KTH 2013 Wang et al.[149] HMM (shallow learning) 94.17
KTH 2014 Wang et al.[150] Semi-Supervised (shallow learning) 88.40
KTH 2019 Al-Obaidi and Adhayaratne[151] Time saliency (deep learning) 99.06
KTH 2019 Almaadeed al.[152] 3DCNN+MHI (deep learning) 99.80
KTH 2020 Basha et al.[153] 3D-CNN (deep learning) 95.27

Weizmann 2012 Zhao et al.[102] CRF (shallow learning) 91.70
Weizmann 2013 Tan et al.[98] pLSA (shallow learning) 97.00
Weizmann 2019 Al-Obaidi and Adhayaratne[151] Time saliency (deep learning) 99.65
Weizmann 2020 Basha et al.[153] 3D-CNN (deep learning) 95.86
UCF-101 2015 Donahue et al.[138] LRCNs (deep learning) 87.60
UCF-101 2015 Ng et al.[139] CNNs (deep learning) 88.60
UCF-101 2015 Wu et al.[154] CNNs and LSTM (deep learning) 91.30
UCF-101 2019 Yeh et al.[155] Optical Flow (deep learning) 73.60
UCF-101 2019 Shou et al.[156] DMC-Net (deep learning) 92.30
UCF-101 2019 Zhang et al.[157] LT3D-CFN (deep learning) 92.87
UCF-101 2019 Li et al.[131] CNNs (deep learning) 94.30
UCF-101 2020 Alwassel et al.[158] Cross-Modal Deep Clustering (deep learning) 95.50
UCF-101 2021 Kumawat et al.[134] T-STFT (deep learning) 94.70

NTU-RGB+D 2014 Vemulapalli et al.[159] Lie Group (shallow learning) 52.80 (CV), 50.10 (CS)
NTU RGB+D 2018 Liu et al.[141] GCA-LSTM (deep learning) 84.00 (CV), 76.10 (CS)
NTU RGB+D 2019 Li et al.[160] AS-GCN (deep learning) 94.20 (CV), 86.80 (CS)
NTU RGB+D 2019 Si et al.[161] AGC-LSTM (deep learning) 95.00 (CV), 89.20 (CS)
NTU RGB+D 2020 Cheng et al.[162] 4s Shift-GCN (deep learning) 96.50 (CV), 90.70 (CS)
NTU RGB+D 2021 Chen et al.[163] CTR-GCN (deep learning) 96.80 (CV), 92.40 (CS)
NTU RGB+D 2021 Duan et al.[164] PoseC3D (deep learning) 97.00 (CV), 99.60 (CS)

HMDB-51 2015 Tran et al.[165] C3D (deep learning) 51.60
HMDB-51 2019 Shou et al.[156] DMC-Net (deep learning) 71.80
HMDB-51 2019 Jiang et al.[166] STM (deep learning) 72.20
HMDB-51 2020 Li et al.[167] TEA (deep learning) 73.30
HMDB-51 2020 Duan et al.[168] OmniSource (deep learning) 83.80
HMDB-51 2020 Gowda et al.[169] SMART (deep learning) 84.36
HMDB-51 2021 Kumawat et al.[134] T-STFT (deep learning) 71.50
Kinetics 2019 Li et al.[160] AS-GCN (deep learning) 34.80 (Top-1)
Kinetics 2019 Li et al.[170] CoST (deep learning) 77.50 (Top-1)
Kinetics 2021 Chen and Huang[171] ER-ZSAR (deep learning) 42.10 (Zero-Shot) (Top-1)

Note: pLSA, probabilistic Latent Semantic Analysis; HMM, Hidden Markov Model; 3DCNN+MHI, 3-Dimensional Convolution Neural
Network + Motion History Images; CRF, Conditional Random Fields; LRCN, Long-term Recursive Convolutional Neural network;
DMC, Discriminative Motion Cues; LT3D-CFN, Long-term 3D Convolutional Fusion Network; T-STFT, spatio-Temporal Short-Term
Fourier Transform; GCA-LSTM, Global Context-Aware Attention LSTM; AS-GCN, Actional-Structural Graph Convolutional Networks;
4s Shift-GCN, shift graph convolutional network; CTR-GCN, Channel-wise Topology Refinement Graph Convolution Network; DMC-
Net, Discriminative Motion Cues; STM, SpatioTemporal and Motion Encoding; SMART, Sampling through Multi-frame Attention and
Relations in Time; CoST, Collaborative SpatioTemporal; ER-ZSAR, Elaborative Concepts-Zero-Shot Action Recognition.

analyzed, however, annotating each frame in a video is
cumbersome and costly. The previous weakly supervised
approaches only provide transcripts. Although the video
text can be obtained from script or subtitles, the cost of
obtaining these texts is still very high[187]. The spatial
and temporal segmentation of untrimmed action videos

is processed to develop more robust and efficient action
recognition approaches that can automatically learn from
unlabeled videos.

(3) The existing methods have the problem of focusing
on the interaction between people during recognition.
Recent work has exploited human-human interaction
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in event, object, and scene modeling, but most works
focus on human-human relation recognition in images.
Methods that use temporal convolution have very limited
temporal reception due to resource challenges. Long-
term interaction is important but hard to detect[182] and
reduces the accuracy. Finding an appropriate method is
necessary to identify interactions correctly in video and
use them for action recognition and capturing human-
human (human-objects, human-environments) spatial-
temporal features and more precise details.

(4) Construct the high-order semantic relationship
between joint points[188, 189]. For the higher-order
association between joints, such as the association
between multi-view joints, but the current methods
appropriate modeling methods. We need to design an
effective feature extraction method that can consider the
coupling relationship between joint points.

(5) Different semantic in different environments
for the same action. For example, “waving” can be
expressed as “no” when answering questions, and
“goodbye” when people are separated. We need to design
a reasonable model to analyze and recognize actions in
different scenes.

(6) The efficacy of action recognition is directly
correlated to the complexity of the network and
the computational cost. Despite impressive results
on commonly used benchmark datasets, the method
consumes a large amount of time and computation
costs[162, 190]. A light-weight network needs to be
designed to improve the accuracy and speed of
identification. For example, specific modules are
designed to handle missing bone points to improve
accuracy. To reduce the computation, attention
mechanism can be used for action recognition. The
significant feature map is calculated, and the candidate
area of the image is extracted according to the significant
area, so as to fully capture the spatial and temporal
characteristics of the candidate area of the video, thereby
effectively reducing the computational burden of the
network.

4 Human Posture Prediction Methods

Unlike human action recognition, the human posture
prediction methods are to infer continuous or intermittent
actions and predict the whole action before the action
completed. In many real scenes (such as rollover), the
system can predict the action and make corresponding
response, which can effectively reduce the occurrence
of accidents. For example, human posture prediction

provides an important guarantee for the safe and
stable operation of intelligent driving system in the
process of self-driving[4]. It can judge the pedestrian’s
intention (such as walking, jogging, running) and make
corresponding decisions. Therefore, human posture
prediction is worth studying, and accurate decisions must
be made in incomplete movements.

4.1 Skeleton-based human posture prediction
methods

Researches usually use skeleton to predict action,
for example, Ke et al.[191] proposed a method of
skeleton-based action prediction, which aims to predict
actions from partial skeleton sequence. Liu et al.[192]

focused on streaming 3D skeleton sequences, and
proposed dilated convolutional network for online action
prediction. Rout et al.[193] used posture analysis and
mathematical modeling of the position of adjacent
joints of muscles, so that this method could predict
and optimize the posture of weight lifting assembly
operations. Therefore, we introduce skeleton-based
human posture prediction methods at first. The first
skeleton based human posture prediction method uses
pictorial structures, which has great limitations. This
method represents the target object as a collection
of “parts”, and the combination of these sets can be
deformed. This part-based model can well simulate
joints. However, this simulation is achieved at the cost
of limited expressive power, and global information
cannot be used[194]. Through scholarly research, the
emergence of CNNs has prompted research on human
posture prediction to evolve from traditional methods to
deep learning. The location and number of people in an
image are usually unknown, which is why we typically
use two methods: Top-down and bottom-up.

4.1.1 Top-down human posture prediction
The top-down method first detects people, then estimates
each person’s parts, and finally calculates each person’s
posture, as shown in Fig. 6. The representative
algorithms are G-RMI, Coarse-Fine Network (CFN),
Coarse Proposal Network (CPN), Mask R-CNN, and
Regional Multi-person Pose Estimation (RMPE).

(1) G-RMI: G-RMI[195] acquires the bounding
box, including single person, through Faster R-CNN
detection, and then estimates the posture of a single
person. In 2019, Kreiss et al.[196] used this method, and
proposed some methods that are particularly suitable
for city movements, such as self-driving vehicles and
delivery robots. They used a Partial Correlation Field
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Fig. 6 Top-down human posture prediction.

(PAF) to correlate body parts to form a complete human
posture. The G-RMI method pays more attention to the
geometric relationship and the output representation of
the network, which can be used to predict structured
images.

(2) CFN: CFN[197, 198] is better for low resolution
human images. In Ref. [197], multi-level monitoring
is used to locate key points. Each coarse detector
branch is based on CNNs’ feature layer, while the fine
detector branch is based on multiple feature layers. This
method can be used for benchmark testing of multiple
tasks, including partial aerial view and human posture
prediction. In 2019, Zhang et al.[157] proposed a 3D
Convolutional Fusion Network (LT3D-CFN), which
could extract features from the spatial and temporal
dimensions of a video clip.

(3) CPN: CPN[199] first uses the pedestrian detection
framework, then uses the CPN network to regress
the key points of each detected pedestrian candidate
frame, and finally outputs the results. CPN can solve
the problem of multi-person attitude prediction. In
2020, Long et al.[200] proposed a novel Coarse-to-Fine
Temporal Proposal (CFTP) which can be combined
with CPN, a temporal Convolutional Anchor Network
(CAN) and a Proposal Reranking Network (PRN).
They conducted extensive experiments on two action
benchmarks (THUMOS14 and ActivityNet v1.3) and
showed the superior performance of this method.

(4) Mask R-CNN: Mask R-CNN[201] is an extension
of Faster R-CNN. For each target of Faster R-CNN, FCN
is used for semantic segmentation. The segmentation
task is performed at the same time as location and
recognition, as shown in Fig. 7. Mask R-CNN
predicts segmentation masks on each RoI by adding
a small FCN applied to each RoI. In 2019, Huang et
al.[203] proposed the network block, which combined

Fig. 7 Mask R-CNN for police gesture posture prediction.
Originally shown in Ref. [202].

the instance features with the corresponding prediction
mask, and regressed the mask IOU. They improved the
quality of generating the prediction mask by accelerating
information flow and integrating features of different
levels. This method is effective and easy to implement
in the instance segmentation mask task. Dabral et
al.[204] proposed a mask R-CNN which is based
on HG-RCNN. The network took advantage of the
hourglass structure in multi-person 3D human pose
prediction. First, they estimated 2D key points in each
RoI. Then they promoted the estimated key points to
3D. Finally, they placed the estimated 3D pose in a
camera coordinate system by using the weak perspective
projection hypothesis and the joint optimization of focal
length and root translation. In 2020, Tian et al.[202]

improved mask R-CNN, which is called boundary-
preserving Mask R-CNN (BMask R-CNN). It could
improve mask positioning accuracy and the performance
better than Mask R-CNN on coco dataset.

(5) RMPE: RMPE[2] is first used to obtain the region
frame of the human body through the target detection
algorithm. Then, the region box is input into the Space
Transformation Network (STN) and single-person pose
estimator (SPPE) module to detect the human posture
automatically. Then, the training was carried out in the
parametric pose non-maximum- suppression (PP-NMS).
In the training process, SPPE is used to avoid local
optimization and further improve the effect of Symmetric
Spatial Transformer Network (SSTN), as shown in Fig. 8.
This topic is discussed in Refs. [205, 206], which tried
to estimate human posture from RGB. In 2019, Qiao
et al.[207] used the RMPE framework to improve the top-
down process by adding attention mechanism, that is, to
extract features from human posture prediction through
an associated network. It also revealed the important
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Fig. 8 RMPE. Originally shown in Ref. [2].

role of joint extraction in human posture prediction.
RMPE is universal, and its attention mechanism is
suitable for other computer vision tasks, such as semantic
segmentation and pedestrian recognition.

Many top-down prediction methods for human body
posture prediction are available. Pishchulin et al.[208]

proposed a top-down prediction method of a joint
model, which generates reasonable posture changes by
using a large amount of action capture data. Eichner
and Ferrari[209] proposed a new multi-person posture
prediction framework, which is based on the predictor
that automatically detects the occlusion of human
position in the image. The paper extended the graph
structure, integrated the occlusion predictor and mutual
exclusion, and blocked body parts from different people
in the same image area. Reference [2] proposed a top-
down method for estimating the pose of multiple people
in a complex environment. The top-down SSTN can
extract a single region. The top-down method can deal
with inaccurate boundary frame and redundant detection,
and finally predict everyone’s posture.

The research above shows that the top-down human
posture prediction method is bound to be constrained by
the task of target detection task. Some of these methods
have high accuracy but poor real-time performance and
are limited by computing resources.

4.1.2 Bottom-up human posture prediction
The bottom-up method detects each part of each person
in the image, associates these parts with the examples,
and realizes human posture prediction, as shown in Fig. 9.
Its representative algorithms are OpenPose, DeepCut,
associative embedding, and part segmentation.

(1) OpenPose: OpenPose is one of the most
popular bottom-up multi-person posture prediction
methods[210, 211]. Reference [212] proposed a bottom-
up method for limited detection of multi-person 2D
poses in images. They selected the bipartite matching
of adjacent joint positions by detecting the appropriate

Fig. 9 Bottom-up human posture prediction.

affinity fields of human joint parts and parts respectively,
and finally realized the human posture prediction. This
paper also proved that the greedy algorithm is enough to
generate high quality body posture analysis, even if the
number of people in the image increases, efficiency can
be maintained. Kato et al.[213] improved the algorithm of
the bottom-up method for key points in human body and
used the label correction of the teacher model to improve
the accuracy by modifying OpenPose. OpenPose can
be applied to target detection, semantic segmentation
and spatial correlation capture. In 2020, Slembrouck
et al.[214] used 2D joint detections per view based on
OpenPose to estimate their corresponding 3D positions
and solve association problem, so as to allow multiple
persons to be tracked at the same time.

(2) Deepcut: Deepcut[215] is also a bottom-up method
for estimating human posture. Reference [216] used the
distance between candidate nodes to determine whether
they are the same important nodes, so as to compress
the nodes of various candidate regions into fewer nodes.
This method can be used to predict the pose of single
and multiple human bodies by using integer linear
programming.

(3) Associative embedding: Associative
embedding[217, 218] implements end-to-end joint
detection and grouping. In this paper, they proposed a
CNN monitoring method for detection and grouping.
The network outputs the detection and allocation results
simultaneously, thus achieving pixel level prediction.
This method can solve the problems of machine vision,
including multi-person posture prediction, instance
segmentation, and multi-target tracking.

(4) Part segmentation: Part segmentation[116, 219]

gives a scene and divides it into different categories.
Reference [219] proposed a joint solution to deal with
semantic object and part segmentation simultaneously,
obtained a set of compact segments from the Semantic
Compositional Parts (SCP), and constructed an effective
Fully Connected conditional Random Field (FCRF) to
jointly predict the final object and part label. Jackson



Nan Ma et al.: A Survey of Human Action Recognition and Posture Prediction 987

et al.[220] proposed CNNs cascade structure. According
to a series of positioning, this structure obtained
specific posture information of human body. Then, this
information was taken as input, and part segmentation
was performed.

Human posture can be predicted from the bottom-
up, for example, Rangesh and Trivedi[221] proposed
a pipeline structure that combines articulated human
posture prediction, which used a particle filter with
Gaussian Process Dynamics Model (GPDM) to track
the joint posture of pedestrians reliably through image
sequence, so as to reduce driving accidents of intelligent
vehicles. Lin et al.[222] designed a scale perception
network jointly trained in a semi supervised way. They
predicted pedestrians of a specific scale by matching
the perception field of pedestrians with the target
scale and using the most appropriate feature maps,
which could ensure a large tradeoff between accuracy
and speed. Anderson et al.[223] trained the Depth
Neural Network (DNN) using scene information on
the synthetic datasets, simulated the real pedestrian
trajectory, and evaluated the prediction results on various
pedestrian trajectory reference datasets. In 2020, Cheng
et al.[224] proposed a novel bottom-up human pose
estimation method (HigherHRNet), which solved the
scale change challenge in multi-person pose estimation
and located key points more accurately.

4.2 Time-series-based interaction methods for
human posture prediction

Time-series-based interaction methods are also used
for human posture prediction[225–227]. This prediction is
based on incomplete actions to infer the future behavior
of actions, which usually use LSTM or graph neural
network to represent time-series prediction or interaction
between human and environments respectively. Human
posture prediction involves a series of actions in a
specific scene. As shown in Fig. 10, the pedestrian
crossing behavior prediction is made according to the
actions in time periods between Tn�t and Tn, and

Fig. 10 Crossing scenario for posture prediction.

predict the behavior in the later time period TnCt . It
is necessary to learn the dependencies between global
and local contexts in order to better predict actions, that
means this requires semantic analysis of the context and
interaction with the surrounding environments. Vondrick
et al.[228] proposed a method to anticipate concepts
in the future by learning from unlabeled video, and
anticipated actions one second in the future and objects
five seconds in the future in experiments. Ke et al.[229]

proposed a leveraging structural context models, which
is used LSTM to process a sequence of global and
local interaction contexts, and it is used for human-
human interaction prediction. Xue et al.[230] proposed
Bi-Prediction, which used bidirectional LSTM to predict
trajectory, and it is usually used in crowed scene.
Xue et al.[231] proposed hierarchical LSTM to obtain
person, social, and scene scale information, which can
predict pedestrian postures. Gujjar and Vaughan[232]

proposed a method for inferring pedestrian crossing
intention, which used a binary action classifier network.
Furnari and Farinella[233] focused on the egocentric
action anticipation, and proposed an architecture able
to anticipate actions at multiple temporal scales using
two LSTMs. Saleh et al.[234] proposed spatio-temporal
DenseNet to predict pedestrians’ intended actions,
which could use temporal subsequent frames to predict.
Yau et al.[235] proposed a Graph-based Spatiotemporal
Interaction Modelling (Graph-SIM) to predict pedestrian
crossing action, which used bird’s-eye-view to obtain
features and model interactions between pedestrians
and surrounding traffic environments. Zhang et al.[236]

proposed a novel Intuition-Analysis Integrated (IAI)
framework inspired by psychological research, which
could mitigate the visual gap problem via capturing
statistical correlations between past and future. Jaouedi
et al.[225] proposed a deep learning model to predict
human activities, which is improved RNN (containing
LSTM and GRU), because of learning long-term features
from sequential and temporal data in RNN. It is not
difficult to find that it is a challenge for time-series
models to capture the correlation between the past and
the future at the visual level and enable the model to
predict postures like humans.

4.3 Summary

As indicated in Table 3 and the mainstream human
posture prediction algorithms, no single algorithm
can be applied to all posture prediction problems.
Recently, efforts to produce accurate and natural action
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Table 3 Common algorithms used in posture prediction research.
Dataset Year Author Method Value (evaluation metric)

MS COCO 2017 Fang et al.[2] RMPE (top-down) 61.80% (AP)
MS COCO 2017 He et al.[201] Mask R-CNN (top-down) 63.10% (AP)
MS COCO 2017 Newell et al.[217] Associative Embedding (bottom-up) 65.50% (AP)
MS COCO 2017 Huang et al.[197] CFN (top-down) 72.60% (AP)
MS COCO 2018 Kocabas et al.[237] PRN (bottom-up) 69.60% (AP)
MS COCO 2018 Chen et al.[199] CPN (top-down) 73.00% (AP)
MS COCO 2018 Xiao et al.[238] Simple Baseline (bottom-up) 73.70% (AP)
MS COCO 2021 Cao et al.[212] OpenPose (bottom-up) 60.50% (AP)
MS COCO 2019 Kreiss et al.[196] PifPaf (top-down) 66.70% (AP)
MS COCO 2019 Li et al.[239] MSPN (top-down) 76.10% (AP)
MS COCO 2019 Sun et al.[240] HRNet-W48 (bottom-up) 77.00% (AP)
MS COCO 2021 Liu et al.[241] UDP-Pose-PSA (bottom-up) 79.50% (AP)

MPII 2016 Pishchulin et al.[216] DeepCut (bottom-up) 54.10% (pckh-0.5)
MPII 2016 Insafutdinov et al.[242] DeeperCut (bottom-up) 59.40% (pckh-0.5)
MPII 2016 Wei et al.[243] CPM (bottom-up) 87.95% (pckh-0.5)
MPII 2016 Newell et al.[244] Stacked Hourglass Networks (bottom-up) 90.90% (pckh-0.5)
MPII 2017 Newell et al.[217] Associative Embedding (bottom-up) 77.50% (mAP)
MPII 2017 Fang et al.[2] RMPE (top-down) 82.10% (pckh-0.5)
MPII 2017 Chu et al.[245] CRF (bottom-up) 91.50% (pckh-0.5)
MPII 2021 Cao et al.[212] OpenPose (bottom-up) 76.50% (AP)
MPII 2019 Sun et al.[240] HRNet-W48 (bottom-up) 90.80% (pckh-0.5)
MPII 2021 Groos et al.[246] EfficientPose IV (bottom-up) 91.20% (pckh-0.5)

Human3.6M 2018 Kanazawa et al.[247] HMR (bottom-up) 56.80 mm (average MPJPE)
Human3.6M 2019 Xu et al.[248] DenseRaC (bottom-up) 48.00 mm (average MPJPE)
Human3.6M 2019 Zhao et al.[249] SemGCN (bottom-up) 43.80 mm (average MPJPE)
Human3.6M 2020 Huang et al.[250] DeepFuse (bottom-up) 37.50 mm (average MPJPE)
Human3.6M 2021 Shan et al.[251] Pose3D-RIE (bottom-up) 30.10 mm (average MPJPE)
Human3.6M 2021 Reddy et al.[252] TesseTrack (bottom-up) 18.70 mm (average MPJPE)

JAAD 2019 Gujjar and Vaughan[232] Res-EnDec (deep learning) 81.14% (AP)
PePScenes 2021 Yau et al.[235] Graph-SIM (deep learning) 94.40% (accuracy)

3D Pedstria Trajectory 2020 Zhong et al.[253] SocialGAN (bottom-up) 71.60% (prediction error)

Note: AP, Average Precision; RMPE, Regional Multi-Person Pose Estimation; CFN, Coarse-Fine Network; PRN, Pose Residual Network;
CPN, Cascaded Pyramid Network; MSPN, Multi-Stage Pose Estimation Network; IEF, Iterative Error Feedback; CPM, Convolutional
Pose Machines; CRF, Conditional Random Field; MPJPE, Mean Per Joint Position Error; HMR, Human Mesh Recovery; PePScenes,
Pedestrian Prediction on nuScenes.

sequences have failed. To address this issue, the
latest methods (PoseTrack[254], HRNer[240], Exploiting
temporal context[255], HigherHRNet[224], Efficient
human pose estimation (EfficientPose)[246], Graph-
SIM[227], etc.) attempt to improve accuracy in tracking,
resolution, context and so on.

At present, human posture prediction is divided into
the following research directions:

(1) Coordinate representation in posture
prediction. The process of decoding the predicted
final joint coordinates in the original image space is
surprisingly significant for human posture prediction
performance. Coordinate[256] and heatmap[257] are two
common coordinate representation designs in human

posture prediction. Human posture prediction is needed
to identify the fine-grained joint coordinates to predict
the human posture.

(2) Predicting poses of multiple humans in real-
time. For example, using multiple cameras to capture
the same scene[258] and updating iteratively via cross-
view multi-human tracking can efficiently solve the
correspondence problem and predict multiple human
postures.

(3) Occlusion problem in human posture
prediction. The performance of many existing
methods drops when the target person is occluded by
other objects, or the motion is too fast/slow relative to
the scale and speed of the training data. To address the
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problem, some studies (such as Ref. [259]) proposed a
series of methods for human posture prediction.

(4) Node weight allocation. The flexibility of each
node is different. Grouping the key points and providing
a certain weight can help posture prediction. Human
posture is predicted by the motion of key points with
different weights[205].

(5) 3D pose prediction. The 3D datasets reduce the
learning pressure of the model in 2D attitude estimation,
and can form a simple network structure, which occupies
less memory of the video card[260]. Thus, some works
gradually shifted to research on 3D datasets for human
posture prediction.

(6) Context semantic relation. Human posture
prediction needs to predict the action of the next
frame through the global information of the previous
frame, which is helpful to realize accurate long-term
behavior prediction. For example, some works[192, 261]

used context information to enrich temporal and spatial
correlation, so as to predict human posture.

After years of research on human posture prediction,
some problems remain, which are summarized into seven
points and future works below.

(1) The problem of coordinate encoding and decoding
(i.e., denoted as coordinate representation) has attracted
little attention[257]. However, the method of directly
taking the coordinates lacks spatial and contextual
information, and heat maps are usually very noisy
and incomplete which are reduced in use. A suitable
coordinate representation method needs to be found.
An interesting task is to explore how to coordinate
representation from image models for human posture
prediction.

(2) The computational complexity load and the
network complexity increase exponentially with the
number of cameras used. This condition affects
the prediction of human posture. A reasonable way
to control the relationship between the amount of
calculation and the number of cameras needs to be
determined[262]. For example, computational complexity
varies only linearly as the number of cameras changes,
enabling the applications on large-scale camera systems.

(3) Ambiguous appearance in posture prediction.
The accuracy is limited by a number of factors such
as ambiguous appearance[263]. The detected joints are
ambiguous because the posture prediction is imperfect.
Methods such as image fusion can be applied to obtain
accurate predictions even when occlusion occurs. Thus,
the proposed methods should solve the problem of

reducing the accuracy caused by ambiguous appearance.
(4) Many researches focused on detection for skeleton

based on human posture prediction. The prediction of
human posture infers a human action from temporally
incomplete video data, but many papers focused only on
detection[211, 264]. In the follow-up work, human posture
can be predicted in advance based on the detection of
human joints, laying a foundation for the implementation
of the application.

(5) Many parameters. Some models[265] have a large
number of parameters. Some papers[266, 267] adopt the
method of weight sharing, which not only reduces the
number of parameters, but also reduces the amount of
network calculation. However, when some networks[268]

are trained in multi task mode, weight sharing will have
a negative impact on each other. How to reduce the
number of parameters while ensuring the network quality
is a challenging research.

(6) Existing methods perform lower in real scenarios.
Many studies[269] predicted postures in specific
situations, and the accuracy in real situations is
significantly reduced. The accuracy of human posture
prediction in real scenarios needs to be improved.
For example, the prediction of human posture during
self-driving requires high accuracy and real-time
performance. Therefore, the accuracy of realistic scenes
needs to be improved.

(7) Learning long-term time correlation. Context
semantic modeling plays an important role in human
posture prediction. Usually, in the task of posture
prediction, it is necessary to analyze not only the
surrounding environment, but also the previous posture,
so as to realize the interaction between posture and
environments[7], and then improve the accuracy of
human posture prediction.

The human posture prediction effect can be enhanced
by choosing the right algorithm through the selection of
different feature conditions and application ranges.

5 Conclusion

We surveyed more than 200 papers with over 40 papers
coming from the International Conference on Computer
Vision and Pattern Recognition (CVPR), and we also
cited articles in IEEE International Conference on
Computer Vision (ICCV), European Conference on
Computer Vision (ECCV), IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), and other
related conferences or journals, which introduced human
action recognition and posture prediction. Subsequently,
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we expand upon these papers to gather more relevant
work. In the last two years, methods (such as UDA[172],
TPN[132], Action Genome[142], Sym-GNN[6]) have been
used in video understanding tasks, action analysis, and
other relevant action recognition fields. For the past two
years, methods (such as HRNer[240], Exploiting temporal
context[255], HigherHRNet[224], Efficient human pose
estimation (EfficientPose)[246], Graph-SIM[227]) have
tried to improve accuracy in tracking, resolution, and
context, and are applied to human-object interaction
detection, human parsing, and other relevant posture
prediction. After the emergence of deep learning
techniques, researchers have tended to focus on deep
learning, whereas previous approaches focused on
shallow learning. For example, the multi-stream LSTM
derived from LSTM has a higher recognition accuracy
than single SVM in nearly two years top meetings.
Deep learning methods are also improving. However,
differences still exist, even in deep learning. For example,
two-stream adaptive graph convolutional network (2S-
GCN)[270], Dynamic Directed Graph Convolutional
Network (DDGCN)[177], PoseC3D[164], and Channel-
wise Topology Refinement Graph Convolution Network
(CTR-GCN)[163] were used in action recognition on
the NTU-RGBCD dataset, but their accuracy was
different, PoseC3D notably outperforms state-of-the-art
methods on the NTU RGB+D. Tremendous progress has
been made in this area. On the basis of the literature
review, this work summarizes the development and
practical applications in this field, with mainly helping
readers understand human action recognition and posture
prediction.

Although human action recognition and posture
prediction have been completed through various
methods, several research areas may still need to be
explored in the future. Research hotspots of human
action recognition and posture prediction will focus on
the following aspects:

(1) The importance of data in human action
recognition and posture prediction. At present, many
studies are based on a certain sample for training and
learning, but the labeled data are limited in reality, and
the workload of self-labeling is large. Recently, weak
supervised learning and unsupervised learning methods
are used to learn unlabeled data. In addition, the number
of existing datasets is lack in some requirements. Some
studies used GAN-based learning method to expand the
dataset. However, how to effectively fill the gap in the
field remains unsolved, which is an urgent problem.

(2) Incapable of effectively modeling the intricate
correlations among regions of interest, especially
in the case of misalignment and occlusion. At
present, two ways can be used to solve the problem
of perspective. One is to use geometric means to
normalize the perspective of the feature, and the other is
to use multi-view target recognition. However, many
false detection results still occur in more complex
scenarios. In particular, pedestrian action recognition
and prediction need to be more accurate to ensure the
safety of self-driving. Solving complex data problems at
the scene is a direction that requires future efforts.

(3) Recognition of unknown human posture. The
type of human poses is an indefinite number. For
example, common human poses cannot be used for
training in the process of self-driving vehicles research.
We can identify and predict human poses that do not
exist in the training library through transfer learning,
which can be used for future research direction.

(4) Enhance the research on scene semantic
understanding for human action recognition and
posture prediction. For example, in the process of
self-driving interactive cognition research, the meaning
of pedestrians reaching out at the roadside and in the
middle of the road are “taxi” and “stop”, respectively.
Because the meaning of action is different in different
semantic scenes, how to effectively recognize human
action in complex scenes and play a positive role in
the interaction between humans and vehicles. Only in
this way, self-driving vehicles are no longer a “ghost”,
but an interactive wheeled robot. Realtime human
action recognition and posture prediction can also be
used in the fields of interactive cognition between
intelligent robots and humans. How to effectively use
human action recognition and posture prediction in
an interactive environment is an issue that requires
researchers’ constant attention.

Human action recognition and posture prediction are
the focus of current computer vision research, especially
in intelligent interactive cognition, which have practical
application requirements and good application prospects.
This paper covers existing work in this area and identifies
several related issues that deserve further investigation.
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Resource-aware programming for robotic vision, arXiv
preprint arXiv: 1405.2908, 2014.

[75] H. Vaghela, M. Oza, and S. Bagul, MREAK:
Morphological retina keypoint descriptor, in Proc.
2019 Int. Conf. Artificial Intelligence and Information
Technology (ICAIIT), Yogyakarta, Indonesia, 2019, pp.
10–15.

[76] A. J. Piergiovanni and M. S. Ryoo, Representation flow
for action recognition, in Proc. 2019 IEEE/CVF Conf.
Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 2019, pp. 9937–9945.

[77] S. Sadhukhan, S. Mallick, P. K. Singh, R. Sarkar, and D.
Bhattacharjee, A comparative study of different feature
descriptors for video-based human action recognition,
in Intelligent Computing: Image Processing Based
Applications, J. K. Mandal and S. Banerjee, eds.
Singapore: Springer, 2020, pp. 35–52.



994 Tsinghua Science and Technology, December 2022, 27(6): 973–1001

[78] H. Zhao, J. W. Dang, S. Wang, Y. P. Wang, and D. C. Gao,
Dense trajectory action recognition algorithm based on
improved SURF, IOP Conf. Ser.: Earth Environ. Sci., vol.
252, no. 3, p. 032179, 2019.

[79] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic,
A. Torii, and T. Sattler, D2-Net: A trainable CNN for
joint description and detection of local features, in Proc.
2019 IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 2019, pp.
8084–8093.

[80] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld,
Learning realistic human actions from movies, in
Proc. 2008 IEEE Conf. Computer Vision and Pattern
Recognition, Anchorage, AK, USA, 2008, pp. 1–8.

[81] S. R. Mishra, K. D. Krishna, G. Sanyal, and A. Sarkar, A
feature weighting technique on SVM for human action
recognition, J. Sci. Ind. Res., vol. 79, no. 7, pp. 626–630,
2020.

[82] V. Bloom, D. Makris, and V. Argyriou, Clustered spatio-
temporal manifolds for online action recognition, in Proc.
22nd Int. Conf. Pattern Recognition, Stockholm, Sweden,
2014, pp. 3963–3968.

[83] M. A. R. Ahad, J. K. Tan, H. Kim, and S. Ishikawa, Motion
history image: Its variants and applications, Mach. Vis.
Appl., vol. 23, no. 2, pp. 255–281, 2012.

[84] A. F. Bobick and J. W. Davis, The recognition of human
movement using temporal templates, IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 3, pp. 257–267, 2001.

[85] A. Bobick and J. Davis, Real-time recognition of activity
using temporal templates, in Proc. 3rd IEEE Workshop on
Applications of Computer Vision. WACV’96, Sarasota, FL,
USA, 1996, pp. 39–42.

[86] S. Zernetsch, V. Kress, B. Sick, and K. Doll, Early
start intention detection of cyclists using motion history
images and a deep residual network, in Proc. 2018 IEEE
Intelligent Vehicles Symp. (IV), Changshu, China, 2018,
pp. 1–6.

[87] T. Vajda, Action recognition based on fast dynamic-
time warping method, in Proc. 5th Int. Conf. Intelligent
Computer Communication and Processing, Cluj-Napoca,
Romania, 2009, pp. 127–131.

[88] C. Y. Chang, D. A. Huang, Y. N. Sui, L. Fei-Fei, and J.
C. Niebles, D3TW: Discriminative differentiable dynamic
time warping for weakly supervised action alignment and
segmentation, in Proc. 2019 IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 2019, pp. 3541–3550.

[89] X. Yang, D. J. D. Liu, J. Liu, F. R. Yan, P. P. Chen, and Q.
Niu, Follower: A novel self-deployable action recognition
framework, Sensors, vol. 21, no. 3, p. 950, 2021.

[90] X. Z. Wang and S. X. Lu, Improved fuzzy multicategory
support vector machines classifier, in Proc. 2006 Int. Conf.
Machine Learning and Cybernetics, Dalian, China, 2006,
pp. 3585–3589.

[91] V. Parameswari and S. Pushpalatha, Human activity
recognition using SVM and deep learning, Int. European
Journal of Molecular & Clinical Medicine., vol. 7, no. 4,
pp. 1984–1990, 2020.

[92] P. Hristov, A. Manolova, and O. Boumbarov, Deep
learning and SVM-based method for human activity
recognition with skeleton data, in Proc. 28th National Conf.
Int. Participation (TELECOM), Sofia, Bulgaria, 2020, pp.
49–52.

[93] K. Li, Human action recognition based on fuzzy support
vector machines, in Proc. 5th Int. Symp. Computational
Intelligence and Design, Hangzhou, China, 2012, pp. 45–
48.

[94] G. Uslu and S. Baydere, Support Vector Machine based
activity detection, in Proc. 21st Signal Processing and
Communications Applications Conf. (SIU), Haspolat,
Turkey, 2013, pp. 1–4.

[95] H. G. Wang, Z. J. Song, W. Q. Li, and P. C. Wang. A
hybrid network for large-scale action recognition from
RGB and depth modalities, Sensors, vol. 20, no. 11, p.
3305, 2020.

[96] J. Q. Zhou and M. Zhi, A human action recognition
method based on MHI and support vector machine, (in
Chinese), Softw. Guide, vol. 16, no. 2, pp. 36–38, 2017.

[97] L. Chen and H. C. Lu, A new object recognition method
based on ML-pLSA model, (in Chinese), J. Electron. Inf.
Technol., vol. 33, no. 12, pp. 2909–2915, 2011.

[98] L. Z. Tan, L. M. Xia, J. X. Huang, and S. P. Xia, Human
action recognition based on pLSA model, (in Chinese),
J. Natl. Univ. Def. Technol., vol. 35, no. 5, pp. 102–108,
2013.

[99] T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh,
Activity recognition and abnormality detection with the
switching hidden semi-Markov model, in Proc. IEEE
Computer Society Conf. Computer Vision and Pattern
Recognition (CVPR’05), San Diego, CA, USA, 2005, pp.
838–845.

[100] C. Sminchisescu, A. Kanaujia, and D. Metaxas,
Conditional models for contextual human motion
recognition, Comput. Vis. Image Underst., vol. 104, nos.
2&3, pp. 210–220, 2006.

[101] J. W. Xu and Q. Luo, Human action recognition based
on mixed Gaussian hidden Markov model, MATEC Web
Conf., vol. 336, p. 06004, 2021.

[102] L. Zhao, L. Guo, J. S. Xie, and H. Liu, Video abnormal
target description based on CRF model, in Proc. 2012 Int.
Conf. Audio, Language and Image Processing, Shanghai,
China, 2012, pp. 519–524.

[103] K. Liu, L. Gao, N. M. Khan, L. Qi, and L. Guan. A multi-
stream graph convolutional networks-hidden conditional
random field model for skeleton-based action recognition,
IEEE Trans. Multimed., vol. 23, pp. 64–76, 2020.

[104] T. L. Liu, X. D. Dong, Y. Z. Wang, X. B. Dai, Q. Z. You,
and J. B. Luo, Double-layer conditional random fields
model for human action recognition, Signal Process.:
Image Commun., vol. 80, p. 115672, 2020.

[105] J. Yamato, J. Ohya, and K. Ishii, Recognizing human
action in time-sequential images using hidden Markov
model, in Proc. 1992 IEEE Computer Society Conf.
Computer Vision and Pattern Recognition, Champaign,
IL, USA, 1992, pp. 379–385.

[106] P. Zhang, M. Ito, S. I. Ito, and M. Fukumi, Implementation



Nan Ma et al.: A Survey of Human Action Recognition and Posture Prediction 995

of EOG mouse using Learning Vector Quantization and
EOG-feature based methods, in Proc. 2013 IEEE Conf.
Systems, Process & Control (ICSPC), Kuala Lumpur,
Malaysia, 2013, pp. 88–92.

[107] H. Liu, L. Guo, B. Yi, and G. Z. Wang, Human activity
recognition based on 3D skeletons and MCRF model, (in
Chinese), J. Univ. Sci. Technol. China, vol. 44, no. 4, pp.
285–291, 2014.

[108] R. Chereshnev and A. Kertész-Farkas, RapidHARe: A
computationally inexpensive method for real-time human
activity recognition from wearable sensors, J. Ambient
Intell. Smart Environ., vol. 10, no. 5, pp. 377–391, 2018.

[109] S. Ali and N. Bouguila, Multimodal action recognition
using variational-based Beta-Liouville hidden Markov
models, IET Image Process., vol. 14, no. 17, pp. 4785–
4794, 2020.

[110] B. F. Shi, Q. Dai, Y. D. Mu, and J. D. Wang, Weakly-
supervised action localization by generative attention
modeling, in Proc. 2020 IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 2020, pp. 1006–1016.

[111] H. H. Chen, B. B. Jiang, and X. Yao, Semisupervised
negative correlation learning, IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 11, pp. 5366–5379, 2018.

[112] S. Y. Shin, S. Lee, I. D. Yun, S. M. Kim, and K. M.
Lee, Joint weakly and semi-supervised deep learning
for localization and classification of masses in breast
ultrasound images, IEEE Trans. Med. Imaging, vol. 38,
no. 3, pp. 762–774, 2019.

[113] C. Tang, W. J. Wang, X. F. Wang, C. Zhang, and L.
Zou, Human action recognition based on multi-view semi-
supervised learning, (in Chinese), Pattern Recognit. Artif.
Intell., vol. 32, no. 4, pp. 376–384, 2019.

[114] G. Pikramenos, E. Mathe, E. Vali, I. Vernikos, A.
Papadakis, E. Spyrou, and P. Mylonas, An adversarial
semi-supervised approach for action recognition from
pose information, Neural Comput. Appl., vol. 32, no. 23,
pp. 17181–17195, 2020.

[115] C. Chen, R. Jafari, and N. Kehtarnavaz, Improving human
action recognition using fusion of depth camera and
inertial sensors, IEEE Trans. Hum.-Mach. Syst., vol. 45,
no. 1, pp. 51–61, 2015.

[116] L. T. Law and Y. M. Cheung, Color image segmentation
using rival penalized controlled competitive learning, in
Proc. Int. Joint Conf. Neural Networks, Portland, OR,
USA, 2003, pp. 108–112.

[117] C. Chen, R. Jafari, and N. Kehtarnavaz, A real-time human
action recognition system using depth and inertial sensor
fusion, IEEE Sens. J., vol. 16, no. 3, pp. 773–781, 2016.

[118] N. Dawar and N. Kehtarnavaz, Action detection and
recognition in continuous action streams by deep learning-
based sensing fusion, IEEE Sens. J., vol. 18, no. 23, pp.
9660–9668, 2018.

[119] J. N. Lei, X. F. Ren, and D. Fox, Fine-grained kitchen
activity recognition using RGB-D, in Proc. 2012 ACM
Conf. Ubiquitous Computing, Pittsburgh, PA, USA, 2012,
pp. 208–211.

[120] J. Ranjan, Y. Yao, E. Griffiths, and K. Whitehouse, Using
mid-range RFID for location based activity recognition, in
Proc. 2012 ACM Conf. Ubiquitous Computing, Pittsburgh,
PA, USA, 2012, pp. 647–648.

[121] M. O. Killijian, M. Roy, G. Trédan, and C. Zanon, SOUK:
Social observation of human kinetics, in Proc. 2013 ACM
Int. Joint Conf. Pervasive and Ubiquitous Computing,
Zurich, Switzerland, 2013, pp. 193–196.

[122] G. M. Jeong, P. H. Truong, and S. I. Choi, Classification
of three types of walking activities regarding stairs using
plantar pressure sensors, IEEE Sens. J., vol. 17, no. 9, pp.
2638–2639, 2017.

[123] M. Koohzadi and N. M. Charkari, Survey on deep learning
methods in human action recognition, IET Comput. Vis.,
vol. 11, no. 8, pp. 623–632, 2017.

[124] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, Learning
hierarchical invariant spatio-temporal features for action
recognition with independent subspace analysis, in Proc.
CVPR 2011, Colorado Springs, CO, USA, 2011, pp. 3361–
3368.

[125] A. Karpathy, G. Toderici, S. Shetty, T. Leung,
R. Sukthankar, and L. Fei-Fei, Large-scale video
classification with convolutional neural networks, in
Proc. 2014 IEEE Conf. Computer Vision and Pattern
Recognition, Columbus, OH, USA, 2014, pp. 1725–1732.

[126] K. Tong, Y. Q. Wu, and F. Zhou, Recent advances in small
object detection based on deep learning: A review, Image
Vis. Comput., vol. 97, p. 103910, 2020.

[127] W. G. Wang, Q. X. Lai, H. Z. Fu, J. B. Shen, H. B.
Ling, and R. G. Yang, Salient object detection in the deep
learning era: An in-depth survey, IEEE Trans. Pattern
Anal. Mach. Intell., doi: 10.1109/TPAMI.2021.3051099.

[128] K. Simonyan and A. Zisserman, Two-stream convolutional
networks for action recognition in videos, arXiv preprint
arXiv: 1406.2199, 2014.

[129] Z. W. Ding, P. C. Wang, P. O. Ogunbona, and W. Q.
Li, Investigation of different skeleton features for CNN-
based 3D action recognition, in Proc. 2017 IEEE Int. Conf.
Multimedia & Expo Workshops (ICMEW), Hong Kong,
China, 2017, pp. 617–622.

[130] T. Huynh-The and D. S. Kim, Data augmentation for
CNN-based 3D action recognition on small-scale datasets,
in Proc. 17th Int. Conf. Industrial Informatics (INDIN),
Helsinki, Finland, 2019, pp. 239–244.

[131] S. Li, Z. C. Zhao, and F. Su, A spatio-temporal hybrid
network for action recognition, in Proc. 2019 IEEE Visual
Communications and Image Processing (VCIP), Sydney,
Australia, 2019, pp. 1–4.

[132] C. Y. Yang, Y. H. Xu, J. P. Shi, B. Dai, and B. L. Zhou,
Temporal pyramid network for action recognition, in
Proc. 2020 IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 2020, pp. 588–
597.

[133] G. H. Jiang, X. Y. Jiang, Z. J. Fang, and S. S. Chen,
An efficient attention module for 3d convolutional neural
networks in action recognition, Appl. Intell., vol. 51, no.
10, pp. 7043–7057, 2021.



996 Tsinghua Science and Technology, December 2022, 27(6): 973–1001

[134] S. Kumawat, M. Verma, Y. Nakashima, and S. Raman,
Depthwise spatio-temporal STFT convolutional neural
networks for human action recognition, IEEE Trans.
Pattern Anal. Mach. Intell., doi: 10.1109/TPAMI.
2021.3076522.

[135] C. C. Liu, J. Ying, H. M. Yang, X. Hu, and J. Liu,
Improved human action recognition approach based on
two-stream convolutional neural network model, Vis.
Comput., vol. 37, no. 6, pp. 1327–1341, 2021.

[136] Z. F. Zhang, Z. M. Lv, C. Q. Gan, and Q. Y. Zhu,
Human action recognition using convolutional LSTM
and fully-connected LSTM with different attentions,
Neurocomputing, vol. 410, pp. 304–316, 2020.

[137] M. Majd and R. Safabakhsh, Correlational convolutional
LSTM for human action recognition, Neurocomputing,
vol. 396, pp. 224–229, 2020.

[138] J. Donahue, L. A. Hendricks, S. Guadarrama, M.
Rohrbach, S. Venugopalan, T. Darrell, and K. Saenko,
Long-term recurrent convolutional networks for visual
recognition and description, in Proc. 2015 IEEE Conf.
Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 2015, pp. 2625–2634.

[139] J. Y. H. Ng, M. Hausknecht, S. Vijayanarasimhan, O.
Vinyals, R. Monga, and G. Toderici, Beyond short
snippets: Deep networks for video classification, in
Proc. 2015 IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 2015, pp. 4694–
4702.

[140] W. B. Li, L. Y. Wen, M. C. Chang, S. N. Lim, and S. W.
Lyu, Adaptive RNN tree for large-scale human action
recognition, in Proc. 2017 IEEE Int. Conf. Computer
Vision (ICCV), Venice, Italy, 2017, pp. 1453–1461.

[141] J. Liu, G. Wang, L. Y. Duan, K. Abdiyeva, and A. C.
Kot, Skeleton-based human action recognition with global
context-aware attention LSTM networks, IEEE Trans.
Image Process., vol. 27, no. 4, pp. 1586–1599, 2018.

[142] J. W. Ji, R. Krishna, L. Fei-Fei, and J. C. Niebles,
Action genome: Actions as compositions of spatio-
temporal scene graphs, in Proc. 2020 IEEE/CVF Conf.
ComputerVision and Pattern Recognition (CVPR), Seattle,
WA, USA, 2020, pp. 10233–10244.

[143] A. Ullah, K. Muhammad, T. Hussain, and S. W. Baik,
Conflux LSTMs network: A novel approach for multi-
view action recognition, Neurocomputing, vol. 435, pp.
321–329, 2021.

[144] M. A. Khan, K. Javed, S. A. Khan, T. Saba, U.
Habib, J. A. Khan, and A. A. Abbasi, Human action
recognition using fusion of multiview and deep features:
An application to video surveillance, Multimed. Tools
Appl., doi: 10.1007/s11042-020-08806-9.

[145] J. M. Llaurado-Fons, A. Martinez, F. A. Pujol-López, and
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