
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 08/10 pp964–972
DOI: 10 .26599 /TST.2021 .9010069
Volume 27, Number 6, December 2022

C The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Self-Renewal Consortium Blockchain Based on Proof of Rest
and Strong Smart Contracts

Wenyu Shen, Xuebing Huang, Yunshan Fu, Yongwei Hou, and Li Ling�

Abstract: Focusing on the business alliance scenario in blockchains, this paper proposes a new consensus

mechanism named proof of rest (PoR) and strong smart contracts. The block structure and logic of PoR consensus

are described. And a consortium blockchain system supporting strong smart contracts is designed. We modify the

difficulty value algorithm based on proof of work (PoW) and add adjustable parameters. The longer a node rests after

creating a block, the less difficult it is to create another new block, hence the term PoR. The penalty for slack nodes,

the joining and quitting of nodes, and the adjustment of the expected block creation time can all be accomplished

using the strong smart contracts, so the consortium blockchain can realize self-renewal.

Key words: blockchain; consortium chain; proof of rest (PoR); smart contract; self-renewal

1 Introduction

The core technology of blockchains is essentially
cryptographic algorithms and consensus mechanisms.
The rudiments of these technologies have appeared as
early as the last century and are gradually maturing.

This paper focuses on consortium blockchains and
proposes a new consensus mechanism called proof of
rest (PoR), which has certain authorization and access
conditions. Blocks can be quickly created with a
little competition introduced. Moreover, the system
throughput is considerable, and the network requirement
for reaching a consensus is not high, so it has some
advantages in the business alliance scenario.

Nodes participating in a consortium blockchain are
controlled by different organizations, which form an
industry alliance to manage the blockchain. The industry
alliance shall hold joint meetings on major issues for
consultation and solution. The alliance may split if the
agreement is not reached, which would be a hard fork for

�Wenyu Shen, Xuebing Huang, Yunshan Fu, Yongwei
Hou, and Li Ling are with the School of Information
Science and Technology, Fudan University, Shanghai 200433,
China. E-mail: wyshen18@fudan.edu.cn; xbhuang19@
fudan.edu.cn; ysfu17@fudan.edu.cn; ywhou17@fudan.edu.cn;
lingli@fudan.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2021-04-15; revised: 2021-09-12;
accepted: 2021-09-21

the blockchain. In this case, the alliance no longer exists,
so this paper assumes that any issues can be resolved
through negotiations within the alliance.

In general, the industry alliance is the highest decision-
making group and actual controller of the consortium
blockchain. However, the system cannot be regarded as a
centralized system. The members of the industry alliance
negotiate and vote with one another through joint
meetings, and no single member can control the whole
alliance. Thus, it is essentially a decentralized system.
From the perspective of blockchains, nodes belong to
different organizations that guard against one another. In
fact, industry alliance and consortium blockchain with
access threshold, multi-party negotiation, and certain
precautions in the implementation can be considered a
weakly centralized system.

On this basis, we have designed smart contracts to
control the update of consensus mechanism parameters,
so as to achieve the self-renewal of the blockchain
and absolute control of the industry alliance for the
consortium blockchain.

2 Overview

2.1 Cryptology theory

The basic theories of cryptography have been mature in
the last century, mainly including symmetric encryption
algorithms (e.g., the data encryption standard (DES)[1]



Wenyu Shen et al.: Self-Renewal Consortium Blockchain Based on Proof of Rest and Strong Smart Contracts 965

issued by the United States Federal Standard in
1977), asymmetric encryption algorithms (e.g., the
Rivest-Shamir-Adleman (RSA)[2] algorithm proposed
by R. L. Rivest, A. Shamir, and L. M. Adleman in 1978;
the ellipse curve cryptography (ECC) proposed by V. S.
Miller of IBM in 1985[3] and N. Koblitz of the University
of Washington in 1987[4]; and the Elgamal[5] algorithm
proposed by T. Elgamal in 1985), and one-way function
encryption algorithms (e.g., the cyclic redundancy
check (CRC)[6] algorithm published by W. W. Peterson
an D. T. Brown in 1961; the message digest (MD)[7]

algorithm published and upgraded by R. L. Rivest from
1989 to 1992; RACE integrity primitives evaluation
message digest (RIPEMD)[8] algorithm proposed by H.
Dobbertin, A. Bosselaers, and B. Preneel on the basis
of MD4 in 1996; and the secure hash standard (SHA)[9]

designed by the National Security Agency and published
by the National Institute of Standards and Technology
in 1995).

2.2 Classification of blockchains

Blockchain systems can be divided into the following
categories based on the access permission: private
blockchain that is fully controlled by a single person
or organization, consortium blockchain with certain
thresholds, and public blockchain that allows anyone
to join.

All nodes of a private blockchain are completely
controlled by an organization or institution. The
owner of a private blockchain can easily manipulate
the entire system, making the blockchain more like
a distributed database. A private blockchain can
choose various consensus mechanisms, but due to its
private characteristics, there is generally no need for
competition among nodes. Hence, a classical distributed
consensus[10] is the most convenient way to complete
state machine replication. Typical schemes include
Paxos[11], practical Byzantine fault tolerance (PBFT)[12],
and HotStuff[13].

A consortium blockchain is generally an alliance
composed of multiple companies or organizations.
Others need to be recognized by the existing members
of the alliance when joining it. Within the consortium
blockchain, nodes are still on guard against one
another. From this point of view, it has no difference
from the public blockchain, except that certain access
permissions have been added. This condition makes
it easier to exchange keys and the network topology
becomes clearer, which cannot be performed in public
blockchains. In the consortium blockchain, nodes

actually belong to different controllers. Thus, it is still
a decentralized system under the consensus mechanism,
which is an advantage compared with the private
blockchain. A consortium blockchain is generally set
up with access permissions, which can be considered
as an authorization consensus. Typical schemes include
Hyperledger[14], DFINITY[15], and Pala[16].

The best known public blockchain systems are Bitcoin
and Ethereum, which are motivated by virtual currencies.
The design concept of a public blockchain is that anyone
can join or quit unconditionally. Therefore, there is no
trust between all nodes, which is often accompanied by
a certain waste of resources. The consensus mechanism
in a public blockchain is generally considered to be
an unauthorized consensus mechanism[17]. In addition
to proof of work (PoW)[18] used by Bitcoin and proof
of stake (PoS)[19] used by Ethereum, there are also
mixed consensus mechanisms of a single committee
or multiple committees. A single-committee mixed
consensus mechanism first uses the PoW or PoS to
select some nodes as the committee, and then runs
the distributed consensus algorithm similar to PBFT
within the committee to complete block generation.
Typical schemes include ByzCoin[20], AlgoRand[21],
and Solida[22]. The multi-committee mixed consensus
mechanism divides the network into multiple zones,
each of which runs the internal committee processing
transactions in parallel. Typical schemes include
Elastico[23] and RapidChain[24].

In general, the consensus mechanism can be divided
into permissioned consensus, permissionless consensus,
and classical distributed consensus. The PoR designed
in this paper belongs to permissioned consensus.

2.3 Network environment

In this paper, we assume that there will be no large-scale
network interruption, the network topology is a complete
graph, the IP addresses and ports of all nodes are known,
and the public keys have been exchanged among the
nodes. Moreover, RSA encryption cannot be cracked,
and SHA256 is irreversible. We allow a certain number
of evildoers to occur in the consortium, but by default
more than half of the nodes are honest. Industry alliances
can decide whether to increase or decrease members, or
simply exclude evildoers.

3 PoR Consensus Mechanism

3.1 Proposal of PoR

In PoW, a system issues certain rewards to the nodes



966 Tsinghua Science and Technology, December 2022, 27(6): 964–972

that create blocks, but it does not want the rewards
to be always obtained by certain nodes. Therefore, a
higher degree of difficulty is set, such that all nodes
compete with one another, resulting in a waste of
computing power[18]. The consortium blockchain allows
a certain amount of waste, but it is never willing to
accept such a large internal loss. PBFT needs to forward
data twice[12] to confirm whether the block creator
has sent multiple distinct blocks to other nodes. This
process increases the requirements for the network and
should be avoided as much as possible. Fortunately,
the simultaneous appearance of multiple latest blocks
in PoW has become commonplace. On this basis, we
propose a new consensus mechanism called PoR.

In the setting of our system, creating blocks is
an obligation to join the consortium. Therefore,
the consortium blockchain can be completely free of
rewards, and there is no need to waste computing
power. In this case, the difficulty requirement can be set
relatively low to make it easier to create blocks. However,
one node cannot control the entire blockchain by
continuously creating blocks with its strong computing
power. Under these conditions, we designed a new
consensus mechanism called PoR. Compared with PoW,
PoR has a great improvement in the setting of difficulty
values, which fully meets the requirements of moderate
competition and no monopoly. In terms of the formation
and resolution of forks, the idea of PoW is still adopted.
Multiple nodes work at the same time and publish their
own blocks, but nodes will choose the longest fork.
When the length is the same, the forks received earlier
on the timeline are inclined. The basic idea of the PoR
consensus is simple: to set a larger mining difficulty
for nodes that have recently created a block and, on the
contrary, set a smaller difficulty. The closer the block
created last time, the more difficult it is to create a new
one. If the node rests temporarily for a period of time,
then the difficulty of creating a new block will be greatly
reduced, so it is called PoR.

In Bitcoin, the difficulty of creating a block is
determined by a four-byte field called “bits”[18]. The
difficulty value at this stage depends on the computing
power of the entire system and the block generation
time of the last stage, which controls the time required
to create a new block to approximately 10 min. Our
blockchain system sets n nodes, numbered from 1 to n.
The difficulty for node k to create blockm is determined
by a certain number of blocks before m. We define the
sequence number difference of blocks on a blockchain

as the distance. We stipulate that for block m, blocks
within a distance of 2n will affect it, which are block
m � 1;m � 2; : : : ; m � 2n. The weight of each block
is linearly distributed after taking the logarithm twice.
In terms of hash collision, the probability exponentially
decreases.

Taking into consideration the business requirements
and actual computing power of the alliance, we designed
the adjustable parameters Max and Min. The two
values decide the maximum and minimum impacts of the
historical block on the difficulty value of the latest block.
Usually, we set 7 6 Max 6 8, 0 < Min < Max � 1.
IfMin becomes larger, thenMax should also be further
increased.
bxc represents the largest integer not exceeding x,

and dxe represents the smallest integer not less than x.
We define the difficulty value of node k when creating
blockm asDT.k;m/. And we stipulate that the creator of
block i is represented by Bi . Then DT.k;m/ is defined
as follows:

Hash.block header/ < DT.k;m/ (1)

DT.k;m/ D d2
W.k;m/e (2)

W.k;m/ D 256 �

m�1X
iDm�2n

2Tm�i � C.k;i/ (3)

Tm�i DMax � .m � i/ � ı (4)

ı D

j
Max�Min

.2n�1/
� f ix�ratio

k
f ix�ratio

(5)

f ix�ratio D 10
f ix�len (6)

f ix�len D dlg 2ne (7)

C.k;i/ D

(
1; k D Bi I

0; k ¤ Bi

(8)

where Min 6 T2n < Max. T2n and Min are not
completely consistent, and there is a slight error between
them. However, this does not affect the basic idea that
the weight of the historical blocks is linearly distributed
after taking the logarithm twice. A consensus can still be
reached if all nodes follow these algorithms. This error
is meant to reduce the number of significant digits after
the decimal point and the calculation amount to derive
DT.k;m/. f ix�len and f ix�ratio are meant to ensure
that ı must not be 0. The so-called linearity is by no
means exactly equal.

In other words, as long as a node can observe the
creation of block m and the previous 2n block, it can
calculate the difficulty value of Bm in creating block



Wenyu Shen et al.: Self-Renewal Consortium Blockchain Based on Proof of Rest and Strong Smart Contracts 967

m. Therefore, the four-byte difficulty value field can be
omitted in the block structure to save storage space.

In this way, each node has a different difficulty value
for creating the same latest block. The longer it is since
the node created the block last time, the smaller its
difficulty value is. Moreover, any node that receives
the block can quickly determine the difficulty value of
the current block creator by tracing upwards, and then
check whether it meets the requirements.

3.2 Weight of historical blocks

A node needs to select a random number (nonce) when
creating a block, and then computes the hash of the
block header. If hash < DT.k;m/, then the block is
successfully created. This is actually an enumeration
process. Every time the hash is computed, there is a
certain probability of success, which is related to the
difficulty value. We select different numbers of nodes
and different Max and Min parameters to calculate the
impact of each historical block on creating a new block.
The probability of creating a block is

P D
DT.k;m/

2256
D

˙
2W.k;m/

�
2256

�

2256�
Pm�1

iDm�2n 2Tm�i �C.k;i/

2256
D

2�
Pm�1

iDm�2n 2Tm�i �C.k;i/

(9)

lgP � �
m�1X

iDm�2n

2Tm�i � C.k;i/ � lg 2 (10)

In this paper, when the total number of nodes is n,
the historical block that has an impact is 2n blocks.
If the computing power of each node is similar, then
two or three historical blocks will have an effect on the
difficulty value of each node. These historical blocks
are basically unlikely to be close in distance. It can be
roughly estimated that each node takes turns to create
blocks.

Among the 2n blocks, the newer n blocks weigh
much more than the older ones. The reason why 2n
is chosen instead of n is that there is no guarantee that a
node can create a new block every n blocks. A certain
deviation is entirely possible. Only nodes that do not
contribute to the system at all may fail to create blocks
for 2n consecutive blocks. The consortium blockchain
automatically punishes these nodes and removes them
from the alliance. In the fourth part of this paper, we
will explain how to use smart contracts to control the
nodes in detail. Therefore, given n, Max, and Min, we
only need to study the effect of the new n blocks on the

difficulty value of the latest block.
The number of nodes, and the values of Max and

Min can be selected according to the alliance situation,
business requirements, and expected block creation time.
Figures 1–3 only list a few different cases.

Fig. 1 Weight of historical blocks when nDDD 6.

Fig. 2 Weight of historical blocks when nDDD 20.

Fig. 3 Weight of historical blocks when nDDD 100.



968 Tsinghua Science and Technology, December 2022, 27(6): 964–972

3.3 Weight impact analysis

For node k that is the easiest to create the new block m
in the entire system, the distances of the historical blocks
that are most likely to affect the creation of block m are
n and 2n. So according to Eqs. (3) and (8),

C.k;i/ D

(
1; i D m � n or i D m � 2nI

0; else
(11)

W.k;m/ D 256 � 2
Tn � 2T2n (12)

Since 2T2n � 2Tn , W.k;m/ � 256 � 2
Tn .

In this way, the relationship between the computing
power and the creation time of a new block can be
estimated.

We assume that the consortium blockchain expects
to create a block every 1 s. Then we can use a scheme
similar to that of Bitcoin to estimate the demand for
computing power.

Diff iculty D
Bdiff

Target
(13)

Hashrate D
Diff iculty

T ime
(14)

Bdiff D 2256 (15)

Target D DT.k;m/ � 2
W.k;m/ (16)

W.k;m/ D 256 � 2
Tn (17)

Hashrate D

Bdiff
Target

T ime
�

2256

2256�2Tn

1
D 22Tn (18)

Tn should be slightly greater than .Max CMin/=2.
Table 1 lists the impact of different Tn on the hashrates
under different initial conditions.

At present, the performance of the graphics processing
unit (GPU) far exceeds that of the central processing unit
(CPU) in the computing hash. The general GPU computing
power is approximately 20–30MH (106 hashes/s), which
is in the same order of magnitude as when Tn is 4:5. If
Tn reaches 5, then the investment cost will be higher.

Table 1 Hashrates at different Tn.
Tn Hashrate .hashes/s/
2 16

2.5 50
3 256

3.5 2545
4 65 536

4.5 6:5 � 106

5 4:3 � 109

5.5 3:2 � 1013

6 1:85 � 1019

Therefore, by setting the appropriate Max and Min

according to the business demand and overall computing
power, it can fully meet our design requirements of
moderate competition without wasting much computing
power.

If node g in the alliance wants to create blocks faster
than node k, then node g needs more computing power
because it is obviously harder to create blocks than node
k. The cost of doing so is very high while the ultimate
benefit may be minimal.

When the number of the nodes in the system is
small, the difficulty of creating blocks for each node
is particularly significant due to the PoR consensus
mechanism. With proper Max and Min, one can only
rely on luck to create a block preemptively. With a
larger number of nodes, the difficulty difference is less,
and there would be a concurrence of several nodes that
can easily create a new block. At this point, the value
of Min can be fine-tuned upward so that the expected
creating time of these nodes is slightly over 1 s, and there
will always be a lucky node that will win out. Over a
long period of time, the system still creates a new block
per second on average.

In addition, with the development of computer
hardware, the GPU computing power will gradually
increase. In this case, only slight adjustments to Max
and Min can directly eliminate the computing power
gain brought about by hardware advancements, and
maintain the block creation time at approximately 1 s.
After all, the current single GPU computing power is
only at the MH level. By slightly increasing the values
of Max and Min, the computing power demand can
be greatly increased to the GH (109 hashes/s) or even
TH (1012 hashes/s) level, so the impact of hardware
development can be ignored in a short period.

3.4 New problems

This study modifies the calculation method of the
difficulty value, such that a node with a lower difficulty
requirement can have many choices of nonce that can
meet the difficulty value requirements when creating a
block. We present a few new issues to address in the
following sections.

3.4.1 Available storage space
For a node with a small difficulty value, it is easy to
create a new block in tens or even milliseconds. The
new block contains only a few transactions, but its block
header has a fixed length. With the same length of time
and number of transactions, the larger the number of



Wenyu Shen et al.: Self-Renewal Consortium Blockchain Based on Proof of Rest and Strong Smart Contracts 969

blocks, the more block header data that need to be stored,
thus wasting the available storage space.

In response to this problem, we can set a time
threshold and transaction volume threshold. If the
number of transactions exceeds the threshold, then the
block can be created immediately. Otherwise, if the
number of transactions is not enough, then the block is
created after the time threshold is reached to ensure that
the few transactions can still be recorded in the block
in time without waiting too long. In fact, long-running
blockchain systems will always encounter storage space
problems. In the early stage of a blockchain operation,
with not so many transactions, there will be a problem
that the block header accounts for an excessively large
proportion.

In our design, the block header has been reduced as
much as possible, and the magic number and difficulty
value that can be computed from historical blocks have
been removed to minimize the waste of storage space.

3.4.2 Handling of forks
Based on the inequality of the difficulty value, the block
creator can create multiple different blocks that all meet
the requirements and scatter them to different nodes to
achieve malicious forks. In the Bitcoin system, different
nodes create different blocks and spread them throughout
the network all the time. The blockchain will split
briefly. Sometimes, there are multiple forks, and even
forks would split. However, each node will create blocks
after the longest fork. If a fork occurs earlier, then the
probability for it to be accepted by the nodes is higher.
In other words, the greater the computing power a fork
obtained, the greater the probability that the next block
will be generated after it, which makes it longer. Thus,
nodes will eventually reach a consensus on the longest
fork. Our system still follows the principle of the longest
chain; that is, the earlier generated fork can attract more
nodes, so it is more likely to win. However, this is not
necessarily the case because the difficulty of creating
blocks varies from node to node, and the next block
would be created by nodes with low difficulty values.
While the time it takes for a fork to appear on the
timeline affects its survival probability, the fork has a
higher probability of surviving in the competition if it is
first received by nodes with low difficulty values. That
is, the influence of the reception time on the survival
probability is sometimes greater than the appearance
time. Introducing the uncertainty makes the blockchain
run more healthily. In general, the PoR consensus

mechanism can achieve ultimate consistency and thus
still have the ability to resist forks.

3.4.3 Data tampering
Any node can also tamper with blocks published by
others by modifying the nonce field. Although this does
not directly benefit the node, it is a potential threat to the
entire system and should be avoided.

In this study, the signature of the block creator is
added to the related block header. The integrity and
non-repudiation of data are guaranteed by cryptography,
which ensures that the block created by the creator
cannot be tampered with by other nodes at will. The
inspiration for this design comes from Fabric[14], which
is not available in Bitcoin systems.

Blocks are correlated by the hash of the previous
block header. The Merkle tree root is used to achieve
binding between the block header and block body. The
information of the creator is stored in the transaction.
The difficulty value is calculated by the historical
blocks. The integrity of the block is guaranteed by the
asymmetric encryption algorithm. The above series of
relationships forms a closed loop. As long as the hash is
irreversible and the RSA algorithm cannot be cracked,
the block information can be guaranteed to be valid,
tamper-proof, and undeniable.

3.4.4 Waste of computing resources
According to the formula of the difficulty value, it is
quite difficult for a node that has already created a
block to create a new block in the following period of
time. As is basically impossible, it is actually a waste of
computing power to keep trying. Therefore, our system
allows a node to take a rest after creating a block. During
this period, the node will only collect transactions and
verify the blocks published by other nodes, rather than
trying to create a block. This is how PoR comes. When
the node is resting, other nodes are actually creating
blocks, so in a sense, each node still serves the entire
alliance in turn. The rest time can be comprehensively
considered and determined according to the number of
nodes, business requirements, network conditions, and
expected block creation speed. However, generally, it
should not be too long. The node should be restored to
work before it becomes one of the easiest nodes to create
blocks in the system.

3.5 Structure of the block

We design the block structure of the consortium
blockchain as shown in Fig. 4.



970 Tsinghua Science and Technology, December 2022, 27(6): 964–972

Signature

Transaction_number 
(4 bytes)

Time (4 bytes) Nonce (4 bytes)
Previous_hash (32 bytes)

Merkle_root (32 bytes)

Version (4 bytes)Block_length (4 bytes)
Bytes 12−15Bytes 8−11Bytes 4−7Bytes 0−3

0

16

32

48

64

80

Fig. 4 Block structure.

The length of signature is determined by key length.
The block is divided into four parts: total length of
the block, block header, block body, and signature.
The block header contains version (4 bytes), previous
block header hash (32 bytes), Merkle root (32 bytes),
timestamp (4 bytes), and counter (4 bytes). The block
body contains the transactions that have been verified
by the node. The first four bytes of the body are used
to indicate the number of transactions and then the
specific transaction content. The information of the block
creator is recorded in the first transaction, followed by
other transactions. A transaction includes the timestamp,
initiator, signature, and smart contracts. The signature of
the block creator is added at the end of the block header,
whose length is equal to that of the RSA private key[2].

4 Strong Smart Contracts

Smart contracts were initially proposed by Nick Szabo
in 1995, which he defined as follows: “A smart contract
is a computerized transaction protocol that executes the
terms of a contract.”[25]

Currently, programming languages for writing smart
contracts usually include Solidity, Serpent, and Lisp like
languages. A variety of smart contracts are deployed
in Ethereum. For a blockchain, a smart contract is the
data stored in it. For a client, a smart contract is a piece
of code that can be run. In general, the client regularly
checks whether the smart contract can be successfully
executed, and the time interval is determined according
to actual needs.

We hope to realize the self-renewal of the blockchain,
i.e., update some parameters of the chain, such as Max
and Min in the difficulty value algorithm, IP, and port
of the core nodes. In this way, a smart contract stored
in the consortium blockchain can in turn affect the
blockchain itself. To distinguish it from the general
smart contracts that cannot affect the blockchain itself,

but only intra-chain transactions, we call these smart
contracts “strong smart contracts”. This paper gives the
strong smart contracts more powerful capabilities and
stronger restrictions as well. The goal of strong smart
contracts is to be able to update the chain based on the
chain itself, and even gradually update all parts like the
ship of Theseus.

We designed three kinds of strong smart contracts in
the consortium blockchain. The first type is to remove
the node that does not create a block after 2n consecutive
blocks. The second is to increase or decrease the number
of participating nodes. The third is to update the Max
and Min parameters. Among them, the first type of
strong smart contracts does not need to be released. In
fact, the entire consortium blockchain can be considered
a smart contract. Every time a block is created, it will
check whether any node is punished for being slack. The
second and third types of smart contracts require the
agreement of all nodes in the alliance before they can
be executed. In fact, the entire alliance can only modify
parameters and increase or decrease participating nodes
by convening a joint meeting and reaching an agreement
while the smart contracts are just the implementation of
the decision.

When a node creates a new block, it stores the
information that needs to be modified and its own
signature into the blockchain, indicating a vote. Other
nodes also store their signatures in the consortium chain
to indicate an agreement. After the agreement of all
nodes, the strong smart contract should be executed
immediately. We cannot use the scheme of a periodic
inspection because it is difficult to find the appropriate
time interval to ensure the immediate implementation of
the contract. The consumption of resources is too large
if the interval is too short, which is not necessary.

We specify that the first type of strong smart contracts
has the highest priority, which means that the system
punishes the node that does not contribute at any time.
Industry alliance will not add or remove participating
nodes or update parameters multiple times within a day.
Thus, for the second and third types of smart contracts,
only one contract is valid at the same time. Each initiated
contract has a validity period. If sufficient consent votes
cannot be obtained within the validity period, then the
strong smart contract will be abandoned.

We indicated many restrictions on strong smart
contracts because such smart contracts can affect the
entire consortium chain, which is completely different
from general smart contracts. Thus, it is necessary



Wenyu Shen et al.: Self-Renewal Consortium Blockchain Based on Proof of Rest and Strong Smart Contracts 971

to provide more restrictions to ensure a smooth
operation of the blockchain and reduce the impact of
malicious behaviors. In this way, we can use strong
smart contracts to control the update of consensus
mechanism parameters, and to achieve self-renewal of
the blockchain. The operation diagram of strong smart
contracts in shown in Fig. 5.

5 Conclusion

We used Alibaba Cloud and Tencent Cloud to build
the consortium blockchain. All data were encrypted to
prevent malicious eavesdropping and transferred over
the HTTP protocol. The blockchain is operating well.
Although there are forks, a consensus can be quickly
reached. Strong smart contracts can be used to change
the parameters in the consortium chain, including Max
and Min in the difficulty value algorithm and the
number, IP, port, public key, and other contents of
participating nodes.

We propose the PoR consensus mechanism and strong
smart contracts that adapt to the scenario of consortium
blockchain, so that each participating node takes turns
to rest and create blocks. The system can automatically
punish the slack nodes, update the parameters, and
increase or decrease the number of nodes, which
achieves the self-renewal of the consortium blockchain.

The basic version of the alliance chain is currently
in trial operation in Shanghai Blockchain Technology
Association for the storage and traceability of activities
for Popular Science.

Fig. 5 Operation diagram of strong smart contracts.

Acknowledgment

This work was supported by the National Key R&D
Program of China (No. 2018YFB2101100).

References

[1] NBO Standards, Data encryption standard, Federal
Information Processing Standards Publications, pp. 632–
646, 1977.

[2] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for
obtaining digital signatures and publickey cryptosystems,
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

[3] V. S. Miller, Use of elliptic curves in cryptography, in
Advances in Cryptology-CRYPTO 1985, Lecture Notes in
Computer Science, H. C. Williams, ed. Berlin, Germany:
Springer-Verlag, 1986, pp. 417–426.

[4] N. Koblitz, Elliptic curve cryptosystems, Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, 1987.

[5] T. Elgamal, A public key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Transactions on
Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

[6] W. W. Peterson and D. T. Brown, Cyclic codes for error
detection, Proceedings of the IRE, vol. 49, no. 1, pp. 228–
235, 1961.

[7] R. L. Rivest, The md4 message digest algorithm, in
Proceedings of the 10th Annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO’90,
A. Menezes and S. A. Vanstone, eds. Berlin, Germany:
Springer-Verlag, 1990, pp. 303–311.

[8] H. Dobbertin, A. Bosselaers, and B. Preneel, Ripemd-
160: A strengthened version of ripemd, in Fast Software
Encryption, D. Gollmann, ed. Berlin, Germany: Springer-
Verlag, 1996, pp. 71–82.

[9] Q. Dang, Secure hash standard, Federal
information processing standards (NIST FIPS),
https://doi.org/10.6028/NIST. FIPS.180-4, 1995.

[10] C. Cachin and M. Vukolić Blockchain consensus protocols
in the wild, arXiv preprint arXiv: 1707.01873, 2017.

[11] L. Lamport, The part-time parliament, ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, 1998.

[12] M. Castro and B. Liskov, Practical byzantine fault
tolerance�in Proc. the 3rd Symposium on Operating
Systems Design and Implementation(OSDI), New Orleans,
LA, USA, 1999, pp. 173–186.

[13] I. Abraham, G. Gueta, and D. Malkhi, Hot-stuff the linear,
optimal-resilience, one-message BFT devil, arXiv preprint
arXiv: 1803.05069, 2018.

[14] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K.
Christidis, A. D. Caro, D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich, et al., Hyperledger fabric: A distributed
operating system for permissioned blockchains, in Proc.
the 13th EuroSys Conference, Porto, Portugal, 2018, pp.
1–15.

[15] T. Hanke, M. Movahedi, and D. Williams, Dfinity
technology overview series, consensus system, arXiv
preprint arXiv: 1805.04548, 2018.

[16] T. -H. H. Chan, R. Pass, and E. Shi, Pala: A simple partially



972 Tsinghua Science and Technology, December 2022, 27(6): 964–972

synchronous blockchain, IACR Cryptol. ePrint Arch., no.
981, pp. 1–21, 2018.

[17] R. Pass and E. Shi, Rethinking large-scale consensus,
in Proc. IEEE 30th Computer Security Foundations
Symposium (CSF), Santa Barbara, CA, USA, 2017, pp.
115–129.

[18] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash
system, https://bitcoin.org/bitcoin.pdf, 2008.

[19] V. Buterin, A next-generation smart contract and
decentralized application platform, Ethereum White Paper,
vol. 3, no. 37, pp. 1–36, 2014.

[20] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,
L. Gasser, and B. Ford, Enhancing bitcoin security and
performance with strong consistency via collective signing,
in Proc. 25th USENIX Security Symposium (USENIX
security 16), Austin, TX, USA, 2016, pp. 279–296.

[21] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N.
Zeldovich, Algorand: Scaling byzantine agreements

for cryptocurrencies, in Proc. the 26th Symposium on
Operating Systems Principles, Shanghai, China, 2017, pp.
51–68.

[22] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A.
Spiegelman, Solida: A blockchain protocol based on
reconfigurable Byzantine consensus, arXiv preprint arXiv:
1612.02916, 2016.

[23] L. Luu, V. Narayanan, C. D. Zheng, K. Baweja, S.
Gilbert, and P. Saxena, A secure sharding protocol for open
blockchains, in Proc. the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria,
2016, pp. 17–30.

[24] M. Zamani, M. Movahedi, and M. Raykova, Rapidchain:
Scaling blockchain via full sharding, in Proc. the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, Toronto, Canada, 2018, pp. 931–948.

[25] N. Szabo, Smart contracts, http://szabo.best.vwh.net/
smart.contracts.html, 1995.

Wenyu Shen received the bachelor and
master degrees from Fudan University,
Shanghai, China in 2017 and 2021,
respectively. His research interests include
blockchain technology and digital signal
processing. He is passionate about
information science and technology.

Yunshan Fu received the bachelor degree
in communication engineering from Fudan
University, Shanghai, China in 2021.
His research interests include software
development and blockchain.

Li Ling received the master degree from
Fudan University, Shanghai, China. He
is a professor of School of Information
Science and Technology, Fudan University,
Shanghai, China. His main research
interests include network communication
and security, blockchain technology, big
data analysis, and cloud computing. He has

published Deconstruction of Blockchain, Network Protocols and
Network Security, etc.

Xuebing Huang received the bachelor
degree from Xiamen University, Xiamen,
China in 2019. She is pursuing the master
degree in Fudan University in Shanghai.
Her research interests include blockchain
technology, privacy protection, and digital
image processing.

Yongwei Hou is pursuing the bachelor
degree in Fudan University, Shanghai,
China. His research interests include
blockchain technology, smart contracts, and
deep learning for image processing.


