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Protein Residue Contact Prediction Based on Deep Learning
and Massive Statistical Features from Multi-Sequence Alignment
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Abstract: Sequence-based protein tertiary structure prediction is of fundamental importance because the function of

a protein ultimately depends on its 3D structure. An accurate residue-residue contact map is one of the essential

elements for current ab initio prediction protocols of 3D structure prediction. Recently, with the combination of deep

learning and direct coupling techniques, the performance of residue contact prediction has achieved significant

progress. However, a considerable number of current Deep-Learning (DL)-based prediction methods are usually

time-consuming, mainly because they rely on different categories of data types and third-party programs. In this

research, we transformed the complex biological problem into a pure computational problem through statistics and

artificial intelligence. We have accordingly proposed a feature extraction method to obtain various categories of

statistical information from only the multi-sequence alignment, followed by training a DL model for residue-residue

contact prediction based on the massive statistical information. The proposed method is robust in terms of different

test sets, showed high reliability on model confidence score, could obtain high computational efficiency and achieve

comparable prediction precisions with DL methods that relying on multi-source inputs.
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1 Introduction

Proteins are the basic substance of all lifeforms[1],
with a wide variety of functions in cells: playing a
catalytic role; transporting metabolites; participating in
the processes of immunity, cell differentiation, apoptosis,
etc. The functions of a protein are largely determined
by the corresponding three-dimensional (3D) structure;
therefore, understanding the 3D structures and the
folding mechanism of proteins has been a research issue
of great importance in biology for decades. Although
the 3D structures of proteins can be determined through
wet-lab experimental techniques, these techniques are
time-consuming and expensive. Consequently, the
development of accurate algorithms to predict protein’s
tertiary structures from the corresponding amino acid
sequences has been considered a “holy grail” for
researchers in computational biology and bioinformatics.
In recent years, ab initio protein folding has become
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a more practical approach since the performance of
template-based modeling depends on whether reliable
template structures can be found in the Protein Data
Bank (PDB). However, in the case of a lack of
homologous structural templates, the accuracies of
template-based modeling techniques will decline sharply.
On the contrary, ab initio methods can work on the
prediction task without relying on global template
structures from PDB. The residue contact map is one of
the core inputs for accurate ab initio protocols of protein
3D structure prediction.

A residue-residue contact (or simply a “contact”) is a
pair of residues that are non-local in the primary structure
but close in the tertiary structure within a specific
distance threshold. As a “simplified” two-dimensional
(2D) representation of the 3D structure, protein contacts
can provide necessary structural restraints toward the
reconstruction of a protein’s 3D structure. Accurate
prediction of protein contact maps can pave an avenue
for successful protein tertiary structure modeling. The
past two decades have witnessed progress in how residue
contacts can be applied successfully to 3D structure
prediction modeling protocols[2–7]. The applications of
the predicted contacts can also be extended to molecular
dynamics simulations[8, 9] and protein-protein interaction
prediction[10].

Residue contact prediction has been one of the
most challenging issues in structural biology and
bioinformatics. Prediction methods from the early stage
can be categorized into three main classes: correlated-
mutation-analysis/mutual-information-based techniques,
mathematical-optimization-based methods, and
Machine-Learning (ML)-based algorithms. Correlated-
mutation-analysis/mutual-information-based methods,
such as those described by Pollock and Taylor[11],
MIp[12], and MIc[13], can achieve prediction precisions
of approximately 20%–30% (contact definition as
Cˇ-Cˇ < 8 � 10�10/, and these techniques are local
statistical models for a residue pair is treated statistically
independent of other residue pairs. Residue contact
prediction methods based on integer linear programming
techniques proposed by Rajgaria et al.[14, 15] are de
novo contact prediction techniques that rely on physical
constraints instead of evolutionary information. These
methods can be suitable solutions for proteins lacking
homologous information, but can also significantly
reduce the prediction accuracy for proteins with
abundant evolutionary information. Traditional ML-
based methods, such as SVMcon[16], NNcon[17], and

SVMSEQ[18], are developed on small training sets, and
they are local models that predict each residue pair
without considering the status of other pairs. Therefore,
these methods still show low prediction precisions and
coverages, especially for long-range contacts. Some
methods[19, 20] that merge machine learning techniques
with integer linear programming can improve the
prediction performance to certain extent.

The application of Direct Coupling Analysis
(DCA)[21] to residue contact prediction shows a
highlighted mark in the evolution of the prediction
methods, which emphasizes the significance of
disentangling direct interactions between residues from
the indirect ones. Other methods falling in this category
include PSICOV[22] based on sparse inverse covariance
estimation and some variants of DCA, such as EVfold
(mfDCA)[23], gDCA[24], plmDCA[25], GREMLIN[26],
and CCMpred[27]. Although DCA-based methods can
obtain more useful contacts than the mutual-information-
based methods and traditional ML-based methods,
their performance is highly dependent on the quality
of MSA. Some meta-predictors, such as PconsC[28],
MetaPSICOV[29], and NeBcon[30], try to overcome the
shortcomings of pure DCA-based methods through
combining the output of different DCA-based methods
with other sequence-based information to create more
robust predictions.

Recently, great success in contact prediction has
been achieved through the introduction of deep
learning techniques. Deep-learning-based method
DeepCOV[31] uses only covariance information from
MSA as input for accurate residue-residue contact
prediction. Many deep-learning-based methods rely
on many different input sources from third-party
softwares, such as Position-Specific Scoring Matrix
(PSSM), solvent accessibility, predicted secondary
structure, and mid-files/prediction-scores from other
contact predictors. Representative methods are
RaptorX-Contact[32], DeepConPred2[33], DNCON2[34],
DEEPCON[35], SPOT[36], and MapPred[37], and these
methods usually require more computational resources
than pure MSA-based methods.

In this study, we further demonstrate how to mine
effective information in MSA as much as possible in
order to achieve the best performance of the prediction
model. Comparison with seven methods (as described
in Table 1) from different categories, such as ML, ECA,
and DL, reveals that the use of deep neural network
models, and extensively extracted statistics (such as
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Table 1 Summary of the evaluated methods in this work.
Method Category Main input Description

NNcon Traditional machine learning PSSM; SA; SS A 2D-recursive neural network based method trained
on 424 protein chains.

SVMSEQ Traditional machine learning PSSM; SA; SS A support vector machine-based method trained on
the pdbselect25 dataset.

PSICOV Direct coupling analysis MSA A method based on sparse inverse covariance
estimation to recognize direct correlations of residue
pairs in the MSA.

CCMpred Direct coupling analysis MSA A pseudolikelihood-based method using co-evolution
information from MSA as the implementation of
GREMLIN for use with GPU/CPU and parallel
computing.

MetaPSICOV Consensus machine learning MSA; EVFold(FreeContact);
PSICOV; CCMpred; PSSM; SS;
SA

A neural network based meta-predictor through
combing the sequence-derived features and several
distinct coevolution approaches; MetaPSICOV is
trained on 624 protein chains.

DeepCov Deep learning MSA A fully convolutional neural network based method
operating covariance data derived directly taken from
MSA; DeepCov is trained on 3456 protein chains.

DNCON2 Deep learning PSSM; SI; MSA; SS; SA from
PSIPRED and SCRATCH; and
midfiles from MetaPSICOV,
DNCON, PSICOV, CCMpred,
and FreeContact

A method adopted a two-level hierarchical system.
Five convolutional neural networks in Level one
produce preliminary predictions, while the sixth
network in Level two combines previous results to
predict the final contact map; DNCON2 is trained on
1230 protein chains.

Note: MSA: multi-sequence alignment; PSSM: position-specific scoring matrix profile; SA: solvent accessibility; SS: secondary
structure; SI: sequence-based information; HMM: profile hidden Markov model related feature from HHblits.

self-information, partial entropy, covariance information,
mutual information, normalized mutual information, and
cross-entropy) from the MSA (with sufficient effective
sequences) can achieve state-of-the-art precisions.

2 Material and Method

2.1 Definition of residue contact and number of
effective sequences

There are several different definitions for residue-residue
contact. A residue pair can be in contact if (1) the
Euclidean distance between the Cˇ .C˛ for Glycine)
atoms interacting residue pair is less than 8 � 10�10;
(2) the distance C˛ atoms from the interacting residue
pair is less than 12 � 10�10[14, 15]; (3) the distance
between any two atoms from the two residues is less
than the sum of their van der Waals radii plus a
threshold of 0.6�10�10[38]; (4) the minimal distance
between backbone heavy atoms or side-chain atoms
in the residue pair is less than 5:5 � 10�10[39]. In
this work, we use the first contact definition which is
the most widely adopted one and consistent with the
CASP competitions. The contacts are classified into
four categories according to the sequence separation

(seq sep) of the two interacting residues: all-range,
short-range, medium-range, and long-range contacts
defined as seq sep> 6, 6 6 seq sep < 12, 12 6
seq sep < 24, and seq sep> 24, respectively.

High-quality MSA is the core component for the
success of most recently developed contact prediction
approaches. In this study, JackHMMER from HHsuite
is used to search against the NCBI-nr database for
MSA generation with a cut-off E-value of 1.0�10�4.
The number of effective sequences (Neff) in the
alignment indicate a great influence on the prediction
performance[40]. Neff used in this work is defined
following the definition and criteria prescribed by Zhang
et al.[40].

2.2 Training/testing sets and model architecture

We use the same training set as DeepCov for benchmark
comparison. The evaluation of the proposed model is
based on two highly independent test sets. The first
one is taken from the work by Zhang et al.[40], which
consists of 103 proteins with Neff > 5 � L (L is the
sequence length). The second one is a test set containing
61 TransMembrane (TM) protein chains through culling
all ˛-helix TM (˛TM) proteins in PDBTM[41] against
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the training sets of all methods (the proposed and the
peer methods) used for evaluation in this work, with
sequence identity < 25%, R-factor < 0.3, and resolution
better than 2.0�10�10. The two test sets are denoted
as Testset1 (103 proteins with the majority as globular
proteins) and Testset2 (61 ˛TM proteins).

The network architecture involves an input layer, a
Maxout layer to reduce the number of input feature
channels from 528 to 64, one or more 2D convolutional
layers, and a final sigmoid output layer, each with batch
normalization applied. The model is trained for 100
epochs using the Adam optimizer at an initial learning
rate of 0.001. The learning rate is decreased by a factor
of 0.5 if the S-score training loss do not decrease over
the last five epochs. The training dataset is shuffled
after each epoch. The final model is selected by taking
the epoch with minimum S-score loss on the validation
dataset.

2.3 Statistical features from multi-sequence
alignment

MSA generally represents the process, algorithmic
solution, and the result of three/more biological (protein
or nucleic acid) sequences, and the problem has been
extensively studied[42–44]. MSA has demonstrated its
power in research domains, such as phylogenetic
reconstruction, functional region illumination, structure
prediction biomolecules. MSA also plays a central role
in protein contact prediction because the evolutionary
information extracted from the alignment is a significant
contributor to many prediction methods. In this
study, we use six categories of statistical information
extracted from the MSA as input features for the
DL model. The six categories of features are self-
information, partial entropy, mutual information,
normalized mutual information, cross-entropy, and
covariance. The definitions and descriptions of these
features are presented as follows:

(1) Self-information:
I a

i D log2.p
a
i =hpai/ (1)

(2) Partial entropy:
Sa

i D p
a
i log2.p

a
i =hpai/ (2)

(3) Covariance:
C ab

ij D p
ab
ij � p

a
i p

b
j (3)

(4) Mutual information:
MI.i; j / D

X
i;j

p.i; j / log.p.i; j /=p.i/p.j // (4)

(5) Normalized mutual information:
NMI.i; j / DMI.i; j /=

p
S.i/S.j / (5)

(6) Cross-entropy:
H.i; j / D S.i/C S.j / �MI.i; j / (6)

where pa
i (pb

j ) stands for the frequency of finding
amino acid of Type a (b) in the MSA at Column i.j );
hpai is the average frequency of amino acid of Type
a in the entire database; pab

ij is the co-occurrence of
amino acid of Types a and b in the MSA at Columns i
and j . p.i; j /; p.i/, and p.j / are the joint probability
distribution at positions i and j , marginal probability
distribution at position i , and marginal distribution at
position j , respectively. S.i/ and S.j / are the entropies
at positions i and j , respectively.

Self-information (with a feature vector of length 42)
and partial entropy information (with a feature vector
of length 42) are 1-dimensional (1D) features, while
mutual information (with a feature vector of length 1),
normalized mutual information (with a feature vector of
length 1), cross-entropy (with a feature vector of length
1), and covariance (with a feature vector of length 441)
are 2D features. We use 528 statistical features in total.

2.4 Evaluation criteria

A predicted contact map is an L � L matrix with
each element as the probability or score of the model’s
estimate. The prediction precision of the top-L=n (in
peer works n D 1; 2, 5, 10, . . . , and in this work
nD1; 2, and 5) is the most widely used evaluation criteria
by CASP and the peer works. Other useful evaluation
criteria include the precision, coverage, and Matthew’s
Correlation Coefficient (MCC) for the predictions above
a specific probability/score threshold[40]. The STandard
Deviation (STD) is adopted to assess the dispersion of
precisions, coverages, and MCCs on the whole test set.

The Jaccard index (Jaccard similarity coefficient)
is used to analyze the prediction similarity between
different methods. The Jaccard index is defined as
J.X; Y / D jX\Y j=jX[Y j, where jX\Y j and jX[Y j
represent the number of elements in the intersection and
the union of X and Y, respectively.

3 Results and Discussion

The performance of the proposed method is evaluated
against seven peer methods. The seven peer methods
are representatives for traditional-ML-based (e.g.,
NNcon and SVMSEQ), DCA-based (e.g., PSICOV
and CCMpred), ML-based meta-predictor (e.g.,
MetaPSICOV), and DL-based (e.g., DeepCov and
DNCON2) methods. The evaluation is conducted in
terms of a wide range of factors, such as method
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similarity, prediction precisions/coverages/MCCs,
model score reliability, physical-chemical interactions,
and running time. The results and analyses in
Sections 3.1 – 3.5 are based on Testset1, and the results
in Section 3.6 are based on Testset2.

3.1 Prediction similarity between different contact
predictors

The proposed method and the peer methods are different
from each other in terms of both input features and
methodology. Insightful observations of the prediction
similarity between the predictors are significant for
understanding the methodology relevance and the
applicable scenarios of these methods.

Figure 1 illustrates the Jaccard indices and the
prediction similarities between the eight methods used
for comparison. The Jaccard index between each two
of the eight methods is first calculated for every
single protein and then averaged on Testset1. Through
hierarchical clustering analysis (with Ward’s method)
of the overall Jaccard index matrix, we obtain the
dendrogram heatmap, shown in Fig. 1. As we can
see, these eight methods are categorized into three
different groups, namely, traditional-ML-based, DCA-
based, and DL-based methods. The proposed method
is included in the DL category together with Jaccard
indices of 0.5 with DeepCov and 0.6 with DNCON2,
but the category of traditional-ML-based methods
encompasses MetaPSICOV that combines several DCA-

Fig. 1 Dendrogram heatmap of the prediction similarity
between eight different methods. The Jaccard index between
each two methods is calculated by averaging the Jaccard
index value of each protein on the whole test set.

based methods. This could be explained by the consensus
strategy and the contact prediction strategy adopted by
MetaPSICOV: MetaPSICOV combines different DCA-
based methods using ML techniques. Both MetaPSICOV
and traditional ML methods use local prediction
strategies. The results of the traditional-ML-based
methods show high-level dissimilarity with those of
DCA-based methods, but similar with those of DL-
based methods. The main reason for this phenomenon
is that the traditional-ML-based methods do not share
too many similar inputs and features with the DCA-
based methods, while all the DL-based methods are
developed with the inspiration of DCA, and many of the
DL-based methods, such as DNCON2, use the results of
DCA-based methods as input features of the predictors.
Another reason is that both the DL-based and DCA-
based methods are global prediction methods, while
the traditional-ML-based methods are local prediction
methods (the definitions of the above-mentioned local
prediction methods and global prediction methods are
given elsewhere[4, 21]).

3.2 Performance on model reliability

In the “top-L=n” criteria, the contacts in the top-L=n
predictions are selected through ranking the probabilities
(scores) of the models, while in the “probability/score
threshold” (for example, probability/score > 0:5)
criteria, all residue pairs with probability/score larger
than a specific probabilities/scores threshold are
considered as contacts. Therefore, the credibility of the
probability (score) generated by the prediction model
ultimately determines the robustness and reliability of
the corresponding model. The prediction probabilities/
scores for NNcon, SVMSEQ, MetaPSICOV, PSICOV,
CCMpred, DeepCOV, DNCON2, and the proposed
method span at the ranges of [0.001, 1.000], [0.017,
0.861], [0, 0.989], [0.001, 0.904], [0, 5.270], [0, 1], [0,
1], and [0, 1], respectively.

Figure 2 presents the prediction performance given
by different methods according to the prediction
precisions, coverages, MCCs, and the corresponding
STDs with the increase of probability/score threshold.
As the probability (score) thresholds increase, the
prediction coverages for all eight methods decrease
gradually. With the increase of the probability thresholds,
the prediction precision curves of all DL-based methods
increase monotonically, while some DCA-based and
traditional-ML-based methods are non-monotonic. The
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Fig. 2 Trend curves of different evaluation metrics with the increase of the probability (score) on Testset1. The prediction
precisions, coverages, and MCCs are shown in pink, yellow, and blue, respectively, and their corresponding STDs are indicated
as the colored shadow around the corresponding curves. The numbers nearby the pink precision curve are the number of
proteins in Testset1.

prediction precisions of DCA-based method PSICOV,
meta-method MetaPSICOV, and the DL-based methods
increase with no turning points with the change of the
probability threshold. However, the trend of the curves
is not monotonic for traditional-ML-based methods
NNcon/SVMSEQ and DCA-based method CCMpred.
With the increase of the probability (score) threshold, the
precision curves of NNcon/SVMSEQ/CCMpred have
turning points at some probability (score) thresholds.

Compared with DL-based methods, all the traditional-
ML-based and DCA-based methods have much lower
prediction, coverages, and MCCs, and much higher
STDs of prediction precisions. Notably, the proposed
method could retain predictions for 102 proteins with an
average prediction precision of 96.34% at the probability
threshold of 0.95, while the other two DL-based models,
DeepCOV and DNCON2, retain only 89 proteins at the
same probability threshold.
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3.3 Running time comparison between DL
methods

Three DL-based methods evaluated in this study share
some similar inputs with direct-coupling-based and
traditional-/cosensus-ML-based methods (Table 1 for
details); therefore, only the runtime of the DL-based-
methods is evaluated in this section. The hardware used
for the runtime tests is a computing node with the Intel
Xeon Gold 6230 CPUs. The runtime is evaluated on
proteins with sequence lengths (numbers of residues)
of 200 and 500. For the same benchmark protein, we
adjust the number of sequences in the MSA to observe
how the running time changes with a varying number
of sequences. As shown in Fig. 3, for the proteins, the
running times of all methods increase with the increase
in the number of sequences.

Running time of the proposed method is close to that
of DeepCov, but 0.2–0.3 times than that of DNCON2.
The only input data for the proposed method and
DeepCov are MSA, while DNCON2 also relies on the
results from other contact prediction methods, mid-
files from MetaPSICOV, SS/SA from PSIPRED and
SCRATCH, and PSSM from PSI-BLAST, etc. It is clear
that the running time is proportional to the complexity of
the input data types. DNCON2 requires several different
types of data as input; therefore, it takes much more time
than DeepCov and the proposed method relies only on
MSA as input.

Fig. 3 Runtime comparison among the proposed method,
DeepCov, and DNCON2.

3.4 Overall prediction precision on Testset1

To validate the effectiveness of the proposed method, the
prediction precisions based on the top-L=n (n D 1, 2, 5)
criteria at different sequence separations of our method
are evaluated against those of other seven peer methods.

As illustrated in Fig. 4, it is obvious that the prediction
precisions of our predictor are significantly better
than those of NNcon, SVMSEQ, PSICOV, CCMpred,
and MetaPSIOV for short-, medium-, long-, and all-
range contacts (the definitions are based on different
sequence separations as shown in Section 2.2). For
example, the proposed method outperforms NNcon,
SVMSEQ, PSICOV, CCMpred, and MetaPSICOV by
50.3%, 43.4%, 31.3%, 19.0%, and 30.5% for top-L
all-range predicted contacts, respectively. Since there
are only limited numbers of short-range and medium-
range native contacts in proteins, and the contacts
in these two ranges are relatively easy to predict,
the proposed method does not show any obvious
precision improvements (2% for top-L short-range and
3% for top-L medium-range) on these two ranges
compared with another pure-MSA-dependent method
DeepCov. For long-range contacts that are more
important to 3D structure reconstruction and more
difficult to predict than short-range and medium-range

Fig. 4 Prediction precisions of the proposed method in
comparison with those of other seven methods on Testset1.
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contacts, the proposed method outperforms DeepCOV
by 7% and 6% in precisions for top-L long-range and
all-range predictions, respectively. The proposed method
shows close prediction precisions with DNCON2, which
combines different categories of information as input,
while our model uses features from MSA only (the
results in Section 3.3 indicate that DNCON2 is 3–5 times
slower than the proposed method, and the running time
gap increases with an increasing number of sequences
in MSA).

3.5 Prediction performance of physical-chemical
interaction

The tertiary structure of a protein is the spatial
arrangement of all the secondary structures and
stabilized by the bonding forces between “side chains”
through hydrogen bonding, Van der Waals forces,
disulfide bonds, salt bridges, and non-polar hydrophobic
interactions. These interactions are prone to fracture
due to external forces (e.g., heat), resulting in protein
deactivation. Previous studies[45, 46] have suggested
that evolutionary couplings can detect side-chain
interactions.

In this section, we analyze the prediction coverage of
physical-chemical interactions related to disulfide bond,
salt bridge, and hydrophobic interactions. The coverage
of the physical-chemical interactions is defined as the
number of true positive contacts related to disulfide
bond/salt bridge/hydrophobic interactions in top-L=n
.n D 0:2; 0:5; 1; 2; 5/ contact predictions divided by the
total number of disulfide bond/salt bridge/hydrophobic
interactions in a protein. The coverages of the physical-
chemical interactions by different methods are shown
in Table 2, and the precisions of residue-residue contact
prediction are tabulated in Table 3). The proposed
method shows prediction coverages of 58.33%, 58.33%,
29.76%, 16.66%, and 7.14% for top-5L, top-2L,
top-L, top-L=2, and top-L=5 contacts with disulfide
bonds, respectively, which are 4.76%, 11.91%, 3.57%,
2.38%, and 7.14% higher than those of DeepCov,
respectively. The proposed method achieves prediction
coverages of 65.76%, 45.79%, 32.56%, 19.33%, and
11.63% for top-5L, top-2L, top-L, top-L=2, and top-
L/5 contacts with salt bridges, respectively, which are
12.70%, 6.11%, 3.27%, 0%, and 3.04% higher than those
of DeepCov, respectively. The prediction coverages for
top-5L, top-2L, top-L, top-L=2, and top-L=5 contacts
with hydrophobic interactions by the proposed method
are 81.49%, 69.59%, 56.58%, 42.65%, and 25.99%,

Table 2 Coverage of the physical-chemical interactions in
top-L/n ( n= 0.2, 0.5, 1, 2, 5) predicted contacts by different
methods.

(%)
Type Method Top-5L Top-2L Top-L Top-L=2 Top-L=5

Disulfide
bond

NNcon 85.71 85.71 46.42 40.47 14.28
PSICOV 52.38 52.38 38.09 23.80 16.66
CCMpred 63.09 45.23 48.71 27.38 7.14
DeepCov 53.57 46.42 26.19 14.28 0
Proposed 58.33 58.33 29.76 16.66 7.14

Salt bridge

NNcon 14.74 8.97 6.69 4.41 2.50
PSICOV 49.75 40.20 33.51 26.09 15.44
CCMpred 61.63 49.93 41.26 34.31 20.70
DeepCov 53.06 39.68 29.29 19.33 8.59
Proposed 65.76 45.79 32.56 19.33 11.63

Hydrophobic
interaction

NNcon 38.43 23.80 17.47 11.62 6.21
PSICOV 50.68 38.16 27.97 20.23 11.00
CCMpred 61.59 49.18 37.90 23.90 11.39
DeepCov 74.79 61.68 48.80 36.72 22.36
Proposed 81.49 69.59 56.58 42.65 25.99

Table 3 Prediction precisions for top-L/n (n = 0.2, 0.5, 1, 2,
5) all-range predicted contacts by different methods.

(%)
Method Top-5L Top-2L Top-L Top-L/2 Top-L/5
NNcon 11.12 17.14 23.75 30.89 40.59

PSICOV 15.42 26.77 38.57 51.33 65.38
CCMpred 19.97 35.54 49.99 62.84 73.14
DeepCov 27.29 50.60 68.82 82.15 91.40
Proposed 31.33 57.27 75.83 87.83 93.92

respectively, which are 6.70%, 7.91%, 7.78%, 5.93%,
and 3.63% higher than those DeepCov.

3.6 Prediction performance on Testset2

˛-helical transmembrane (˛TM) proteins that are
responsible for interactions between cells and their
environment represent an important protein category.
Due to the insufficient number of resolved 3D structures
of ˛TM proteins, predicting the residue contacts among
the transmembrane segments of ˛TM proteins paves the
way for protein folding, which can be further applied to
the protein function discovery.

In this section, we test the performance of the
proposed model on 61 ˛TM proteins in Testset2.
Figure 5 compares the prediction results of the proposed
method to the outcomes of four peer approaches based
on the 61 ˛TM protein in Testset2. The proposed
method obtains an average precisions of 33.9%, 43.5%,
and 52.5% for top-L, top-L=2, and top-L=5 all-range
predicted contacts, respectively. Among the five methods
used for evaluation in Fig. 5, DeepCOV shows the



Huiling Zhang et al.: Protein Residue Contact Prediction Based on Deep Learning and Massive Statistical Features : : : 851

Fig. 5 Prediction precisions of the proposed predictor in
comparison with other four peer methods on Testset2.

second-highest precisions that are still 5.2%, 4.9%, and
4.0% lower than those of the proposed method for top-L,
top-L=2, and top-L=5 all all-range predicted contacts,
respectively.

Although the proposed method shows higher
prediction precisions than other peer methods,
significant decreases are observed by comparing the
results between Figs. 4 and 5, indicating the results
based on Testset2 are less accurate than those of based
on Testset1. The main reasons are summarized as
below: (1) the evaluated methods are not specifically
developed for contact prediction of ˛TM proteins; (2)
there are more targets with Neff < 5 � L in Testset2
than those in Testset1; and (3) there are 11, 21, and
41 ˛TM protein targets with native contacts less than
L=5, L=2, and L, respectively. Changing the first two

impactors is temporarily beyond the scope of this study,
hence we select a subset of 20 targets from Testset1 with
the number of native contacts greater than L. Table 4
shows the precisons for short-, medium-, and long-range
predictions of the five methods, demonstrating that the
results of all five methods outperform the results given in
Fig. 5 by a substantial margin. Specifically, the proposed
method achieves precisions of 17.97%, 29.43%, and
46.88% for top-L, top-L=2, and top-L=5 short-range
predictions, 17.13%, 28.95%, and 46.52% for top-L,
top-L=2, and top-L=5 medium-range predictions,
respectively, and 37.29%, 49.16%, and 65.09% for
top-L, top-L=2, and top-L=5 long-range predictions,
respectively. The results demonstrate that the proposed
DL model could better utilize the massive MSA-based
features and show its effectiveness in residue contact
prediction for ˛TM proteins.

4 Conclusion

Deep learning has demonstrated great power in
applications across various fields, such as protein
contact prediction. In this study, we developed a feature
extraction method based only on the MSA, after which
we trained a deep learning model for residue contact
prediction based on the massive features (i.e., six types
of statistical information) extracted from the MSA. The
model was validated on two independent test sets in
terms of a wide range of perspectives. It is demonstrated
that the proposed method is robust in terms of the
protein structural types, and shows high reliability on
model confidence score. The results also indicate the
effectiveness of the massive statistical features extracted
from the MSA for residue contact prediction. Compared
with the models that use only the covariance feature
from MSA, the proposed method that adopts six types
of MSA-based features shows no significant increase
in computational time but satisfactory improvement in
prediction precision. With enough effective sequences
in the MSA, the proposed method using only MSA as

Table 4 Prediction precisions of the proposed predictor in comparison with other four methods for ˛̨̨TM proteins with the
number of native contacts larger than 1.0��� L.

(%)

Method
Short-rang Medium-rang Long-rang

Top-L Top-L=2 Top-L=5 Top-L Top-L=2 Top-L=5 Top-L Top-L=2 Top-L=5
NNcon 11.72 16.65 22.93 8.78 12.26 17.39 8.49 11.54 14.43

PSICOV 9.05 13.20 22.31 8.81 13.05 22.81 19.83 28.85 42.87
CCMpred 10.96 16.87 27.35 11.11 18.06 30.99 28.73 41.32 52.81
DeepCov 16.58 26.39 41.47 15.80 25.33 41.11 30.54 43.87 59.46
Proposed 17.97 29.43 46.88 17.13 28.95 46.52 37.29 49.16 65.09
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input could achieve comparable prediction precision
with the DL methods relying on multi-source inputs,
while guarantee higher computational efficiency.
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