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Graph Neural Architecture Search: A Survey

Babatounde Moctard Oloulade, Jianliang Gao�, Jiamin Chen, Tengfei Lyu, and Raeed Al-Sabri

Abstract: In academia and industries, graph neural networks (GNNs) have emerged as a powerful approach to graph

data processing ranging from node classification and link prediction tasks to graph clustering tasks. GNN models are

usually handcrafted. However, building handcrafted GNN models is difficult and requires expert experience because

GNN model components are complex and sensitive to variations. The complexity of GNN model components has

brought significant challenges to the existing efficiencies of GNNs. Hence, many studies have focused on building

automated machine learning frameworks to search for the best GNN models for targeted tasks. In this work, we

provide a comprehensive review of automatic GNN model building frameworks to summarize the status of the field

to facilitate future progress. We categorize the components of automatic GNN model building frameworks into

three dimensions according to the challenges of building them. After reviewing the representative works for each

dimension, we discuss promising future research directions in this rapidly growing field.
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1 Introduction

Deep learning (DL) models have achieved superior
performance in fields such as computer vision[1, 2],
natural language processing[3–5], and speech
recognition[6, 7] because of their ability to capture
hidden patterns and leverage the statistical properties
of data. DL models, e.g., recurrent neural networks
(RNNs) and convolutional neural networks (CNNs),
have been widely used by researchers for machine
learning (ML) tasks and have solved a wide variety of
problems in many cross disciplines, including but not
limited to medicine[8, 9], agriculture[10], commerce[11, 12],
and finance[13]. However, these models, which are
predominantly applied to data represented as a regular
grid in the Euclidean space, fail to extract latent
representations from graph data. This drawback is due
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to graphs being non-Euclidean data, which cannot be
represented in an n-dimensional linear space. Graphs
are nongrid-like structured data with nonfixed size and
unordered nodes. Thus, some important operations,
such as convolutions computed in Euclidean space,
are difficult to implement, such as in the case of
transforming computation results into graph data.
Graph neural networks (GNNs) successfully tackle this
problem and have thus become a very popular approach
in academia and in industries. Graph data have recently
become ubiquitous in our lives. The omnipresence of
graph data has boosted the research on graph pattern
recognition and graph mining. Naturally, many GNN
models have been proposed for various tasks, ranging
from node classification[14, 15] and link prediction[16, 17]

to graph clustering[18]. GNN model components include
GNN architecture components (ACs), such as attention
function, aggregation function, and activation function,
and hyperparameters (HPs), such as drop out and
learning rate. In traditional GNNs, the selection of these
components is a problem that is tackled on the basis of
expert experience and unwritten rules of thumb. Hence,
achieving optimized combinations of these components
is difficult. Building the best GNN models for targeted



Babatounde Moctard Oloulade et al.: Graph Neural Architecture Search: A Survey 693

tasks requires testing several GNN architectures before
selecting the best one. Such a process is time-consuming
or impossible to apply to big graph data. Meanwhile,
different tasks need different tuning of HPs to obtain
optimal results. Motivated by the recent success of
neural architecture search (NAS) for RNN and CNN
models, many researchers have attempted to apply
automated ML (AutoML) approaches to the graph
domain. Specifically, many researchers have focused on
automatically finding the best GNN models for targeted
tasks, thereby raising a new topic in the field. This
research topic is commonly referred to as Graph Neural
Architecture Search, which we denote as Graph-NAS
in this article. The growing interest in GNN models
has led to increasing attention to Graph-NAS. In this
work, we aim to provide a comprehensive review
of Graph-NAS frameworks, which not only achieve
promising performance for many applications of GNNs
but also show potential as a unanimous approach to
constructing GNN models.

Differences with existing surveys. The studies
involving Graph-NAS surveys are limited. Xie et al.[19]

provided an exhaustive enumeration of optimization
strategies in neural architecture search. Although their
work slightly tackled Graph-NAS, it is not emphasized
on Graph-NAS challenges and was published at the
time when there were just a few works on Graph-
NAS. Nunes and Pappa[20] analyzed the optimization
strategies for existing Graph-NAS frameworks. The
authors compared reinforcement-based optimization
learning and evolutionary algorithm-based optimization
without providing a critical analysis of other Graph-NAS
challenges, e.g., search space design. Since their work,
other frameworks have been proposed. The current work
differs from existing studies as it is aimed at providing
a comprehensive and up-to-date survey with a critical
analysis of Graph-NAS methods and applications.

Recently, Zhang et al.[21] conducted a similar
comprehensive survey of AutoML for graphs. In their
work, NAS for GNNs and hyperparameter optimization
(HPO) for GNNs were reviewed separately. By contrast,
we argue herein that HPO for GNNs is included in Graph-
NAS.

Recent frameworks consider HPs and ACs in the
search process[22–24]. Instead of a disjoint review of
search algorithms for Graph-NAS and HPO for GNNs,
such as that by Zhang et al.[21], the current study presents
a comprehensive survey of Graph-NAS frameworks from

a global view. We categorize Graph-NAS frameworks
from the perspective of challenges. We present detailed
descriptions of their methods by challenge, analyze
their advantages and limitations, and provide necessary
comparisons. This article will not only serve as a
reference for experts who would like to compare Graph-
NAS frameworks but also establish a clear outline for
researchers who want to enter this new and interesting
field.

Contributions of this article. This article makes
significant contributions, which are summarized as
follows:
� Categorization: We categorize the constituents of

existing Graph-NAS frameworks in three dimensions
on the basis of the challenges in building them: (1)
search space, which defines a set of GNN models; (2)
search algorithm, which defines how to find the best
GNN model from the search space; and (3) performance
evaluation, which decides how good a GNN model
is. Our categorization provides a unified representation
to present different strategies in different Graph-NAS
frameworks. One can easily make a distinction between
different frameworks by using our categorization.
� Comprehensive review: We provide a

comprehensive overview of existing Graph-NAS
frameworks from a global view, along with the known
challenges. We present detailed descriptions of their
methods by challenge, analyze their advantages and
limitations, and provide necessary comparisons.
� Promising research directions: We discuss

various aspects of Graph-NAS frameworks, analyze
their limitations, and propose promising future research
directions in terms of efficiency and scalability trade-off.

Organization of this article. The remaining part of
this work is structured as follows: In Section 2, we
provide preliminary definitions, present an overview
of GNNs, introduce Graph-NAS, and expose the
existing frameworks for Graph-NAS, along with their
strengths and weaknesses. In Section 3,we present the
categorization of the components of existing Graph-
NAS frameworks. In Sections 4, 5, and 6, we provide
critical analysis of the existing frameworks according to
the dimensions of search space, search algorithm, and
performance evaluation, respectively. In Section 7, we
present the most common applications of Graph-NAS
and provide a comparative picture of exiting frameworks.
Finally, we conclude the survey and suggest some
promising future research directions.
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2 Definitions and Background

In this section, we present graph-related concepts, list
common notations, and outline the background of Graph-
NAS.

2.1 Definitions and notations

Graph data consist of a set of pairwise relations between
objects. The objects are called nodes or vertices, and
a relation between two nodes is called an edge. For
example, in e-commerce, graph-based representation
can be used to show the interaction between a user
and a product. In a social network system, nodes are
denoted by users, and edges represent relations between
users. An edge can be directed if it represents an
asymmetric dependency between two nodes; otherwise,
it is undirected. An undirected edge can be treated
as two directed edges. A graph with only undirected
edges is called an undirected graph; otherwise, it is a
directed graph. Mathematically, a graph is commonly
represented as G D .V;E/, where V is a set of nodes,
and E is a set of edges. v 2 V is used to denote a node
and euv D .u; v/ 2 E denotes an edge pointing from
u to v. The neighborhood of a node v is denoted as
N.v/ D fu 2 V j.v; u/ 2 Eg. The adjacency matrix of
a graph commonly denoted A is an n � n matrix, where
Auv D 1 if euv 2 E, and 0 otherwise; and n is the total
number of nodes. A node u and an edge euv can carry
properties, also called features, denoted by vectors xu
and xeuv, respectively. The node features of a graph are
represented by a matrix X 2 Rn�d , where d represents
a node feature size. The edge features of a graph are
represented by a matrix Xe 2 Rm�c , where m and c
represent the number of edges and an edge feature size
respectively. Furthermore, a graph can contain nodes
having different types of edges that denote different
types of relationships. A graph with the same types
of nodes and the same types of relationships is called
a homogeneous graph; otherwise, it is a heterogeneous
graph. Take for example, a social network graph in
which the nodes only represent users and edges, in
such a case, their friendship is a homogeneous graph.
For a knowledge graph in which a node represents a
player or a game and an edge represents the relationship
between players or the dependency between a player
and a game, it is described as a heterogeneous graph.
Throughout this article, we use bold lowercase characters
to represent vectors, and bold uppercase characters to
represent matrices. Table 1 shows the notations used in

Table 1 Notations.
Notation Description
G A graph
V Set of nodes in a graph
v A node v 2 V
E Set of edges in a graph
eij An edge, eij 2 E

N.v/ Neighborhood of a node v
n Number of nodes, n D jV j
m Number of edges, m D jEj
A A.n � n/ graph adjacency matrix
d Dimension of a node feature vector
c Dimension of an edge feature vector

X 2 Rn�d Feature matrix of a graph
xv 2 Rn Feature vector of a node v

Xe
2 Rm�c Edge feature matrix of a graph

xe
uv 2 Rc Feature vector of the edge

H 2 Rn�b Node hidden feature matrix
hv 2 Rb Hidden feature vector of node v

k Layer index
W; w; � Learnable model parameters
S A search space
s Sub-model generated from S

Rs Reward of a sub-model generated from S

D Graph dataset
Dval � D Validation set

this article.

2.2 Background

2.2.1 Background of graph neural networks
GNNs are a kind of DL method applied to graphs to
learn graph representation. Early studies on GNNs were
motivated by the work of Sperduti and Starita[25] which
applied neural networks to directed graphs. The concept
of GNNs had been outlined by two works[26, 27] which
enhanced existing neural networks to directly process the
most practically useful types of graphs. The objective is
to learn the representation of a target node or graph by
propagating neighborhood information in an iterative
way until convergence. These studies fall into the
category of recurrent graph neural networks (RecGNNs)
and are computationally expensive[28]. Although efforts
have been exerted to alleviate these weaknesses, many
other researchers have relied on the success of CNNs in
computer vision to develop new convolution approaches
that are applicable to graphs, which are called
convolutional GNNs (ConvGNNs). ConvGNNs have
two branches: spectral-based approach models[29, 30]

and the spatial-based approach models[31–33]. In the
spectral-based approach, models are based on spectral
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graph theory, and signals on a graph are filtered using
the eigendecomposition of Laplacian graphs[34]. In
the spatial-based approach, convolution operations are
directly performed on the graphs, and graph convolution
is represented as a combination of feature information
from node neighborhoods.

Modern GNN models follow a neighborhood
aggregation (or message passing) scheme[35], where
the representation vector of a node is determined
by recursively aggregating and transforming the
representation vectors of its neighboring nodes. The
goal is to learn a function of features on a graph G.
The function takes the following as input: A feature
description xv for each node v 2 V summarized in a
feature matrix X, and a representative description of
the graph G structure in matrix form, typically in the
form of an Adjacency matrix A (or some functions)
and return node-level output or graph level output. In
this calculation, node feature representation vectors are
chosen according to the application. They can be word
vector when working with a knowledge base, or pixel
value when working with images, or a combination
of image feature and word vector when working with
scenes. As the objective is to obtain a good vector
representation over time, an aggregation is applied
recursively over node neighbors. After k round(s) .k D
1; 2; : : : ; K/ of aggregation, a node’s representation
captures the structural information within its k-hop
network neighborhood. Formally, given a graph G,
the feature vector of its node v at the k-th iteration,
representing the k-th layer of a GNN model is defined
as follows:

h.k/v D ACT
.k/.WkAGG.fhk�1u ;8u 2 N.v/g/; /

(1)
 D Bkhk�1v ; h0v D xv (2)

where k 2 Œ1;K� is the number of iteration, Wk is
a trainable weight matrix in the k-th layer, Bk is
a bias, Bkhk�1v is a self-loop activation for node v,
ACT .k/.�/ is a non-linear activation function in the k-
th layer, e.g., Rectified Linear Unit (ReLU), sigmoid,
and AGG.k/.�/ is an aggregation function in the k-
th layer, e.g., max-pooling, sum. The output of the
last layer is commonly utilized to denote the final
representation for each node. For graph-level tasks,
pooling is applied to layer representations. The choice
of AGG.k/.�/ and ACT .k/.�/ is primordial and is the
key to successful graph representation learning by a
GNN model. The main challenge is the selection of

the aggregation schema and the order of aggregation
for each node. In recent years, many GNN variants
with different neighborhood aggregation and graph-
level pooling schemes have been developed, and
they include graph convolutional network (GCN)[36],
graph isomorphism network (GIN)[37], graph attention
network (GAT)[38], and local extrema graph neural
network (LEConv)[39]. These GNNs have empirically
achieved superior performances in many tasks such
as semantic segmentation[40], node classification[15],
recommendation system[41–43], and so on. However,
building the best GNN model might require numerous
attempts using many GNN models, and the process
is very time-consuming because of the wide array
of choices for AGG.k/.�/ and ACT .k/.�/, which are
sensitive to variation[37]. Meanwhile, different tasks need
different levels of tuning of the components and HPs of
the GNN model architecture to obtain optimal results.
To overcome these difficulties, many frameworks have
been proposed for Graph-NAS.

2.2.2 Background of graph neural architecture
search

A model is composed of ACs and HPs according to a
search space. Given a search space S composed of all the
possible models and a dataset D, the objective of Graph-
NAS is to find the best model s� 2 S that maximizes the
estimated performance �p.s/ on a validation set Dval �

D, i.e.,
s� D argmax.s 2S/�p.s/ (3)

Many studies have explored Graph-NAS. One of
the early works is that on Graph-NAS[44] based on
reinforcement learning (RL). Graph-NAS defines a
search space comprising five ACs, namely, attention
function, activation function, aggregation function,
number of attention heads, and hidden units with
many possible choices for each function. Graph-
NAS describes GNN model ACs with variable length
strings generated using a recurrent network controller.
Each layer of GNN models is generated from the
AC search space comprising five functions. Graph-
NAS uses a one-layer long short-term memory (LSTM)
recurrent network as a controller to generate architecture
descriptions (submodels), as a sequence of tokens, each
of which represents one of the functions/actions. The
generated submodel has two layers assumed to be
independently designed. It is then tested with fixed HPs
on the validation set Dval, and its accuracy metric is
used as feedback of the LSTM recurrent network. In
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the learning process, the controller is trained to optimize
the distribution of GNNs architecture parameterized by
the choice of � and shared weight w describing the
architecture. The controller parameter � is updated using
a policy gradient method with moving average based on
G. C. Williams and D. C. Williams[45] defined as follows:

r��p.s1WT ; �/Rs D

TX
tD1

�P.s1WT ;�/r� lnŒP.st js.t�1/W1; �/.Rs � b/� (4)

where s1WT is a list of functions generated by the
controller for an architecture, Rs is the reward signal
of the validation accuracy of architecture s, and b

is the exponential moving average of the previous
architecture rewards. Parameters sharing strategy are
used to avoid training each model from scratch to
convergence. Later, the same authors proposed a new
framework[46] using the same method but performed
hyperparameters optimization (HPO) by the use of
hyperparameters search space to improve the framework
performance. Other reinforcement-based frameworks
have been proposed[22, 47], and they use slightly different
search space with different mechanism for sub-models
evaluation. Methods based on reinforcement learning
are computationally expensive and difficult to scale.

Shi et al.[23] proposed genetic GNNs that use a
two-step encoding schema with two variable length
strings representing GNN architectures and HPs and
one evolution step of a two-layer GNN to optimize the
architecture and HPs. The architectures of GNNs are
generated from an AC search space similar to that of
Graph-NAS[46] and the HP search space is represented
with four variable length strings representing the dropout
of the first layer, the dropout of the second layer, the
weight decay rate, and the learning rate. AutoGraph[48]

is another evolution-based framework that randomly
selects ACs from the search space and changes their
component values. The newly generated model is then
trained, evaluated, and used to replace the oldest model
in the population. HP tuning is subsequently applied to
each generated GNN by using the tree-structured Parzen
estimator approach[49]. Although these evolution-based
algorithms perform well, they converge slowly and are
difficult to scale. Moreover, their results mainly depend
on the initial population.

AutoGM[50] is a Bayesian framework based on
Bayesian optimization (BO) that aims to find the
best graph mining algorithm under time or metric
constraints. The proponents first built UNIFIEDGM, a

framework for a message passing-based graph algorithm
that unifies various graph mining algorithms, including
PageRank[51] and GCN[36]. Then, AutoGM finds the
optimal graph algorithm by maximizing its performance
under a computational time budget or minimizing its
computational time under a lower bound constraint on
the performance.

Recently, differentiable search strategies such as
Differentiable Architecture Search (DARTS) [52] and
Stochastic Neural Architecture Search (SNAS)[53] have
been exploited for Graph-NAS. Zhao et al.[54] proposed
a differentiable search-based framework in which the
search space for a GNN is formulated as a stack of
GNN layers. Every stack comprises four sub-blocks
(functions), namely, a linear layer, an attention layer, an
aggregation function, and an activation function. A wide
variety of functions can be chosen to describe the ACs
of GNN models. Probabilistic priors generated from
a controller are used to train a superset of functions.
They allow the controller to learn the probability
distribution of the candidate functions and select the
most effective function from the superset. Unlike
prior frameworks, which make use of RL to iteratively
evaluate architecture from the search space, the proposed
framework uses Gumbel-sigmoid[55] to relax discrete
architecture decisions and keep them continuous in a
macro architecture search. In this way, the architecture
can be optimized using gradient descent. This approach
can outperform current NAS approaches applied to
GNNs in terms of speed and search quality. However,
it entails huge computation costs because all operations
require forward and backward propagation during
gradient descent while only one operation is selected.
Zhao et al.[56] performed a follow-up study[52] to search
an aggregate neighborhood for automatic architecture
search in GNNs. They designed a differentiable search
algorithm for expressive search spaces, including node
and layer aggregators. Their search algorithm trains
a supernet subsuming all candidate architectures, thus
greatly reducing the computational cost. Ding et al.[57]

proposed another differentiable search-based framework
designed with an expressive directed acyclic graph
search space to represent candidate meta graphs. Their
framework utilizes task-dependent semantic information
encoded in heterogeneous information networks and
makes the search cost equivalent to training a single
GNN at a time.

GraphGym[24] proposed a controlled random search
(RS) based framework that uses a GNN search space
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with 12 design dimensions, including GNN model ACs
and HPs, proposes a task similarity metric to characterize
relationships between different tasks, and uses controlled
RS evaluation to efficiently analyze the trade-offs of
each design dimension over tasks. For each choice of
design dimension, s randomly generated GNN models
are applied to tasks, and the design choices are ranked
by their performance. Finally, the ranking over s GNN
models is collected, the ranking distribution is analyzed,
and the most important choice is retained. Although
the search algorithm seems very simple, the framework
performs well because of the search space. Specifically,
the search space is big and compact enough as it covers
most state-of-the-art GNN model structures, including
HPs.

2.2.3 Graph neural architecture search versus
hyperparameters optimization

Graph-NAS and HPO are AutoML subtasks. Graph-
NAS aims to automate the search for the best neural
network models for targeted tasks, including the
GNN model ACs and HPs. Meanwhile, HPO involves
optimizing the HPs of neural networks. Thus, for HPO,
the architecture of the neural network is predefined, and

only HP tuning is performed. In summary, HPO is a part
of Graph-NAS, which ensures HP tuning for predefined
neural networks.

3 Categorization

The differences among frameworks present three
essential challenges: (1) designing a generalized
structure of the models to be generated by the framework
through a search space, (2) building a robust search
algorithm to efficiently find the best architecture from
the search space, and (3) evaluating architectures
generated by the search algorithm. These challenges are
commonly solved using three main strategies, namely,
search space design, search algorithm design, and
performance evaluation (Fig. 1). Generally, GNN models
are generated from a search space using a search strategy
and are then evaluated using a performance evaluation
strategy. In this section, we present the categorization
and show the details in Table 2.

3.1 Search space

A search space determines the general structure of the
architectures to be chosen and contains all the possible
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Fig. 1 Abstract illustration of Graph-NAS frameworks. The search algorithm samples an architecture s from a predefined
search space S. The performance of s is determined and evaluated according to the performance evaluation strategy, and a
performance evaluation is returned to the search algorithm.

Table 2 Categorization of the constituents of existing Graph-NAS frameworks.
Dimension Method Publication

Search space
Architecture components search space with fixed hyperparameters Refs. [22, 44, 47, 48, 54]
Hyperparameters search space with fixed architecture components Ref. [58]

Architecture components search space and hyperparameters search space Refs. [23, 24, 46, 56, 57, 59, 60]

Search
algorithm

Reinforcement learning Refs. [22, 44, 46, 47]
Bayesian optimization Refs. [50, 58]

Evolution learning Refs. [22, 23, 48]
Differentiable search Refs. [54, 56, 57, 59, 60]

Random search Refs. [24, 44, 46, 58]

Performance
evaluation

Whole model Refs. [23, 44, 46–48, 50, 58]
Model components Refs. [22, 24, 54, 56, 57, 59, 60]
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options of all the components of a GNN model. The
larger the search space is, the more options to find
the best model will be available, and the higher the
computation time will be. Thus, the challenge lies in
building a strong and compact search space that should
contain all possible best architectures. Many works
attempting to overcome the problem have proposed
several types of search spaces, which we categorize
in three dimensions herein: (1) a search space that
comprises only GNN model ACs and uses fixed values
for HPs, (2) a search space comprising only HP tuning
options for a predefined GNN, and (3) a search space
comprising GNN model ACs and HPs.

3.2 Search algorithm

The search algorithm defines how the best GNN model
will be found among all possible GNN models in the
search space. When defining the search algorithm, the
computation time and computation space should be
considered. The faster the algorithm is in reaching the
optimal solution, the better it is; the less computing
resources that the algorithm needs, the better it is.
Thus, the main challenge is how to find a trade-off
between high performance, low cost, and strengthened
productivity through the search algorithm. Many existing
search algorithms have been applied, and they include
(1) RS, (2) RL, (3) evolution learning, (4) BO algorithm,
and (5) differentiable search.

3.3 Performance evaluation

Performance evaluation defines how to estimate the
performance of a GNN architecture generated by the
search algorithm. It can be considered as an element of
comparison between the various architectures generated
by the search algorithm. Its role is to guide the
search to the optimal solution. The challenge related
to performance evaluation is to learn the submodel
performance distribution to guide the progress of the
search efficiently. Two common strategies are used:
(1) evaluating the whole submodel or (2) evaluating its
component importance.

4 Search Space

Several studies have adopted the so-called search
space option to find the best combination of different
components for determining the best performance metric.
The general idea behind the use of a search space is
undoubtedly useful, and the challenge lies in the search
space design. With a search space containing nothing

but average solutions, even the most efficient search
algorithm can only find average solutions. The search
space in the Graph-NAS literature can be classified into
three broad classes: GNN model AC search space, HP
search space, and the combination of the AC and HP
search spaces. In the following, we analyze each class.

4.1 Search space for architecture components

Herein, a search space is designed for GNN model
ACs, and fixed HPs are used[44, 47]. The search space
for GNN model ACs could be a micro search space
in which nodes’ passing of messages in each layer is
defined[46, 61] or a macro search space in which node
representation in one layer might not depend on the
previous layer[62]. The former is commonly adopted.
Most existing studies on micro and macro search spaces
support this choice by providing empirical evidence
that successful performance can be achieved using the
micro search space[63]. However, such search spaces
are problematic, and they significantly influence search
efficiency because they ignore HPs even though HPs are
fully integrated model components. Thus, optimizing
only the GNN structure may lead to a suboptimal model
because a moderate change in learning parameters may
severely degrade the fine-tuned GNN structure[37].

4.2 Search space for hyperparameters

This search space uses fixed and predefined GNN model
ACs and mainly defines a search space for HPs, thus
only optimizing the HPs for a predefined GNN model[58].
This topic falls under the umbrella of HPO, in which the
main target is to fine-tune the HPs for a predefined neural
network, which will lead to suboptimal solution.

4.3 Search space for architecture components and
hyperparameters

Here, the search spaces for GNN model ACs and HPs
are defined[23, 48]. The influence of a moderate change
in HPs on a model is also considered. However, even if
this configuration guarantees good results, it might have
a supplementary computation cost because of the search
space scale.

4.4 Comparative analysis

Although superior performance has been achieved using
the aforementioned search spaces, most of them lack
generalization because they only focus on a specific
GNN design. This drawback limits the discovery of
successful GNN models. Table 3 identifies the types of
functions or HPs selected by existing works, and Table 4



Babatounde Moctard Oloulade et al.: Graph Neural Architecture Search: A Survey 699

Table 3 Details of search space.

Model
Architecture component Hyper-parameter

F1 F2 F3 F4 F5 F6 F7 F8 H1 H2 H3 H4 H5 H6 H7
GraphNAS[44] 3 3 3 7 3 7 7 3 7 7 7 7 7 7 7

GraphNAS b[46] 3 3 3 3 3 7 7 3 3 3 3 7 7 7 7

SNAG[47] 3 3 3 7 3 3 7 3 7 7 7 7 7 7 7

AutoGraph[48] 3 3 3 7 3 3 3 3 7 7 7 7 7 7 7

AGNN[22] 3 3 3 3 3 7 7 3 7 7 7 7 7 7 7

Genetic GNN[23] 3 3 3 7 3 7 7 3 3 3 3 7 7 7 7

AutoGM[50] 3 3 3 7 3 7 3 3 7 7 7 3 7 7 7

GraphGym[24] 3 3 3 7 7 3 3 7 3 3 7 3 3 3 3

AutoNE[58] 7 7 7 7 7 7 7 7 3 3 3 7 3 3 3

PDNAS[54] 3 3 3 3 3 3 7 3 7 7 7 7 7 7 7

DiffMG[57] 7 7 7 7 3 7 7 3 3 3 3 7 7 7 7

SANE[56] 3 3 3 7 3 3 7 3 3 7 3 7 7 7 7

DSS[59] 3 3 3 7 7 3 7 3 3 3 3 7 7 7 7

GNAS[60] 7 7 3 7 7 3 7 7 3 7 7 7 7 7 7

Note: F1 = attention function, F2 = activation function, F3 = aggregation function, F4 = combine function, F5 = attention head, F6 = skip
connection, F7 = number of layers, F8 = hidden size, H1 = learning rate, H2 = drop out, H3 = weight decay, H4 = batch normalization,
H5 = batch size, H6 = optimizer, and H7 = training epochs.

Table 4 Commonly used values for functions and hyperparameters.
Component Function Value

Architecture component

Attention function const, gcn, gat, sym-gat, cos, linear, gene-linear
Activation function sigmoid, than, relu, linear, softplus, leaky-relu, relu6, elu

Aggregation function sum, mean-pooling, max-pooling, mlp
Attention head 1, 2, 4, 6, 8, 16

Combine function avg, concat
Skip connection stack, skip-sum, skip-cat

Number of layers 1, 2, 3, 4, 5, 6
Hidden size 2 to 64, 128, 256, 512

Hyper parameter

Learning rate 0.0001 to 0.1000
Dropout 0.1 to 0.9

Weight decay 0.000 01 to 0.001 00
Batch normalization true, false

Batch size 16, 32, 64
Optimizer sgd, adam

Training epoch 2 to 300

shows a summary of commonly used values for ACs and
HPs by Graph-NAS frameworks.

We summarize the comparative analysis of the existing
methods for designing search spaces in Table 5. We note
that the larger the search space is, the more options to
find a better model will be available, and the higher the
computation time will be. This feature poses a scalability
issue. Many search strategies have attempted to solve
this problem. We discuss these strategies in the following
sections.

5 Search Algorithm

The search algorithm describes the methodology used to

find the best solution among all possible solutions
from the search space. Optimization concerns the
effectiveness and efficiency of the framework. To solve
this optimization problem, several strategies have been
proposed for different frameworks, and they include RL,
BO, evolution learning, differentiable search, and RS.
These search strategies can be combined. Zhou et al.[22]

proposed conservative RL using reinforcement learning
and evolution learning to generate slightly different GNN
architectures. In this way, the controller is able to make
highly efficient searches. In this section, we present
the aforementioned search algorithms and discuss their
strengths and weaknesses.
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Table 5 Comparative analysis of search space design methods.
Method Advantage Disadvantage

Architecture components search space with
fixed hyperparameters

Small search space and less
computation

Do not consider hyper-parameters optimization, thus
can lead to a sub-optimal or unstable model

Hyperparameters search space with fixed
architecture components

Small search space and less
computation

Only optimize hyperparameters, can lead to sub-
optimal model

Architecture components search space and
hyperparameters search space

Lead to stable solution Supplementary computation cost because of the
search space scale

5.1 Reinforcement learning

RL is an ML algorithm that describes a dynamic
learning process in which an agent learns to achieve
a goal through a sequence of decisions on the basis of
continuous feedback to maximize the reward. It has three
main components: The agent, which is the learner and
decision-maker; the environment where the agent learns
and decides what actions to perform; and the reward for
each action selected by the agent.

In RL-based methods for Graph-NAS, the
environment is denoted by the search space, the
agent is represented by a controller defined as a
neural network that aims to generate good architecture
(called submodel) from the search space over time,
and the reward is represented by the evaluation of
the performance of the generated model. Basically,
frameworks based on RL use recurrent networks
as controllers to generate the descriptions of GNN
models and then compute the rewards of the models
as feedback to maximize the expected performance
of the generated GNN models. This method has been
used in many frameworks for Graph-NAS[22, 46, 47]

with some differences and can be divided into two
main classes. The first class consists of a complete
modification and the second class consists of a partial
modification. Frameworks belonging to the first class
assume that the current good sub-model will be replaced
in its entirety even if the next sub-model to be generated
may have similarities to the old one[44, 46]. That is, at
each step, a generated model is evaluated for its global
performance and is completely renewed if the goal is
not reached yet. The problem with this approach is that
the controller cannot effectively learn which specific
part of a submodel brings a change in performance
relative to the previous submodel; thus, the controller
is unable to efficiently guide the search. The second
class includes the frameworks that change only a part
of the old submodel to have a new submodel assuming
that the changed part has contributed minimally to the
improvement of the result obtained by the previous

submodel[22, 23, 48]. In this case, the controller may
consist of many neural networks, the number of which
is equal to the number of model components. At each
iteration, entropy is calculated for each component to
assign a value to the importance of the component. Thus,
this strategy can guide the search space exploration
through slight architecture modifications. However, the
expressive capacity of these models stills suffers from
drawbacks because of their search spaces.

5.2 Bayesian optimization

BO is a probabilistic method based on the calculation of
posterior probabilities by combining a prior probability
with a likelihood function. The entire process is
adaptive in the sense that the predictions and uncertainty
estimates are updated as new observations are made. BO
involves two main components: a Bayesian statistical
model, also called a surrogate function, to model the
objective function; and an acquisition function for
deciding where to sample next. In BO, a probability
distribution is built over sampled candidates tested by
the surrogate function, and the acquisition function
is used to interpret the response from the surrogate
function and efficiently search for candidate samples
before selecting them to evaluate the actual objective
function. The acquisition function is optimized at
each step to determine the best sample for the next
evaluation. Then, the model is updated, and the process is
repeated until convergence. Although BO has achieved
superior performance in NAS[64], only Yoon et al.[50]

have used BO to overcome the Graph-NAS problem,
but their results are not promising. Specifically, BO
is computationally expensive and almost impossible to
conduct efficiently for large-scale data.

5.3 Evolution learning

Evolution learning is a generic population based
metaheuristic optimization algorithm inspired by the
mechanics of natural selection and natural genetics. This
algorithm comes in various forms, among which the
genetic algorithm (GA) is the most commonly used for
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NAS frameworks. The most important component of the
GA is the population, which is often called individuals.
An individual consists of solution components or genes.
The GA is an iterative process that involves evaluating
individuals from an initialized population according to a
fitness function and generating a new population using
the best individual(s) of the previous generation. On one
hand, generating a new population involves crossover
and mutation operations; on the other hand, only the
mutation is applied. Thus, only the best individual is
selected and altered to obtain a new individual. In the
Graph-NAS problem, the population is generated from
the search space, and the genes are the description of
a GNN architecture. However, because of the large
size of the search space, determining the fitness of all
individuals is almost impossible, as training one GNN is
time-consuming, especially with a large graph dataset.
Shi et al.[23] and Li and King[48] randomly initialize the
population with a fixed size. The main problem with this
method is the slow convergence.

5.4 Differentiable search

The key idea of the differentiable search method is
to couple architecture sampling and training into a
supernet to reduce the resource overhead. This idea
implies defining a continuous search space instead of
searching over a discrete set of candidates. Relative to
previous search algorithms, a continuous search space
helps to define a differentiable training target and leads
to efficient optimization and fast convergence. Originally
proposed for the NAS problem[52, 63], the differentiable
search focuses on finding repetitive structures in a
network called units. Modern neural networks consist
of one or more computational blocks stacked together
to form the final structure of the networks[65]. Although
the network can have hundreds of layers, the structure
of each layer is repeated. Therefore, learning one
or two structures expressed as cells is sufficient to
design entire networks. Different differentiable search
methods vary in terms of how supernets are trained.
Efficient Neural Architecture Search (ENAS)[63] trains
a one-shot model on the basis of the approximate
gradient obtained through REINFORCE after sampling
the architecture from the search space using an RNN
controller. DARTS[52] uses the joint optimization of
all weights of one-shot models with a continuous
relaxation of the search space, while SNAS[53] optimizes
a distribution over candidate operations. In Graph-
NAS frameworks based on differentiable search, a

block is generally represented as a direct acyclic
graph[54, 56, 57, 59, 60] consisting of an ordered sequence of
nodes.

Suppose we would like to choose an operation for
each layer of a five-layer network. The basic idea of
the differentiable search for Graph-NAS is to create
a network (supernet) by stacking mixed operations.
In each mix operation, we apply all the candidates’
operations in each layer and linearly combine their
outputs. The mixed coefficients are designed to act
as selection parameters. We can then perform an
architectural search by minimizing a loss function,
such as cross-entropy loss. The final architecture is
then created by choosing the operation that obtains
the largest coefficient in each layer. The continuous
relaxation scheme relies on a parameterization trick
that is less noisy and easier to train than those in
previous search algorithms. Moreover, this search
strategy can outperform previous search strategies in
terms of search quality and speed. However, because of
the construction of the supernet, the strategy results in
huge computational costs and requires a differentiable
approximation of latency.

5.5 Random search

RS involves generating random submodels from
the search space. RS has been tested by some
researchers[24, 46, 66] for Graph-NAS. Unfortunately, even
if this method can provide good results in terms of
efficiency, it is not widely adopted because of its
hazardous results, which are often less optimal than
those generated by other methods. To alleviate the
hazardous nature of this approach, You et al.[24] used
a controlled RS to evaluate the importance of a specific
choice relative to other choices of the same component.
The algorithm tests a fixed number of GNN models
with the choice to be evaluated and randomly selects
the other components. For each choice, the algorithm
ranks the selected GNN models by their performance and
analyzes the ranking distribution. The most important
choice is selected for the final GNNs. Even though this
method is computationally expensive, it achieves good
results. Thus, investigating it further offers an interesting
research direction.

5.6 Comparative analysis

Although most of the research methods cited previously
have yielded good performance, each of them has
drawbacks that are worth noting. Herein, we aim to
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provide a comparison of the aforementioned search
strategies by referring to their advantages and limitations.
The comparison is shown in Table 6.

6 Performance Evaluation

The role of the evaluation strategy is to help the
search algorithm optimize its choice of a submodel.
It basically depends on how the new submodel is
generated. On one hand, if generating a new submodel
involves overwriting the old submodel[44, 46], then the
evaluation will reflect the global performance of the
submodel; on the other hand, if generating a new
submodel simply requires changing a few components of
the old model[22, 23], then the evaluation will be related
to the components to determine their importance in
the variance of submodel performances. Metric-based
performance is considered depending on the nature
of a task. For node classification, accuracy is used to
evaluate a whole model, while entropy is calculated for
component evaluation. Thus, the main challenge is how
to speed up the submodel evaluation and improve the
efficiency of the evaluation process. Several strategies
have been proposed for different frameworks, and they
can be applied individually and in combination. The very
first strategy that quickly gained consensus is the sharing
of the weights of the parameters, that is, weight sharing
or parameter sharing[46, 48]. Weight sharing helps prevent
a newly generated submodel from being trained from
scratch to convergence, thus allowing it to benefit from
the weights of previously trained models. However, this
strategy can be harmful, especially when the weights
are shared between two models that do not have the
same dimensions. To correct this negative aspect of the
strategy, many studies have opted for sharing with a
constraint to avoid weight sharing between two models
that do not share a certain number of similarities. Zhou et
al.[22] proved through experiments that parameter sharing
is not empirically useful. Another strategy is the single-
path one-shot model proposed by Guo et al.[67], in which,
at each iteration, only one operation between the input

and output pair is activated.
Another way to speed up the submodel evaluation

that has not been explored yet for Graph-NAS is to
use performance prediction[68–70] instead of training all
generated models to obtain the performance metrics.
However, this method entails the use of hundreds
of GNN performance distribution and graph data
characteristics to build a neural predictor. One can
also use the buffer mechanism for graph representation
learning[66].

7 Application

Graph-NAS has various applications. In this section, we
present the benchmark graph datasets used for Graph-
NAS applications, evaluation methods, and open-source
implementation.

7.1 Datasets

Six benchmark datasets, namely, the Cora dataset,
CiteSeer dataset, PubMed dataset, PPI dataset, Wiki
dataset, and BlogCatalog dataset, are commonly used
for experiments. We divide these datasets into the
following dimensions: Citation networks, biographs, and
social networks. Table 7 shows the statistic of selected
benchmarks dataset descriptions.

7.2 Evaluation and open-source implementations

7.2.1 Evaluation
Node classification, graph classification, and link
prediction are the most widely used applications for
evaluating Graph-NAS performance.
� Node classification: Node classification is one of

the most popular and widely adopted applications of
GNNs. The target is to learn the embedding state of
nodes to predict the ground-truth label of unlabeled
nodes. It usually takes place in semi-supervised learning,
where the ground truths of some nodes are known,
but those of others are unknown. Most of the studied
Graph-NAS frameworks follow the standard division
of training/validation/test for benchmark datasets. The

Table 6 Comparison of search algorithm strategies.
Search strategy Advantage Limitation

Reinforcement learning Maximize performance Time-consuming

Bayesian optimization Use a probabilistic model
Sequential model-based optimization; computationally

expensive

Evolution learning Inherently parallel; easily distributed
Depends on the initial population; easy to fall into premature

convergence; slow convergence
Differentiable search Couple architecture sampling and training Expensive computation cost

Random search Not expensive in terms of computation Hazardous result
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Table 7 Benchmark datasets.

Category Dataset Source #Graphs #Classes
#Nodes
(Avg)

#Edges
(Avg)

#Features
#Training

Nodes
#Validation

Nodes
#Testing
Nodes

Publication

Citation
networks

Citeseer
Ref.
[71]

1 6 3327 4732 3703 120 500 1000
Refs.

[22–24, 44, 46–
48, 50]

Cora
Ref.
[71]

1 7 2708 5429 1433 140 500 1000

Refs.
[22–24, 44, 46–
48, 50, 54, 56,

59]

Pubmed
Ref.
[71]

1 3 19 717 44 338 500 60 500 1000

Refs.
[22–24, 44, 46–
48, 50, 54, 56,

58, 59]

Social
networks

BlogCatalog
Ref.
[72]

1 39 10 312 333 983 – – – – Ref. [58]

Wikipedia
Ref.
[73]

1 10 11 701 216 123 300 – – – Ref. [58]

Bio
graphs

Proteinprotein
interaction

Ref.
[74]

24 121 56 944 818 716 50 – – –

Refs.
[22–24, 44, 47,
48, 50, 54, 56,

58, 59]

ENZYMES
Refs.

[75, 76]
600 2 39.06 72.82 – – – – Ref. [24]

PROTEINS
Refs.

[75, 77]
1113 6 32.5 62.14 – – – – Ref. [24]

commonly used datasets for node classification are the
Cora dataset, CiteSeer dataset, PubMed dataset, and
protein-protein interaction dataset.
� Graph classification: The task here is to classify

an entire graph into different classes. The graph
classification task is similar to other classification
tasks with a wide range of applications, from
determining the enzymatic properties of proteins in
bioinformatics to determining small communities in
social networks. Biochemical graphs are usually used for
graph classification experiments. You et al.[24] proposed
a Graph-NAS framework with a task space comprising
six graph classification tasks over multiple datasets,
including the ENZYMES dataset and PROTEINS
dataset.
� Link prediction: In the link prediction task,

a GNN model needs to understand the relationship
between nodes in graphs and identify pairs of nodes that
will form a link or not in the future. In social networks,
social interactions should be inferred, or products should
be suggested to users. For link prediction, most existing
Graph-NAS frameworks have been evaluated using the
Wikipedia dataset and the BlogCatalog dataset.

Table 8 presents a general comparison of Graph-NAS

frameworks.

7.2.2 Open source implementations
An open-source implementation of a framework is a
system in which the source code of the framework is
available to allow the developers of a program to modify
the elements of the underlying framework to meet their
own specific needs. Thus, complex new programs can
be written easily without having to start from scratch.
Several works cited in this article have published the
source codes of their implementations. For GNNs,
the most popular open source is the work of Fey et
al.[78] which contains a geometric learning library in
PyTorch called PyTorch Geometric. It contains several
GNN models including GCN[36], GAT[38], GIN[37],
GraphConv[79], LEConv[39], ARMAConv[80], and so
on. Wang et al.[81] recently published the Deep Graph
Library (DGL) which enables rapid implementation
of many GNNs in addition to popular DL models.
These two open source implementations are used by
GraphNAS� which is an open source implementation of
the framework described

�https://github.com/GraphNAS/GraphNAS-simple
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Table 8 Summary of different Graph-NAS frameworks.

Model
Search space Search strategy Evaluation optimization Task
ACs HPs RL EL BO DS RS CI PS SO NC GC LP

GraphNAS a[44] 3 7 3 7 7 7 7 7 3 7 3 7 7

3 7 3 7 7 7 3 7 3 7 3 7 7

GraphNAS b[46] 3 3 3 7 7 7 7 7 3 7 3 7 7

3 3 3 7 7 7 3 7 3 7 3 7 7

SNAG[47] 3 7 3 7 7 7 7 7 7 7 3 7 7

3 7 3 7 7 7 7 7 3 7 3 7 7

AGNN[22] 3 7 3 3 7 7 7 3 7 7 3 7 7

3 7 3 3 7 7 7 3 3 7 3 7 7

AutoGraph[48] 3 7 7 3 7 7 7 7 3 7 3 7 7

Genetic GNN[23] 3 3 7 3 7 7 7 7 7 7 3 7 7

AutoGM[50] 3 3 7 7 3 7 7 7 7 7 3 7 7

GraphGym[24] 3 3 7 7 7 7 3 3 3 7 3 3 3

AutoNE[58] 7 3 7 7 3 7 3 7 7 7 3 7 3

PDNAS[54] 3 7 7 7 7 3 7 3 7 3 3 7 7

DiffMG[57] 3 3 7 7 7 3 7 3 7 3 3 7 7

SANE[56] 3 3 7 7 7 3 7 3 7 3 3 7 7

DSS[59] 3 3 7 7 7 3 7 3 7 3 3 7 7

GNAS[60] 3 3 7 7 7 3 7 3 7 3 3 3 7

Note: ACs = architecture components, HPs = hyperparameters, RL = reinforcement learning, EL = evolution learning, BO = bayesian
optimization, RS = random search, CI = component importance, PS = parameter sharing, SO = single-path one-shot, NC = node
classification, GC = graph classification, and LP = link prediction.

in Ref. [46]. Many other open source implementations
for Graph-NAS exist, and they include AutoNE�,
AutoGM�, GraphGym‘, and AutoGL‖.

8 Conclusion and Future Directions

Graph-NAS has become a significant research topic
because of its ability to circumvent multiple difficulties
encountered when building GNN models manually.
As shown in Tables 5 and 6, although Graph-NAS
frameworks have proved their power in finding
great GNN models, a robust trade-off between high
performance, low cost, and scalability still need to
be found because existing solutions fail to maintain
low costs for high scalability with high performance.
In summary, the current solutions for Graph-NAS
outperform handcrafted GNN models but still suffer
from some problems, especially in terms of adaptability,
scalability, and automation. Moreover, current solutions
show great room for improvement. We suggest future
research directions from the aspects of efficiency,
scalability, adaptability, and automation.

Efficiency. A search algorithm cannot find the

�https://github.com/tadpole/AutoNE
�https://github.com/minjiyoon/ICDM20-AutoGM
‘https://github.com/snap-stanford/GraphGym
‖https://github.com/THUMNLab/AutoGL

best solution for a target task outside the solutions
included in the search space. Thus, a good search
space should consider all state-of-the-art GNN model
structures. You et al.[24] proposed a general search
space of GNNs with 12 functions that is a Cartesian
product of different design functions and found that
7 out of the 12 design functions exert a significant
influence. Given the diversity of the best GNN model
architectures, how to standardize the search space with
only influential functions while considering all the
best model architectures could be an interesting future
research direction. Meanwhile, learning the distribution
of existing frameworks’ performance would be a good
research direction that will highlight the most influential
factors of the effectiveness and efficiency of automated
GNN frameworks.

Scalability. For a practical algorithm implementation,
running time and performance are the most relevant
factors. ML models are expected to work at the same
quality observed when applied to large data. However,
for most of the publications studied, the execution
time increases quickly when the search space size
is slightly increased, and the quality of the solution
decreases as the size of the graph data increases. A
study on the application of parallel computation to
existing search algorithms might help reduce the linearity
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between the data size and computation time of Graph-
NAS. Meanwhile, one can use a model’s performance
predictor to predict a child model performance instead
of conducting a full evaluation of a child model.

Adaptability. Adaptability to other problems of the
same family is a desirable characteristic of ML models
because it eliminates the need for ML practitioners to
change or repeat patterns when the problem changes.
You et al.[24] studied a task space with 32 different
tasks to transfer the best models across different tasks.
However, the task space combined with the search space
leads to over 10 million possible combinations, thus
raising the problem of how we can study search and task
spaces to improve framework adaptability.

Automation. Automation is a worthwhile feature
of ML models because it allows ML models to
automatically scale as data size increases without the
need to rethink or manually change parameters, adapt
automatically to new changes in the definition of the
problem, automatically generalize to unseen instances
without the need to retrain the model, and automatically
improve performance with experience. Thus, a joint
study of efficiency scalability and adaptability can be an
interesting research direction.
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