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Approximation Algorithm for the Balanced
2-Correlation Clustering Problem

Sai Ji, Dachuan Xu, Donglei Du, Ling Gai�, and Zhongrui Zhao

Abstract: The Correlation Clustering Problem (CorCP) is a significant clustering problem based on the similarity of

data. It has significant applications in different fields, such as machine learning, biology, and data mining, and many

different problems in other areas. In this paper, the Balanced 2-CorCP (B2-CorCP) is introduced and examined,

and a new interesting variant of the CorCP is described. The goal of this clustering problem is to partition the

vertex set into two clusters with equal size, such that the number of disagreements is minimized. We first present

a polynomial time algorithm for the B2-CorCP on M -positive edge dominant graphs .M > 3/. Then, we provide a

series of numerical experiments, and the results show the effectiveness of our algorithm.
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1 Introduction

Clustering problems arise in many applications, such as
machine learning, computer vision, data mining and data
compression, and have been widely studied[1–7].

In this study, we focus on the classical clustering
problem, i.e., the Correlation Clustering Problem
(CorCP), which was introduced by Bansal et al.[8] and
has applications in data mining and machine learning.
The input to the CorCP is a complete graph G D .V;E/,
where V and E are the sets of vertices and edges in
the graph, respectively. Moreover, each edge marked
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as positive or negative. The goal is to partition set V
into several clusters, such that edges within clusters are
mostly positive and edges between clusters are mostly
negative. However, there is not necessarily a perfect
partition for an instance. Let each positive edge whose
two endpoints belong to the same cluster and each
negative edge whose two endpoints belong to different
clusters be an agreement. Similarly, let each positive
edge whose two endpoints belong to different clusters
and each negative edge whose two endpoints belong
to the same cluster be a disagreement. Based on the
purpose of the CorCP, it has two versions: minimizing
disagreements and maximizing agreements. In the
“minimizing disagreements” version, the goal is to
partition set V into disjoint clusters so as to minimize
the number of disagreements. In the “maximizing
agreements” version, the goal is to partition set V into
several disjoint clusters so as to maximize the number
of agreements. In this study, we only focus on the
“minimizing disagreements” version of the CorCP and
its variants. The CorCP mentioned below belongs to
the “minimizing disagreements” version and will not be
emphasized in this paper.

Bansal et al.[8] first proved that the CorCP is NP-hard
and APX-hard. People usually examine this problem
by designing approximation algorithms[9–14]. Bansal
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et al.[8] provided a 17 433-approximation algorithm
based on the combination technique. Charikar et al.[15]

proposed a very natural linear programming of the
CorCP and proved that the integer gap of the Linear
Programming (LP) is 2. Then, based on the aboved
LP and a region growth method, a 4-approximation
algorithm was proposed, which significantly improves
the approximation ratio of the algorithm proposed by
Bansal et al.[8] As of now, the citation rate of this paper
has reached 571, which is probably attributed to two
main reasons: first, the algorithm is simple and has great
innovation, and second, it has an important reference
value when solving other combinatorial optimization
problems. The best approximation algorithm is a 2:06-
approximation algorithm, which was proposed by
Chawla et al.[16] in 2015.

The CorCP has some limitations. To make the CorCP
more effective and deal with the actual problems, some
interesting variants of the CorCP have been widely
studied, such as min-max CorCP[17, 18], CorCP in data
streams[19], fair CorCP[20], capacitated CorCP[21], CorCP
with a fixed number of clusters[11], and CorCP with noisy
input[13, 22].

Balanced clustering problems arise in many
applications, such as wireless sensor networks, routing
and resource allocation. These problems have been
widely studied[23–26]. The fair CorCP and capacitated
CorCP have limitations on the proportion of vertices
of different types in each cluster and on the number
of vertices in each cluster, respectively. Accordingly,
we propose and study the Balanced CorCP (BCorCP),
which has a limitation on the ratio of the number of
vertices in each cluster to the number of all vertices.
The goal of the problem is to partition the vertices into
several clusters with equal size so as to minimize the
number of disagreements. In this paper, we examine a
special case, i.e., Balanced 2-CorCP (B2-CorCP), which
returns two clusters with equal size. In sum, this study
has two main contributions:

(1) We developed a .3; 24/-balanced approximation
algorithm for the B2-CorCP on M -positive edge
dominant graphs .M > 3/.

(2) We conducted numerical experiments and
presented their results to show the effectiveness of our
algorithm.

The remainder of this paper is structured as follows:
In Section 2, we present definitions and the formulation
of the B2-CorCP. In Sections 3 and 4, we discuss

the approximation algorithm and theoretical analysis,
respectively. In Section 5, we present the numerical
experiments. Finally, in Section 6, we provide the
conclusions of the study.

2 Definition and Formulation of B2-CorCP

In this section, we present the definitions and the
formulation of the B2-CorCP used in this study.

Definition 1 (BCorCP) Given a labeled complete
graph G D .V;E/, the goal is to partition the set V into
several clusters with equal size, such that the number of
disagreements is minimized.

Definition 2 (B2-CorCP) Given a labeled complete
graph G D .V;E/, the goal is to partition the set V into
two clusters with equal size, such that the number of
disagreements is minimized.

Definition 3 ((˛; ˇ)-balanced approximation
algorithm) ALG is an (˛; ˇ)-balanced approximation
algorithm if, for any instance I , it returns a solution
CI D fV I

1 ; V
I

2 ; : : : ; V
I

k
g that satisfies the following

properties:
(1) maxfjV I

1 j; : : : ; jV
I

k
jg 6 ˛minfjV I

1 j; : : : ; jV
I

k
jg.

(2) ALG.I / 6 ˇ � OPT .I /, where ALG.I / and
OPT .I / are the objective function value of the solution
returned by the algorithm ALG of Instance I and
the objective function value of the optimal solution of
Instance I , respectively.

Definition 4 (Positive edge dominant graph) Let
EC be the set of positive edges and E� be the set of
negative edges in graph G D .V;E/. Graph G is a
positive edge dominant graph if jECy j > jE

�
y j holds for

each vertex y 2 V , where ECy WD f.w; y/ 2 E
C W w 2

V g and E�v WD f.w; y/ 2 E
� W w 2 V g.

Definition 5 (M -positive edge dominant graph)
Graph G D .V;E/ is an M -positive edge dominant
graph if

inf
y2V

jECy j

jE�y j
>M:

For each edge .w; y/ 2 E, we introduce a 0�1
variable xwy to represent whether vertices w and y
belong to the same cluster. Variable xwy D 0 if vertices
w and y belong to the same cluster, and xwy D 1

otherwise. Based on the above 0�1 variables, we can
formulate the B2-CorCP as follows:

min
X

.w;y/2EC

xwy C

X
.w;y/2E�

.1 � xwy/;

s: t: xwy C xyz > xwz; 8w; y; z 2 V I
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y2V

.1 � xwy/ D jV j=2; 8y 2 V I

xyy D 0; 8y 2 V I

xwy 2 f0; 1g; 8w; y 2 V (1)

The objective function has two parts: the first part
is the number of disagreements derived from the
positive edges, and the second part is the number
of disagreements derived from the negative edges.
Constraints in the formulation have three types: The
first one ensures that we can obtain a feasible clustering
of the CorCP. The second one ensures that we can exactly
obtain two clusters of equal size. The third one is the
natural constraint. By relaxing the 0�1 variables, we
can determine the LP relaxation of Formula (1),

min
X

.w;y/2EC

xwy C

X
.w;y/2E�

.1 � xwy/;

s: t: xwy C xyz > xwz; 8w; y; z 2 V IX
y2V

.1 � xwy/ D jV j=2; 8y 2 V I

xyy D 0; 8y 2 V;

0 6 xwy 6 1; 8w; y 2 V (2)

3 Algorithm

In this section, we present our algorithm for the B2-
CorCP on M -positive edge dominant graphs .M > 3/,
as shown in Algorithm 1, which mainly consists of two

Algorithm 1 Threshold-based algorithm
Input: A labeled M -positive edge dominant complete graph
.M > 3/.
Output: A partition V1 and V2 of V .

1: Initialize V1 D V2 D ∅.
2: Obtain the optimal solution x� by solving Formula (2).
3: for each vertex y 2 V do
4: Sort vertices in V in non-decreasing order of x�.
5: Let Ty be the set of the first half of vertices in V sorted

by above order.
6: Denote

Avgy WD

P
w2Ty

x�wy

jTy j
:

7: end for
8: Select vertex cen.V / with the minimum Avgcen.V /.
9: if Avgcen.V / > 1=4 then

10: Update V1 WD Tcen.V / and V2 WD V=V1.
11: else
12: Update V1 WD fw 2 V W x

�
cen.V /w

6 1=2g and V2 WD

V=V1.
13: end if
14: return V1 and V2.

phases: Phase 1 (Steps 1�7) is a computational process
based on the optimal fractional solution x�. For each
vertex y, we first sort the vertices in V in non-decreasing
order by the value of x� and let Ty be the set of the first
half of the vertices according to the above order. Then,
we compute the average value Avgy of the vertices in Ty

to vertex y. Phase 2 (Steps 8�14) is a clustering process.
First, we select a center vertex cen.V /, and then cluster
the vertices by comparing the value Avgcen.V / with a
given threshold. If Avgcen.V / is greater than or equal to
the threshold, then we make set Tcen.V / a cluster and
V nTcen.V / another one. Otherwise, we let all vertices
that are less than or equal to 1=2 away from vertex
cen.V / be a cluster and the remaining vertices be a
cluster. The second type of cluster does not essentially
provide a feasible clustering, but we can determine the
multiple relationships between the number of vertices in
the two clusters.

4 Analysis

Recall Algorithm 1, We have V1 D Tcen.V / or V1 WD

fw W x�
cen.V /w

6 1=2;w 2 V g. Next, we analyze the
upper bounds on the number of disagreements generated
in the above two cases in Subsections 4.1 and 4.2,
respectively.

4.1 Case 1: V1 DDD Tcen(V)

In this case, we have jV1j D jV2j and

Avgv D

P
t2Tv

x�vt

jTvj
>
1

4
; 8v 2 V (3)

Lemma 1 For any set A � V with jAj D jV j=2,
we have

(i)

P
w2A x

�
wy

jAj
>
1

4
; 8y 2 V ;

(ii)

P
w2A x

�
wy

jAj
6
3

4
; 8y 2 V .

Proof
(i) From Formula (2), for each vertex y 2 V , we haveX
w2V

.1 � x�wy/ D jV j=2)
X
w2V

x�wy D jV j=2)P
w2V x

�
wy

jV j
D
1

2
(4)

Combining Formulas (3) and (4) and the definition of
Ty , for each vertex y 2 V , we have

1

4
6

P
w2Ty

x�wy

jTy j
6 1:

Therefore, for any set A � V with jAj D jV j=2, we
have
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w2A x

�
wy

jAj
>
1

4
:

(ii) From Formula (4) and the definition of Ty , we
have X

w2V2

x�wy D

X
w2V

x�wy �

X
w2V1

x�wy 6

N

2
�
1

4
� jV1j 6

3jV j

8
;

which implies thatP
w2V2

x�wy

jV2j
6
3

4
:

Therefore, for any set A � V with jAj D jV j=2, we
have P

w2A x
�
wy

jAj
6
3

4
:

Lemma 1 is concluded. �
There are two types of disagreements:
(1) Edges .w; y/ 2 EC with w 2 V1 and y 2 V2,

the number of these disagreements can be analyzed by
Lemma 2.

(2) Edges .y; z/ 2 E� with y; z 2 Vi and i D 1; 2,
the number of these disagreements can be analyzed by
Lemma 3.

Lemma 2 For each vertex y 2 V1, the number
of disagreements derived from the positive edges
.w; y/; w 2 V2 is no more than 4

P
.w;y/2EC x

�
wy :

Proof Graph G D .V;E/ is an M -positive edge
dominant complete graph .M > 3/, and for each vertex
y 2 V1, inequality jECy j > 3jV j=4 holds. Let A be any
subset of ECy with jAj D jV j=2, then the disagreements
derived from the positive edges .w; y/; w 2 V2 is no
more than jAj. Recall (i) of Lemma 1, we can obtain the
following inequality:
j.w; y/ 2 EC W w 2 V2j 6 jAj 6 4

X
.w;y/2EC

x�wy :

The lemma is concluded. �
Lemma 3 For each vertex y 2 Vi ; i D 1; 2,

the number of disagreements derived from edges
.y; z/ 2 E�, with y; z 2 Vi and i D 1; 2, is no more
than 4

P
.y;z/2EC; x

�
yz .

Proof We take i D 1 as an example. For each
vertex y 2 V1, the number of disagreements derived
from negative edges .y; z/; z 2 V1, can be bounded
by jE�y j. Similar to the proof of Lemma 2, let A be
any subset of ECy with jAj D jV j=2. Combining (i) of
Lemma 1 and the fact that jE�y j 6 jV j=4. Then we can
obtain the following inequalities:
j.y; z/2E�; y; z2V1j6 jE

�
y j< jAj64

X
.y;z/2EC

x�yz :

Lemma 2 is concluded. �
Theorem 1 If jV1j D jTcen.V /j D jV2j, then the

number of disagreements occurring due to the partition
is no more than 24

P
.w;y/2EC x

�
wy :

Proof The number of disagreements equalsX
y2V1

j.w; y/ 2 EC W w 2 V2j C

j.y; z/ 2 E� W y; z 2 Vi ; i D 1; 2j;

and it is less thanX
y2V1

j.w; y/ 2 EC W w 2 V2j CX
y2Vi ;iD1;2

j.y; z/ 2 E� W z 2 Vi j:

From Lemmas 2 and 3, we haveX
y2V1

j.w; y/ 2 EC W w 2 V2j CX
y2Vi ;iD1;2

j.y; z/ 2 E� W z 2 Vi j 6

4
X

y2V1;.w;y/2EC

x�wy C 4
X

y2V1;.w;y/2EC

x�wy C

4
X

y2V2;.w;y/2EC

x�wy 6 24
X

.w;y/2EC

x�wy :

Theorem 1 is concluded. �

4.2 Case 2: V1:DDD fy: x���cen(V)y 666 1/2, y 222 Vg

In this case, we have

Avgcen.V / D

P
y2Tcen.V /

x�
cen.V /y

jTcen.V /j
<
1

4
(5)P

y2V nTcen.V /
x�

cen.V /y

jV nTcen.V /j
>
3

4
(6)

Lemma 4 If V1 WD fy W x
�
cen.V /y

6 1=2; y 2 V g,
then we have
minfjV1j; jV2jg < maxfjV1j; jV2jg < 3minfjV1j; jV2jg:

Proof We consider Lemma 4 from the following
cases:

(1) maxy2Tcen.V /
x�

cen.V /y
> 1=2. If jV1j 6 jV j=4,

then we have jTcen.V /=V1j D jV j=2 � jV1j > jV j=4
and

Avgcen.V / D

P
y2Tcen.V /

xcen.V /y

jTcen.V /j
>P

y2Tcen.V /nV1
xcen.V /y

jTcen.V /j
>

1
2
�
jV j
4

jV j
2

>
1

4
;

which contradicts with Formula (5). Therefore, we have
jV j=4 < jV1j 6 jV j=2, and hence jV1j < jV2j < 3jV1j.
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(2) maxy2Tcen.V /
x�

cen.V /y
6 1=2. If jV2j 6 jV j=4,

then we have jV1nTcen.V /j > jV j=4 andP
y2V nTcen.V /

x�
cen.V /y

jV nTcen.V /j
DP

y2V1nTcen.V /
x�

cen.V /y
C
P

y2V2
x�

cen.V /y

jV nTcen.V /j
6

1
2
jV1nTcen.V /j C jV2j

jV nTcen.V /j
D

1
2

�
jV j
2
� jV2j

�
C jV2j

jV nTcen.V /j
D

jV j
4
C

1
2
jV2j

jV nTcen.V /j
6

jV j
4
C
jV j
8

jV j
2

6
3

4
;

which contradicts with Formula (6). Therefore, we have
jV j=4 < jV2j 6 jV j=2, and hence jV2j < jV1j < 3jV2j.

Combining the above two cases, we conclude
Lemma 4. �

Lemma 5 The average distance of the vertices in
V1 to vertex cen.V / satisfiesP

y2V1
x�

cen.V /y

jV1j
6
1

3
:

Proof We consider the following cases:
(1) If jV1j 6 jV2j, the lemma is evident and we omit

the proof.
(2) If jV2j 6 jV1j < 3jV2j, then we have jV j=2 <
jV1j < 3jV j=4. ThereforeP

y2V1
x�

cen.V /y

jV1j
6

1
4
�
jV j
2
C

1
2
�
jV j
4

3jV j
4

6
1

3
:

Lemma 5 is concluded. �
Based on Lemmas 4 and 5 and Ref. [15], we can

analyze the upper bound on the number of disagreements
by Lemmas 6–8.

Lemma 6 The upper bound on the number of
disagreements derived from the positive edges satisfies

(1) for each positive edge .w; y/; w 2 V1; y 2 V2,
with x�

cen.V /y
> 2=3. The number of disagreement

generated by edge .w; y/ can be bounded by 6x�wy ;
(2) for each y 2 V2, if 1=2 < x�

cen.V /y
< 2=3, then

the total number of disagreements .w; y/ 2 EC; w 2
V1, can be bounded by

6

24 X
.w;y/2EC;w2V1

x�wy C

X
.w;y/2E�;w2V1

.1 � x�wy/

35 :
Proof The proof is based on Ref. [15]. We omit

the proof. �

Lemma 7 The upper bound on the number of
disagreements derived from the edges .y; z/ 2 E� with
y; z 2 V1 satisfies

(1) for each edge .y; z/ 2 E� with y; z 2 V1,
if x�

cen.V /y
and x�

cen.V /z
6 1=3, then the number of

disagreement derived from edge .y; z/ can be bounded
by 3.1 � x�yz/.

(2) for each vertex y 2 Tcen.V /, if 1=3 < x�
cen.V /y

6
1=2, then the number of disagreements derived from the
edges .y; z/ 2 E� with x�

cen.V /z
< x�

cen.V /y
can be

bounded by
6

X
.y;z/2EC;x�

cen.V /z
<x�

cen.V /y

x�yz C

6
X

.y;z/2E�;x�
cen.V /z

<x�
cen.V /y

.1 � x�yz/:

Proof The proof is based on Ref. [15]. We omit
the proof. �

In the following, we analyze the upper bound on the
number of disagreements derived from edges in .y; z/ 2
E�, where y; z 2 V2.

Lemma 8 The upper bound on the number of
disagreements derived from edges .y; z/ 2 E� with
y; z 2 V2 has the following two properties:

(1) For each vertex y 2 V2, if x�
cen.V /y

> 2=3,
then the number of disagreements derived from the
negative edges .y; z/ 2 E�; z 2 V2, is no more than
6
P

.w;y/2EC;w2V1
x�wy I

(2) For each vertex y 2 V2, if 1=2 6 x�
cen.V /y

<

2=3, the total disagreements derived from edges .y; z/ 2
E�; z 2 V2, is no more than

6

24 X
.w;y/2EC;w2V1

x�wy C

X
.w;y/2E�;w2V1

.1 � x�wy/

35 :
Proof Recall graph is anM -positive edge dominant

complete graph .M > 3/ and Lemma 7. For each y 2
V2, the number of disagreements is equal to jf.y; z/ 2
E�; z 2 V2gj; which is less than jf.w; y/ 2 EC; w 2
V1gj:

Combined with Lemma 6, we obtain Lemma 8. �
Combining Lemmas 4–8, we obtain Theorem 2.
Theorem 2 If V1 WD fy W x

�
cen.V /y

6 1=2; y 2 V g,
then we have

maxfjV1j; jV2jg < 3minfjV1j; jV2jg;

and the upper bound on the number of the disagreements
is bounded by

12

24 X
.w;y/2EC

x�wy C

X
.w;y/2E�

.1 � x�wy/

35 :
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Combined with Theorems 1 and 2, we derive the main
results of this study.

Theorem 3 Algorithm 1 is a .3; 24/-balanced
approximation algorithm for the B2-CorCP on M -
positive edge dominant graphs .M > 3/.

5 Experiment

In this section, we explain how to generate M -positive
edge dominant graphs and present the results of our
numerical experiments.

5.1 Generation of M-positive edge dominant
graphs

Let integerN be the number of vertices in anM -positive
edge dominant graph. Moreover, let ŒN � D 1; 2; : : : ; N ;
for a givenN , we generate anM -positive edge dominant
graph (M > 3) based on the following steps:

(1) Generate a matrix D 2 RN�N ; di;j 2 .0; 1/;

i; j 2 ŒN �.
(2) For each di;j 2 D, let
� di;j D 1, if i ¤ j and di;j > 0:5;
� di;j D �1, if i ¤ j and di;j < 0:5;
� di;j D 0, if i D j ;
� di;j D dj;i ,

where i and j represent two vertices. Variable di;j D 1

if edge .i; j / is a positive edge, and variable di;j D �1

if edge .i; j / is a negative edge.
(3) For each row di in matrixD, i 2 ŒN �, let Pi be the

number of variables dij ; j 2 ŒN �, which is equal to 1,
and Ni be the number of variables dij ; j 2 ŒN �, which
is equal to �1. Perform the following steps from i D 1

to i D k: If Pi > 3Ni , then each variable stays the same.

Otherwise, let the first
�
3Ni � Pi

4

�
variables equal to

�1 be reset as 1 from the variables and di;j D dj;i .
(4) Take the lower or upper triangular matrix of D to

represent theM -positive edge dominant graphs, because
D is a symmetric matrix.

5.2 Results

We present Table 1 by taking different values ofN . Opt
is the objective function value of the optimal solution
returned by Formula (2); Alg is the objective function
value of the solution obtained by the Algorithm 1;
Appro is the ratio of Alg to Opt.

As shown in Table 1, although there are two cases in
which Algorithm 1 outputs V1 and V2, the second case,
as shown by the data, is rarely seen, and most of the time,
we have jV1j D jV2j.

Furthermore, although the theoretical approximation

Table 1 Numerical experiment results for different N.
N Opt Alg Appro jV1j jV2j

10 21:667 26 1:200 6 4

16 52:000 52 1:000 8 8

20 87:357 109 1:248 10 10

26 143:231 180 1:257 13 13

30 187:043 229 1:224 15 15

36 271:290 315 1:161 18 18

40 338:781 417 1:231 20 20

46 445:747 527 1:182 23 23

50 521:095 600 1:152 25 25

56 661:881 850 1:284 28 28

60 759:070 934 1:230 30 30

66 924:500 1098 1:187 33 33

70 1028:520 1244 1:209 35 35

76 1230:660 1435 1:166 38 38

80 1355:300 1560 1:154 40 40

ratio is 24, the actual ratio Alg to Opt is between 1 and 2
in the actual data, and hence our algorithm is expected
to perform much better for real-life instances than what
the worst-case approximation ratio suggests. As shown
in Fig. 1, the ratio Alg to Opt (vertical axis) remains
relatively stable with the increase in data points (horizon
axis).

6 Discussion and Conclusion

In this paper, we introduce the B2-CorCP and provide
a .3; 24/-balanced approximation algorithm for the B2-
CorCP on M -positive edge dominant graphs .M > 3/.
In sum, we have the following research directions for
the B2-CorCP in the future:
� In this paper, we focus on the B2-CorCP on M -

positive edge dominant graphs for M > 3. The case for
1 6M < 3 is still open.
� The extension of the LP-rounding technique to

obtain similar results for the B2-CorCP on general
graphs will be discussed in future works.

Fig. 1 Tendency of Appro.
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