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Efficient Algorithms for Maximizing Group Influence
in Social Networks

Peihuang Huang, Longkun Guo�, and Yuting Zhong

Abstract: In social network applications, individual opinion is often influenced by groups, and most decisions usually

reflect the majority’s opinions. This imposes the group influence maximization (GIM) problem that selects k initial

nodes, where each node belongs to multiple groups for a given social network and each group has a weight,

to maximize the weight of the eventually activated groups. The GIM problem is apparently NP-hard, given the

NP-hardness of the influence maximization (IM) problem that does not consider groups. Focusing on activating

groups rather than individuals, this paper proposes the complementary maximum coverage (CMC) algorithm, which

greedily and iteratively removes the node with the approximate least group influence until at most k nodes remain.

Although the evaluation of the current group influence against each node is only approximate, it nevertheless ensures

the success of activating an approximate maximum number of groups. Moreover, we also propose the improved

reverse influence sampling (IRIS) algorithm through fine-tuning of the renowned reverse influence sampling algorithm

for GIM. Finally, we carry out experiments to evaluate CMC and IRIS, demonstrating that they both outperform the

baseline algorithms respective of their average number of activated groups under the independent cascade (IC)

model.

Key words: complementary maximum coverage (CMC); improved reverse influence sampling (IRIS); group influence

maximization (GIM); independent cascade (IC) model

1 Introduction

With the significant development in Internet
technology, big data, and communication technology,
including mobile and pervasive computing paradigm,
communication between users has become more
convenient due to the continuous advancement of
Internet technology[1, 2]. Consequently, social activities
are growing on the internet, with an increasing number
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of people expressing their opinions and sharing
their daily lives on social softwares, leading to the
emergence of mediated social networks. Social network
platforms are essential for facilitating interaction among
individuals, in particular for disseminating information
and ideas. Among the most commonly used social
network softwares, 2.2 billion users are on Facebook,
1 billion users are on WeChat, and 340 million users
are on Twitter[3]. In contrast to real life, social network
users form groups based on their common interests,
hobbies, or other kinds of relationships. Individuals
can join multiple groups at the same time; for example,
a WeChat user can simultaneously be a member of a
swimming group, family group, class group, or work
group. A social network group can constitute a small
number of family members or the entire population of a
state/ country.
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Besides social networks, the influence of a
group’s majority has been exploited for disseminating
information, advertising, marketing, and controlling
public opinions. In this context, an individual’s decision
is influenced by the group’s opinions. For instance, in
the USA presidential election, the presidential candidate
wins if he/she gets a majority of all the electoral votes
in a state. Similarly, the chance of a company buying
pens of a certain brand for all of its employees increases
if the brand is trusted by most of its employees. To
maximize the marketing result with limited cost in the
above-mentioned examples, k number of users must be
selected as advertisers for activating maximum users in
a group. These applications present a problem related
to maximizing real-world group influence, leading to
maximizing group influence in social networks.

1.1 Related work

The problem of group influence maximization (GIM)
is essentially a generalization of the influence
maximization (IM) problem. For addressing the GIM
problem, a few approximation algorithms are reported
in the literature. Because its objective function is
neither submodular nor supermodular, the greedy
algorithm cannot produce a non-trivial approximation
ratio[4]. In contrast, the IM problem has a submodular
objective function and admits efficient constant-factor
approximation algorithms. Zhu et al.[5] first proposed
an algorithm with a sandwich approximation framework
employing the D-SSA method for selecting seed users.
Subsequently, Zhu et al.[4] introduced another sandwich
approximation framework using the ED-SSA method as
a building block, approximating the objective function
for its upper and lower bounds, and experimentally
demonstrated its advantages in comparison to the
group coverage maximization algorithm. Although these
breakthroughs have been made for GIM, the designing of
efficient algorithms has attracted considerable research
interests.

For the IM problem alone without considering groups,
many researchers have proposed both heuristic and
approximate algorithms aiming to activate k nodes
initially for maximizing the number of resulting activated
nodes. Domingos and Richardson[6] were the first to
investigate the IM problem. Later, Kempe et al.[7]

proved that the IM problem is NP-hard in both
independent cascade (IC) and linear threshold (LT)
models, although the objective function is shown
submodular. They first formulated the IM problem as

a discrete optimization problem, and then proposed
a greedy algorithm using Monte Carlo method for
simulating the influence propagation process. Notably,

they achieved a performance guarantee of
�
1 �

1

e
� "

�
for any fixed " > 0, thereby attaining the best possible
approximation ratio in theory. However, the greedy
algorithm has a high runtime. Later, researchers
developed improved heuristic algorithms and many
approximation algorithms having short runtime[8–13].
Although heuristic algorithms can speedily perform
the calculations, they are not theoretically accurate.
Among them, the improved greedy algorithms have
reduced the runtime compared with the renowned
greedy algorithm based on the objective function’s
submodularity; however, the quality of their solution
is inferior to the approximate algorithms and has no
theoretical guarantees. Through intensive studies on
the IM problem, many efficient algorithms have been
developed. For example, Borgs et al.[14] developed
the RIS algorithm to reduce the calculation time of
the simulation propagation process. Tang et al.[15, 16]

proposed the TIM, TIMC, and IMM algorithms by
improving the RIS algorithm as a prototype to ensure

an approximation ratio of
�
1 �

1

e
� "

�
under the IC

model. Notably, Nguyen et al.[17] were the first ones
to meet the strict theoretical threshold using the SSA
and D-SSA algorithms. Both these algorithms use a
minimum sample set for the IM problem. For the IM
problem in social networks with special structures,
faster approximation algorithms exist[18]. In addition,
the GIM and IM problems are essentially coverage
problems, which intensively investigated[19, 20]. However,
the existing algorithms for coverage problems can not
apply to the IM or GIM problems.

The community discovery algorithms decompose a
social network into several communities, where the
nodes within the community are connected closely,
whereas the nodes distributed in different communities
are connected sparsely. Therefore, the influence spreads
rapidly to nodes within a community. Moreover, the
optimal allocation in a social network (OASNET)
algorithm and community-based greedy algorithm
(CGA) are the most commonly used community
discovery algorithms. To solve the IM problem using
the optimal dynamic allocation of resources, Cao
et al.[21] proposed the OASNET algorithm. The CGA
algorithm[22] combines the existing greedy algorithm
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with a dynamic programming method, and allocates seed
nodes to each community in a near-optimal manner for
maximizing the influence of the group. For detecting a
hidden community structure in the network, Ji et al.[23]

presented a new algorithm by selecting the k nodes
with the largest community coverage as the initial seed
nodes. Furthermore, much research has been devoted
to the study communities for activating maximum
nodes[24–30]. Nevertheless, because the dynamic model
aims to activate the largest number of groups rather than
the largest number of activated individuals, the existing
algorithms for the IM problem cannot be easily extended
to the GIM problem.

1.2 Our contribution

The main contribution of this paper can be summarized
as follows:
� A heuristic algorithm called complementary

maximum coverage (CMC) is proposed for solving the
GIM problem, which emphasizes the maximization of
seed nodes’ influence over groups collectively rather
than over nodes.
� An improved reverse influence sampling (IRIS)

algorithm is developed for solving the GIM problem
by amending the details of the renown reverse influence
sampling (RIS) algorithm.
� The CMC algorithm is evaluated by comparing with

other previously existing baselines through experiments
under the IC model, demonstrating the superiority of the
CMC algorithm in comparison to previous algorithms
considering the number of activated groups.

1.3 Organization

The remainder of this paper is organized as follows.
Section 2 introduces the GIM problem formally and
describes a model for representing a social network.
Section 3 proposes the CMC algorithm with an
execution example and then introduces the IRIS
algorithm. Section 4 evaluates the proposed algorithms
via numerical simulations through comparison with
existing baselines. Section 5 concludes the paper.

2 Preliminaries and Problem Statement

In this section, we shall first introduce the modeling of
social networks and then propose the GIM problem.

2.1 Network model

In the social network modeling, we assume G D

.V;E; P; U / for modeling the network.
V represents the set of nodes. Node vi 2 V indicates a

user in a social network. Assume that there are n users in
a social network, then V D fv1; v2; : : : ; vng represents
the set of users. Moreover, a node’s edges joining other
nodes indicate the node’s influence on other nodes or the
node being influenced by other nodes. Two nodes are
regarded as neighbors when there is an edge between
them.
E represents the set of edges. An edge indicates

the possible influence between nodes. Assume that
there are m edges in a social network, then we have
E D fe1; e2; : : : ; emg. In the model, an edge can
be either directed or undirected. More precisely, for
directed edges .u; v/, node u directly influences node
v, whereas the reverse is not true because u and v are
the source and the destination nodes, respectively. Let
the outgoing edges of u and the entrance edges of u be
the edges leaving and entering u, respectively. The out-
degree of u indicates the number of outgoing edges of u
and the in-degree of u represents the number of edges
entering u.
P stores the weights of the edges, where each weight

represents the probability of the corresponding edge’s
activation. We assume P D fp1; p2; : : : ; pmg, and
8pi 2 Œ0; 1� ; 1 6 i 6 m. A higher probability indicates
that the source node of the edge is more likely to
influence the target node successfully.
U is the set of groups. We assume that there are l

groups in a social network, and denote the family of
groups as U D fu1; u2; : : : ; ulg, where uj is a subset
of V . Each node of the social network represents an
individual that possibly belongs to one or several distinct
groups. Moreover, ˇ is assumed to be the threshold of
activation, i.e. each group is successfully activated if at
least ˇ of its members are activated. The notations and
definitions used in the paper are tabulated in Table 1.

2.2 Group influence maximization

As above-mentioned, the traditional IM problem
(without considering groups) aims to find k initially
active nodes, such that the number of eventually
activated nodes would be maximized against a specified
information diffusion model, say the IC model. Figure 1a
illustrates a traditional social network, where each
directed edge indicates the influence flows leaving
the source node and entering the target node with a
probability determined by the edge weight. In contrast,
the GIM problem aims to activate a set of groups with
maximized expected group weight, also through the k
initially selected nodes. In the GIM problem, a node
could appear in one or several groups, whereas a group
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Table 1 Notations and definitions.
Notation Definition

G D .V;E; P; U /

G is the graph modeling the social network,
V is the set of nodes representing the set of users,
E is the set of edges representing the influence flow,

P is the set of probabilities representing probabilities of edges influence,
and U is the set of groups.

p The probability with which a node activates its neighbor, 0 6 p6 1.
n D jV j The number of nodes
m D jEj The number of edges
l DjU j The number of groups
k The bound of the number of initial seeding nodes
ˇ The uniform activation threshold of groups, 0% <ˇ6 100%
�.S/ The expected number of groups activated by seed nodes

(a) A social network without groups (b) A social network with groups indicated by circles

Fig. 1 Illustration of social networks with and without groups.

can only be activated only if at least ˇ of its members are
activated. Note that a large ˇ creates more difficulties in
activating the group.

Clearly, activating groups is different to activating
nodes. As depicted in Fig. 1b, there are three groups, say
U D fu1; u2; u3g, in the social network, among which
u1 is in the yellow ellipsoid, u2 is in the pink ellipsoid,
and u3 is in the orange ellipsoid. Thus, the groups are
u1 D f13; 15g, u2 D f2; 4; 5; 6; 15g ; and u3 D f9; 11g.
It is assumed that the group activation thresholds are
uniformly 50%, i.e., if at least half of a group’s members
are activated, it is active. Further, a seed node f2g is
assumed to activate the set of nodes f2; 4; 15g, resulting
in three activated nodes. Then, according to the rule
of activation of groups, u1 and u2 are both activated,
and hence � .S/ D 2. In contrast, if f2; 4; 5; 6g are
successfully influenced by the seed node f2g, then four
nodes are activated. In this context, only u2 is activated;
hence � .S/ D 1. Thus, activating more nodes does not
necessarily result in more activated groups, although

more activated nodes do likely activate more groups in
most cases.

In essence, the GIM problem can be considered
as a generalization of the IM problem. By setting
ˇ D 100% and assuming that each group in the GIM
problem contains only a single node, the GIM problem
immediately reduces to the IM problem. Because
of the NP-hardness of the IM problem, the GIM
problem is clearly NP-hard. The formal definition of
the GIM problem with respect to the given graph G D
.V;E; P; U / can be stated as follows:

max � .S/

s.t. jS j 6 k;

where S is the set of candidate seed nodes, and k and
� .S/ are the number of initially selected seeds and the
expected weight of the consequently activated groups,
respectively. Calculating � .S/ for the GIM problem is
difficult because it is #P-hard to compute � .S/ under
the IC model even for the IM problem.
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3 Efficient Algorithms for GIM

In this section, the CMC algorithm for the GIM problem
is proposed, and then the IRIS algorithm is presented.

3.1 Complementary maximum coverage algorithm

As above-mentioned, a greedy algorithm for maximum
coverage that repeatedly seeks a seeding nodes (k nodes
in total) to cover a maximum number of groups can
be easily obtained. However, such an algorithm does
not appropriately evaluate the contribution of nodes
to the eventually activated groups. Consider that a
node covers a maximum number of groups, where
each group requires ˇ active members to be activated.
If a group is not eventually activated at the end, the
node’s contribution to the group should not be counted.
Moreover, if a group already has more active members
than the threshold ˇ, the contribution of a node to the
group should be zero.

The CMC algorithm can be considered as the
complement to the above greedy algorithm. Instead
of greedily adding a node with the largest contribution
until all k nodes are estimated, a node with the least
influence on groups is removed repeatedly. After the
iterative removal of n � k nodes, the k remaining nodes
are obtained as seed users. The influence of a node on
a group is not only reflected in whether its deletion
affects the group’s activation, but also in whether it
can activate other members in the group. The function
fc .vi / denotes the influence of vi over groups that it
covers. For a node vi belonging to none of the groups,
its contribution is determined by fc D 0; for a node
that covers at least one group, fc equals the sum of its
contribution to the groups. If a node can provide better
group coverage, then the value of fc of the node may
(but not necessarily) be large. The formulation of fc .vi /
for capturing the approximate influence of vi is shown
as follows:

fc.vi / D
X
j

avi .uj /

juj j �Huj C 1
(1)

where node vi is in group uj , juj j is the number of all
the members of uj , Huj D ˇ � juj j is the threshold
for activating uj . Moreover, juj j � Huj implies that
uj allows juj j �Huj nodes to be deleted, where larger
juj j � Huj indicates that vi is less important for uj .
Since the denominator is at least one, juj j �Huj C 1
is used to define the denominator. Lastly, avi is used to
denote the number of nodes successfully activated by vi
within the remaining nodes of uj (including vi itself).

Note that the nodes activated by vi can be obtained using
the breadth-first search (BFS) method; thus, avi can be
simply calculated as the number of such activated nodes
in uj , and consequently the result of avi is obtained.
Thus, avi .uj / measures the contribution of vi to the
group uj , i.e., a larger avi possibly results in more
activated nodes of group uj , and consequently indicates
an increased possibility of activating uj .

Lemma 1 Algorithm 1 terminates in runtime
O.mnl C n2l/.

Proof For the initialization, Steps 2 and 3 of the
CMC algorithm compute fc.vi / for each node vi and
construct the node-group list, where each computation
traverses every node and then adds up the number of
newly activated nodes for all the l groups using the
BFS method. Employing an appropriate data structure,
the BFS method traverses n nodes and m edges within
O.nCm/ time, whereas O.l/ groups need O.nl/ time
to calculate all the information. Hence, the initialization
takes O.n2l C mnl/ time. Moreover, the while-loop
will iterate for O.n � k/ times in the algorithm. In each
iteration, the algorithm updates both fc.vi / and the list
regarding the removal of each node vi , each of which
takes O.nl/ time. Therefore, the CMC algorithm will
terminate within a total runtime of O.mnl C n2l/. �

3.2 An example of executing Algorithm 1

Figure 2 shows a social network containing two groups
consisting of seven nodes and five directed edges with
the probability of activation as 1. The instance can
be modeled as a two-layer graph, where the nodes

Algorithm 1 Complementary maximum coverage algorithm
Input:���������Require: G D .V;E; P; U /: an instance of GIM, k: the

budget of seeds, and ˇ: the activation threshold of groups.
Output:�����������Ensure: A set of seeds S .

1: Set S WD˚ ;
2: Compute fc.vi / for each node .vi / by Eq. (1);
3: Construct a node-group list which stores the relationship

between nodes and groups, as well as the information
including the current value of fc.vi / and all uj for each
vi ;

4: Sort the nodes according to the calculated fc.vi /;
5: While jV j > k do
6: Remove the node .vi / with minimum fc.vi / from V ;
7: Update the node-group list including fc.v/ for each node

v upon the removal of .vi /;
8: Update the order of the nodes according to updated fc.v/;
9: Endwhile

10: Return S WD V .
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Fig. 2 A simple social network with two layers.

(users) are in the first and second upper layers, whereas
the groups are in the lower layer. The upper layer
is layer1 D fv1; v2g, where v1 influences fv4; v5g
and v2 influences fv3; v6; v7g; the lower layer is
layer2 D fu1; u2g, where u1 D fv1; v3; v6g and u2 D
fv1; v2; v4; v5; v6g. Then, ju1j D 3 and ju2j D 5 can be
easily computed.

Assuming that ˇ D 50%, the contribution of all nodes
is first computed using the CMC algorithm, as shown in
Eq. (2) below:

fc.v1/D

�
0C 1

.1�50%/�3C1
C

2C 1

.1�50%/�5C1

�
�

1:08;

fc.v2/ D
1C 1

.1 � 50%/ � 5C 1
D 0:5;

fc.v3/ D
0C 1

.1 � 50%/ � 3C 1
� 0:33;

fc.v4/ D
0C 1

.1 � 50%/ � 5C 1
D 0:25;

fc.v5/ D
0C 1

.1 � 50%/ � 5C 1
D 0:25;

fc.v6/D

�
0C 1

.1�50%/�3C1
C

0C 1

.1�50%/�5C1

�
�

0:58;

fc.v7/ D 0 (2)

Then, the computed contribution as the key attribution
to sort the nodes are used, and the ordering as
fv1; v6; v2; v3; v4; v5; v7g is obtained. If up to two nodes,
say k D 2, can be used as seeds, the CMC algorithm
will remove v7 in the first iteration as it has the least
contribution.

The CMC algorithm selects seed nodes based on the
computed contribution of each node. The contribution

depends on the covered groups and the neighbors
of the nodes, e.g., executing Algorithm 1 against a
social network, the removed node vi has the least
approximately computed fc.vi /, which covers the
fewest groups and activates the fewest target nodes in its
neighborhood.

3.3 Improved reverse influence sampling

Observing that the existing RIS algorithm cannot
be directly applied to solve GIM, we propose IRIS
algorithm with an extension to GIM. The devised IRIS
algorithm consists of two phases: the first is to generate
reverse reachable (RR) sets, and the second is, indeed,
to select seed nodes. In the first phase, we randomly
select a node v from the graph and traverse the edges
entering v. Recall that each edge has a probability of p,
i.e., with probability of p, the edge is inverted, and with
a probability of 1 � p it remains unchanged. Then, we
actually generate a sparse reverse graph, which keeps
the high-probability edges with a potentially wide range
of propagation. Intuitively, the set of nodes, from which
node v is reachable with high probability, is node v’s
RR set. An example is as illustrated in Fig. 3, where
Fig. 3a is the original social network graph containing
five nodes incident with ten directed edges, and Fig. 3b
is the resultant sparse graph having only seven edges of
high probability. By the algorithm, the RR set for node
v2 will be fv2; v1; v4; v5g, in which each node will have
a relatively high probability of activating v2.

Recall that the selection phase of the traditional RIS
algorithm is to select the seed nodes covering maximum
RR sets, since more RR sets can result in more eventually
activated nodes. However, the aim of GIM is to activate
a maximum weight of groups, rather than the maximum
weight of nodes; but the weight of groups is not linearly
dependent on the weight of nodes. Thus, in the second
phase of our devised IRIS, we select k nodes, each of
which covers a maximum number of groups. The formal
layout of the algorithm is as illustrated in Algorithm 2.

Lemma 2 Algorithm 2 terminates within a runtime
O .� .nCm/C knl/, where � is the number of
random sparse graphs.

Proof For the first phase, our IRIS algorithm
constructs � random sparse graphs of G for each of
which we randomly pick a node for generating an RR
set. Therefore, the first phase consumes a runtime of
O .� .nCm//.

For the second phase, we iterate for k times where
each iteration is for selecting a node with the maximized
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(a) The original graph (b) A sparse graph regarding

Fig. 3 An example of generating a reverse reachable set.

Algorithm 2 Improved reverse influence sampling
Input:���������Require: Input of GIM including the graph G D .V;E; P; U /,

the budget of seed nodes k, and Monte Carlo time bound t .
Output:�����������Ensure: The set S of k seeds.

1: Initialize the seed set S WD˚ ;
2: Call Algorithm 3 to generate t number of RR sets and add

them to R;
3: for i D 1 to k do
4: Find in R the node with maximum group coverage and

add it into S ;
5: Delete RR sets that contain S in R;
6: endfor
7: return S .

Algorithm 3 get RRS algorithm
Input:���������Require: The input of of GIM including G D .V;E; P; U /.
Output:�����������Ensure: A RR set.

1: Set RR set; new nodes WD ˚ ;
2: Construct a random graph g with respect to G;
3: Uniformly and randomly select node v from g;
4: Add the node v into the set new nodes;
5: While the set new nodes is not empty do
6: Simulate influence spread, starting from new nodes;
7: Add source nodes of new nodes into RR set;
8: Update the set of new nodes;
9: Endwhile

10: Return the set of RR set.

number of covered groups in the RR sets. Hence, the
second step has a runtime of O .knl/. Summing up the
runtime of the two phases, we obtain the total runtime
O.� .nCm/C knl/ for IRIS. �

4 Numerical Experiments

In this section, we evaluate our complementary
maximum coverage (CMC) and improved reverse
influence sampling (IRIS) algorithms under the
independent cascade (IC) model, via comparison
with other previously existing baselines including the
maximum coverage algorithm (MC) and the maximum
out-degree algorithm (MO). The algorithms were
implemented with Python 3.7, and the experiments were
run on a platform with Intel I5 CPU and 8G RAM
memory.

4.1 Datasets

In the experiments, two datasets were used: Dataset 1
for undirected graphs and Dataset 2 for directed graphs.
Dataset 1 is a collection of public information of social
network users in Asia, such as Malaysia, the Philippines,
Singapore, and other countries in March 2020[31]. The
nodes represent users of the music streaming service
LastFM, and the link between the two nodes indicates the
friendship therein. In Dataset 2, there are nine snapshots
of the Gnutella peer-to-peer file sharing network from
SNAP in August 2002, in which the nodes and the edges
represent the hosts in the Gnutella network and the
connections between the hosts, respectively. In order
to facilitate the experiments, we randomly generated
groups as well as the probability of each edge. Observing
that the IRIS algorithm is designated for directed graphs,
we use Dataset 2 for all the four algorithms and Dataset 1



Peihuang Huang et al.: Efficient Algorithms for Maximizing Group Influence in Social Networks 839

for other algorithms except IRIS. Table 2 displays the
statistics information of the used datasets.

For Dataset 1 and Dataset 2, we observed that k and
ˇ were the main factors affecting the objective function.
Therefore, we set the value of k from 5 to 80 with each
increasing step being 5. Moreover, we set the values of
ˇ as 10% and 20% for Dataset 1, and set the values of ˇ
as 5%, 8%, 10%, 12%, 15%, and 18% for Dataset 2.

4.2 Experimental results

As demonstrated in Fig. 4, CMC performed slightly
better than both MC and MO regarding Dataset 1, which
is the dataset for undirected graphs. Observing that
the goal of MO is to find k nodes with the largest
out-degree and is without focusing on group activation,
it is reasonable that MO performed the worst. When
ˇ D 10%, there was only a slight difference between the
performances of the CMC and MC algorithms, owing
to the activation threshold being small at this point;
hence both algorithms found appropriate seeding nodes
to activate most groups. In summary, the CMC algorithm
achieved the best performance. There is a somewhat
larger difference between the experimental results of the
two algorithms when ˇ D 20%, as it becomes more
difficult to activate groups against a larger activation
threshold. The enlarging gap reveals the shortcomings
of the MC algorithm.

From Figs. 5a and 5b, it is demonstrated that both
CMC and IRIS perform better than MC and MO, on
average, for the directed graph Dataset 2. In particular,
CMC has the best performance, while the experimental
results of IRIS were only slightly better than those of
MC. In comparison, the ranking of the four algorithms,
according to the experimental results as shown in
Figs. 5c and 5d, remains similar to that of Figs. 5a and
5b. Among them, CMC also significantly outperforms

the other three algorithms. The gap in the experimental
results between of IRIS and MC grows, while IRIS
approaches those of CMC. The phenomenon suits the
theoretical analysis, as IRIS focuses on finding nodes
emphasizing both the weight of covered groups and the
spreading influence.

Figures 5e and 5f shows that our CMC algorithm
outperforms all the other algorithms, except for IRIS in
some special scenarios. The occurrence of abnormal
situations is mainly due to the different seed nodes
obtained by IRIS in iterations. The RR sets calculated
by IRIS focus on the influence of inter-group nodes,
while CMC emphasizes the influence between intra-
group nodes.

To summarize, the average performance of CMC in
terms of the number of activation groups is superior to
that of other algorithms regarding both Dataset 1 and
Dataset 2. In all the experimental instances (particularly
for Dataset 2), the performance of both CMC and IRIS
is superior to that of the other algorithms. We note that
CMC is outperformed by IRIS in some cases when
ˇ > 15%, revealing that the advantage of CMC is not
significant for relatively large ˇ when compared to IRIS.
As for runtime, as demonstrated in the experiments,
the three algorithms CMC, MC, and MO, run faster
than IRIS. Although CMC is the third fastest, it is
only slightly slower than MO and MC, and, notably,
it is much faster than IRIS in all the instances in
the experiments. Combining the solution quality and
runtime performance, we conclude that CMC is the best
one that outperforms all the other three algorithms.

5 Conclusion

In the paper, we first proposed CMC, a heuristic
algorithm for GIM, with the key idea of removing the
least influence node over the groups until there are only

Table 2 Dataset information.
Dataset Type Number of nodes Number of edges Number of groups Average group size

1 Undirected 7624 27806 198 34.01
2 Directed 6301 20777 234 33.84

(a) ˇD 10% (b) ˇD 20%

Fig. 4 Comparison of CMC, MC, and MO under IC model for Dataset 1.
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(a) ˇ D 5% (b) ˇ D 8%

(c) ˇ D 10% (d) ˇ D 12%

(e) ˇ D 15% (f) ˇ D 18%

Fig. 5 Comparison of CMC, IRIS, MC, and MO under IC model for Dataset 2.

k nodes left. An algorithm called IRIS was presented
in collaboration with the subroutine of analyzing the
influence of each node on the groups, and ensuring
activation of an approximate maximum number of
groups. In essence, the IRIS algorithm was derived
via improving the previously existing RIS algorithm.
Finally, we evaluated the performance of CMC and IRIS,
comparing them with previously existing baselines by
performing experiments that demonstrated the number
of their average activated groups. We are currently
striving to design an approximation algorithm with a

theoretical performance guarantee.
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