
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 01/10 pp653–663
DOI: 10 .26599 /TST.2021 .9010058
Volume 27, Number 4, August 2022

C The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Residual Convolutional Graph Neural Network with Subgraph
Attention Pooling

Yutai Duan, Jianming Wang, Haoran Ma, and Yukuan Sun�

Abstract: The pooling operation is used in graph classification tasks to leverage hierarchical structures preserved in

data and reduce computational complexity. However, pooling shrinkage discards graph details, and existing pooling

methods may lead to the loss of key classification features. In this work, we propose a residual convolutional graph

neural network to tackle the problem of key classification features losing. Particularly, our contributions are threefold:

(1) Different from existing methods, we propose a new strategy to calculate sorting values and verify their importance

for graph classification. Our strategy does not only use features of simple nodes but also their neighbors for the

accurate evaluation of its importance. (2) We design a new graph convolutional layer architecture with the residual

connection. By feeding discarded features back into the network architecture, we reduce the probability of losing

critical features for graph classification. (3) We propose a new method for graph-level representation. The messages

for each node are aggregated separately, and then different attention levels are assigned to each node and merged

into a graph-level representation to retain structural and critical information for classification. Our experimental results

show that our method leads to state-of-the-art results on multiple graph classification benchmarks.

Key words: graph neural network; graph pooling; information loss

1 Introduction

The recent success of deep learning neural networks (e.g.,
convolutional neural networks (CNNs)[1] and recurrent
neural networks (RNNs)[2]) has boosted research on
pattern recognition and data mining, which mainly
capture hidden patterns of Euclidean data. With an

�Yutai Duan is with Information and Communication
Engineering Department, Tiangong University, Tianjin 300387,
China. E-mail: ytduan398@163.com.
� Jianming Wang is with Computer Science Department, Tiangong

University, Tianjin 300387, China. E-mail: wangjianming@
tiangong.edu.cn.
�Haoran Ma is with Software Engineering Department,

Tiangong University, Tianjin 300387, China. E-mail:
mahaoran068@163.com.
�Yukuan Sun is with the Center for Engineering Intership and

Training, Tiangong University, Tianjin 300387, China. E-mail:
sunyukuan@tiangong.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2021-04-27; revised: 2021-07-08;
accepted: 2021-07-30

increasing number of applications where data are non-
Euclidean and have to be represented in the form of
graphs, there is an increasing interest in extending
deep learning for graph data and graph neural networks
(GNNs)[3, 4].

Wu et al.[5] divided GNNs into four categories:
recurrent GNNs, convolutional GNNs, graph
autoencoders, and spatial-temporal GNNs.
Convolutional GNNs generalize the convolution
operation from grid data to graph data. The primary idea
is to generate a representation of a node by aggregating
its own features and neighbors’ features and extract
high-level node representations by stacking multiple
graph convolutional layers. There are two different
convolutional GNN frameworks: node classification and
graph classification.

The convolutional GNN frameworks for node
classification adopt a nonlinear transformation after
each graph convolutional layer, and the final hidden
representation of each node aggregates features from



654 Tsinghua Science and Technology, August 2022, 27(4): 653–663

a further neighborhood by stacking multiple layers.
In graph classification models, a graph convolutional
layer is always followed by a pooling layer to coarse
a graph into subgraphs, so that node representations
on coarsened graphs represent high graph-level
representations.

Similar to CNN models, pooling in GNNs is a
downsampling strategy to reduce the size of model
parameters and solve the computational problem.
Nowadays, the mean/max/sum pooling is the most
primitive and effective way to implement pooling
in GNNs because of the fast calculation of the
mean/max/sum values. The values represent the
importance of nodes and are used to order all nodes
in a graph. Consequently, the nodes at the end of the
sorting will be abandoned.

Pooling shrinkage discards graph details and
unavoidably loses information. Moreover, existing
pooling methods may lead to discarding critical features
for classification owing to two reasons: the network may
not choose the most representative nodes, and feature
extraction methods are lacking.

The pooling layer needs to retain or discard
nodes, which demands GNNs to completely learn the
topology and features of each node. Global pooling
only has one pooling layer, which cannot extract
rich substructures. Existing hierarchical methods[6]

only use one convolutional layer for learning and
then performing a pooling operation. Because of the
insufficient expressivity of a graph convolutional layer,
the pooling layer may not retain important substructures.
An obvious idea is to learn the detailed topology using
several graph convolution layers before each pooling
layer. However, the stacking of several convolutional
layers will lead to over-smoothing problems and
GNN degradation. Therefore, we need to design a
dedicated GNN to ensure that a network with a pooling
layer extracts key substructures and that the GNN
is not plagued by the over-smoothing problem and
performance degradation[7].

To this end, we propose a novel GNN that contains
threefold solutions to the problem: (1) Different
from the mean/max/sum pooling, we propose a more
sophisticated strategy to calculate sorting values. Our
strategy uses not only the features of one node but also
those of its neighbors. (2) Inspired by residual neural
networks[8], we design a new architecture of the graph
convolutional layer with the residual connection. By
stacking several convolutional layers, which increase

the receptive field of GNNs, we reduce the probability
of losing critical features for graph classification to
learn the complete structural information and feed
abandoned features back into the network architecture
multiple times. (3) The global extract approach based
readout operation in GNNs is mainly used to generate
graph-level representations, which can result in the
loss of critical and structural information for graph
classification. We propose a new strategy for graph-level
representation generation, which separately aggregates
each node’s information and introduces the attention
mechanism to distinguish the different contributions of
each node to graph representation and alleviate the loss
of critical and structural information.

In this work, we propose a novel GNN called residual
convolutional GNN (RCGNN), which alleviates the
loss of critical and structural information for graph
classification. Our contributions can be summarized as
follows:
� We propose a graph residual learning block

(GRLB). It contains three graph convolutional network
(GCN)[4] layers and a residual connection, which
enhances expression and is not plagued by the over-
smoothing problem.
� We propose 1-hop subgraph attention pooling

(SAPooling), which can retain representative subgraphs.
� We propose a graph representation attention

summarizing (GRAS) module, a new-generation strategy
of graph-level representation that can retain critical and
structural information for classification.

The remainder of the paper is structured as follows:
Section 2 introduces related works. Section 3 presents
the detailed introduction of the RCGNN. Section 4
describes the implementation of the experiment and
the results of the experiments. Section 5 discusses the
conclusions of the study.

2 Related Work

2.1 Graph convolution

In recent years, generalizing the convolution operator
to graph data has become an interesting topic. The
approaches are divided into spectral and non-spectral
domains. Spectral approaches utilize spectral filters by
redefining the Fourier transform on graphs and applying
the semi-supervised node classification task. Non-
spectral approaches, such as GraphSAGE[9], aggregate
messages through the structure of the graph. Researchers
also have introduced attention mechanisms[10] to
convolution operations. Noteworthily, the essence of



Yutai Duan et al.: Residual Convolutional Graph Neural Network with Subgraph Attention Pooling 655

the above methods is message passing between neighbor
nodes.

Kipf and Welling[4] proposed a GNN containing two
graph convolutional layers and found that performance
declines with the increasing depth of the network. This
phenomenon is called the over-smoothing phenomenon,
where the features of nodes will become difficult to
distinguish as the number of graph convolutional layers
increases. Some researchers have attempted to find
solutions for this problem and found that increasing the
network depth through effective structures or approaches
would improve the performance of the model[11, 12].

2.2 Graph pooling methods

A graph convolution operation can also be used for graph
classification tasks by the addition of a feature matrix.
However, the approach fails to aggregate the multi-
scale information of a graph, which results in obtaining
flat features. The approach also lacks the capability of
capturing important substructures in a graph, which is a
crucial basis for classification. For example, functional
groups in compounds and important small groups in
social networks are all important features of identifying
a graph.

Graph pooling is another crucial step of a GNN for
downsampling in graph classification. Pooling layers
can characterize and collect the multi-scale information
of graphs. Pooling layers can also rationally change
the structures of graphs and learn important local
structures and features. Pooling approaches are divided
into structure-based or feature-based methods.

Researchers have proposed many pooling methods
from different aspects. Structure-based approaches[13]

output a coarsened graph via clustering through the
convolutional layer. Feature-based approaches[6, 14, 15]

leverage the node features to give a score for each
node and then remove a part of the nodes based on
the scores. Both approaches use the same architecture
and approaches of feature computation based on global
pooling.

3 Proposed Framework

Problem statement: First, we use G.V;E/ to represent
a complete graph, which consists of vertex set V with
N nodes and set of edges E. The structural information
of a graph can be represented by an adjacency matrix
A 2 RN�N and feature matrix X 2 RN�d, where d is the
dimension of node features in datasets. A set of graphs
can be represented as fGig, which are associated with a
set of labels fyig. The graph classification task ains to

predict the corresponding label of the input graph. We
aim to design a novel GNN to break the limitations of
previous works, which can alleviate the loss of structural
and critical information for graph classification and
degradation of GNN.

3.1 Overview of the RCGNN

In this paper, a GCN[4], an effective approach for node-
level representation learning, is set as the basis of
our work. First, a GCN model was designed for semi-
supervised node classification. In the GCN model, the
forward model can be written as

Xl
D �. QD�

1
2
� QA � QD�

1
2
� Xl�1

�Wl�1/ (1)

where QA D A C I for the self-loop, QD 2 RN�N is the
degree matrix of the adjacency matrix QA. X is the feature
matrix. � is the activation function, which represents
ReLU. The output of the GCN is a new feature matrix.
Each row of the new feature matrix corresponds to the
feature of the node.

Figure 1 shows an illustrative example of the RCGNN.
When a graph enters, the high-level features are extracted
using the GRLB. Then, a new graph is obtained by
removing part of the nodes and maintaining links
through 1-hop SAPooling layers. The RCGNN contains
nine GCN layers, and every graph will be pooled three
times. After pooling the layers, three subgraphs will
be sent to the GRAS module to generate a graph-level
representation for classification. Finally, a multilayer
perceptron with two full connection layers will be
employed for prediction.

3.2 GRLB

To preserve identifiable subgraphs in pooling layers,
GNNs need to completely learn graph information.
For learning the topology and features of each node,
we replace one graph convolutional layer with three
graph convolutional layers. Meanwhile, inspired by
He et al.[8], we added residual connections between the
convolutional layers to fix the over-smoothing problem
caused by the stacking graph convolutional layers. The
GRLB is shown in Fig. 2, and the forward model can be
written as

ZlC1
D �.Xl

3 C �.X
l
1//;

Xl
i D �.

QD�
1
2
� QA � QD�

1
2
� Xl

i�1 �Wl
i�1/ (2)

where ZlC1 is the output of the (lC 1)-th GRLB and Xl
i

is the output of the i-th GCN layer of the l-th GRLB.
Wl

i 2 RF�F are learnable parameters. F is the hidden
dimension of node features. To highlight the features



656 Tsinghua Science and Technology, August 2022, 27(4): 653–663

 V
 
 

M

Fig. 1 Overview of the RCGNN: (a) Input a graph to RCGNN. (b) The high-level features of the graph are extracted by using
the GRLB module (refer to Section 3.2). (c) Then, the graph is pooled by the SAPooling (Section 3.3) layer to obtain a subgraph.
(d) Steps (b) and (c) are repeated three times. Three subgraphs are obtained. (e) Finally, the features of the three subgraphs are
summarized by using the GRAS module (Section 3.4) for computing the graph-level representation.

Fig. 2 Illustration of GRLB.

of the current nodes, we set QA to QA D A C 2I, which
is a common graph processing technique. The GRLB
consists of three graph convolutional layers, and we
set the start of the residual connection after the first
convolutional layer. The end of the residual connection
was installed in the third convolutional layer of the
GRLB.

3.3 1-hop SAPooling

Our objective is to make the pooling layer preserve key
subgraphs that can represent the whole graph. Therefore,
we propose the 1-hop SAPooling layer. We divided each
node into a 1-hop subgraph. 1-hop subgraph features are
used to replace node features to compute the attention
scores (node importance) for each node. Nodes with low
attention scores will be discarded.

3.3.1 1-hop subgraph setting
First, we introduce the 1-hop subgraph division strategy.
The attention scores of nodes represent the importance
of nodes in a graph. If the attention scores of some nodes
are very high, then the scores of their neighbors increase
after message passing. Thus, the pooling operator selects
clusters in the local neighborhood instead of subgraphs
that represent the whole graph.

We set the 1-hop subgraph and replaced the features
of nodes with the features of the 1-hop subgraphs. For

graph G.V;E/, the feature matrix is X and its adjacency
matrix is A. Before sampling by pooling layers, we
divided the subgraph vsG

i with each node vi as the center
and 1-hop neighbor as the radius. We can derive the
subgraph set VsG, where the feature matrix is XsG

2

RN�2F: xsG
i is defined as

xsG
i D max

j2N .vi /
.xi � xj /jj

1

jj 2 N .vi /j

X
j2N .i/

.xi � xj /

(3)
where xi represents the i-th node feature vector in
G.V;E/, N .vi / represents the 1-hop neighbor of the
node, and jj is the concatenation operator, as shown in
Fig. 3.

The function of Eq. (3) is to aid pooling layers in
measuring the importance of nodes, where the 1-hop
subgraph features are extracted for each node. Equation
(3) extracts the 1-hop subgraph features with the current
node as the center and 1-hop neighbor as the radius
through a non-learning way. We used the 1-hop subgraph
features instead of single-node features to compute
attention scores for node selection. The left half of
Eq. (3) represents the relative value of the central node
and the first-order neighbor feature. The right half of
Eq. (3) represents the mean values of all nodes in the
subgraph.

Fig. 3 Illustration of the 1-hop subgraph setting.



Yutai Duan et al.: Residual Convolutional Graph Neural Network with Subgraph Attention Pooling 657

Particularly, the feature matrix XsG is only used in the
attention computing of pooling layers and classification
feature computing (Section 3.4).

3.3.2 Node selection strategy
To verify the effectiveness of the 1-hop subgraph setting,
we conducted experiments on two feature-based pooling
methods. We chose SAGPool[8] and ASAP[15] as the base
models to conduct the experiments. First, we present a
new self-attention calculation method based on ASAP
and SAGPool:
�i D sigmod.xsG

i W1 C

X
j2N

Ai:j .xsG
i W2 � xsG

j W3//

(4)

�s
i D �.

QD�
1
2 QA QD�

1
2 XsGWatt/ (5)

where W1 2 R2F�1;W2 2 R2F�1;W3 2 R2F�1, and
Watt 2 R2F�1 are learnable. The elements �i in ��� 2
RN�1 and �s

i in ���s 2 RN�1 are scalars that represent
the attention scores for nodes.

Equations (4) and (5) use the methods in SAGPool[8]

and ASAP[15] to calculate the attention scores of nodes,
respectively. Different from ASAP[15] and SAGPool[8],
we replaced the information of the single-node feature xi

with the 1-hop subgraph feature xsG
i . xsG

i is calculated by
Eq. (3) to verify the effectiveness of the 1-hop subgraph
setting. We provide the corresponding experiments in
Section 4. In this work, Eq. (4) is used to compute
attention scores in the 1-hop SAPooling layer.

After obtaining ��� 2 RN�1, we adopted the strategy of
Gao and Ji[14]. dkN e nodes in the graph were preserved
based on the pooling ratio k 2 .0; 1/ , which is a
hyperparameter. The index of the preserved nodes is
defined as

Oi D TOPK.���; dkN e/ (6)

where TOPK.���; dkN e/ is a function that ranks the
scores and selects the index of the preserved nodes.
Following Ying et al.[13], we constructed the distribution
matrix S 2 RN�N , which reflects the affiliation between
the subgraphs and nodes. The new graph is constructed
as

OS D S.W; Oi/; OX D X.Oi ; W/ (7)

OA D OS
T
QA OS (8)

Equation (7) represents the distribution matrix and
feature matrix that perform row or column extractions
for reconstructing links between nodes. Then, the new
graph is constructed by Eq. (8), which any two nodes,
having common neighbors removed by pooling layers,

will be connected. The attention scores were multiplied
by the feature matrix as a proper scaling for the feature
matrix Xout. Finally, the new feature matrix is defined as

Xout D OXˇ ��� (9)

whereˇ is the broadcasted Hadamard product.

3.4 GRAS module

In graph classification tasks, it is a common operation to
extract graph features using max and mean aggregators.
The RCGNN has nine GCN layers, which is more
than that in other networks with graph pooling layers.
However, as the number of GCN layers increases, the
features of nodes tend to be the same. Although a GRLB
is used to alleviate this problem, the max/mean/sum
aggregators may not be able to extract distinguished
graph representations, resulting in a decline in the model
performance.

Briefly, a GCN is a message-passing model, where
node representations become similar as the number of
network layers increases[16]. On this basis, we make the
following conjecture:

Conjecture 1 The over-smoothing problem will
result in indistinguishable nodes, which will further
lead to the degradation of model performance in graph
classification tasks.

We will verify Conjecture 1 on real-world datasets
through our experiments (in Section 4).

Accordingly, we need to ensure that the extracted
graph representations are distinguishable. To this end,
we propose the GRAS module, which is shown in Fig. 4.
Different nodes remain in the network for different
time because some nodes are discarded when they pass
through different pooling layers. GRAS follows the idea
that nodes with a long retention time will have a fusion
of multiple expressions.

Fig. 4 Illustration of the GRAS module.



658 Tsinghua Science and Technology, August 2022, 27(4): 653–663

For the graph G.V;E/, assuming that there are M
pooling layers in the network, we denote them-th pooled
graph as GP

m, where the number of nodes is N P
m and the

feature matrix is XP
m 2 RN P

m �d . The 1-hop subgraph
feature matrix for GP

m is XsG
m 2 RN P

m �2d . xsG
m;i is

computed as

xsG
m;i D max

j2N .vi /

�
xi � xj

�
jj

1

jj 2 N .vi /j

X
j2N .i/

.xi � xj /

(10)
Naturally, NP

1 D maxfNP
m jm D 1; 2; : : :g. For

graph GP
m , the index of preserved nodes is denoted as

idxP
m . We generated the zero matrix 0 2 RN P

1
�2d ,

and constructed medium matrices OsG
m for each pooled

graphGP
m . The matrix OsG

m and hierarchical information
aggregation matrix XA

2 RN P
1
�2d are contrasted in the

following manner:
OsG

m D distribute.0N P
1
�2d ;XsG

m ; idxP
m/; iD 1; 2; : : : ;

XA
D

MX
mD1

OsG
m (11)

where distribute.0N P
1
�d ;XsG

m ; idxP
m/ is an operator that

distributes row vectors in XsG
m to 0N P

1
�2d . The purpose

of Eq. (11) is shown in Fig. 4. If the node is removed
by the pooling layer, then the features corresponding to
the node will be set to 0 vector. In addition, Eq. (11)
adds several features matrices, which makes nodes with
longer retention time have more features. xA

i D
P

m xsG
m;i ,

which represents that each 1-hop subgraph feature
is summarized separately. We pay attention to each
subgraph through the full connection layer and compute
the classification vector as follows:

Qs D softmax.Fattn.XA//;

XA
D XA

ˇ Qs;

S D
N P

1X
iD1

xA
i

 N P
1max
i

xA
i

(12)

where the softmax function is evaluated along the
column dimension and Fattn.�/ represents two fully
connected layers. The number of neurons in the first
layer is F , and the number of neurons in the second
layer should be 1=2F . In Eq. (12), Qs is the attention
value of each node before generating a graph-level
representation. If one node is removed after the first
pooling layer, then there is no information of that node
in the matrix XA. Finally, we send the graph-level
representation S 2 R1�4F to two full connection layers
for classification to obtain the final prediction.

4 Experiment

We first verified the effectiveness of our proposed 1-hop
subgraph setting. We also conducted experiments to
verify Conjecture 1. Then we evaluated the performance
of the proposed framework RCGNN on a graph
classification task. The RCGNN was compared with
several global and hierarchical pooling methods. The
details of the datasets used for evaluation and the
baseline are introduced below. On this basis, we also
conducted multiple ablation experiments to verify the
effectiveness of each part of the RCGNN. We conducted
all experiments based on PyTorch Geometric[17]. We
evaluated each dataset using 10-fold cross-validation
and calculated the average accuracy of 10 times cross-
validation in all experiments. We randomly split each
dataset: 80% as the training set, 10% as the validation
set, and the remaining 10% as the test set.

4.1 Dataset

We evaluated our approach on five datasets that
contained large amounts of graph data. PROTEINS[18, 19]

and DD[20] represent proteins, and the nodes are amino
acid units. If the distance between two amino acid
units is less than a certain threshold, then an edge is
produced. The label indicates whether protein is a non-
enzyme. NCI1[21] is a biological dataset for screening
for anticancer activity classification, and NCI109 is
targeted at ovarian cancer cells. Each graph in the dataset
is a compound, with nodes representing courtyards
and edges representing bonds. FRANKENSTEIN is
a series of molecular diagrams with high dimensional
node features. The label indicates whether or not it is a
mutagen. The dataset statistics are shown in Table 1.

4.2 Baseline

The baseline we chose is as follows: The RCGNN was
compared to GCN[4] and GraphSAGE[9]. We compared
the RCGNN to global pooling approaches including
SET2SET[22], Sortpool[23] and SAGPool[8] (global

Table 1 Statistics of datasets.
Dataset Gnum Cnum Navg Eavg

D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82

NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13

FRANKENSTEIN 4337 2 16.90 17.88

Note: Gnum and Cnum represent the number of graphs and classes,
respectively. Navg and Eavg represent the average number of nodes
and edges, respectively.



Yutai Duan et al.: Residual Convolutional Graph Neural Network with Subgraph Attention Pooling 659

architecture and hierarchical architecture). We compared
the RCGNN to hierarchical pooling approaches
including Topk[14], ASAP[15], and PANPool[24].

4.3 Experiment implementation

4.3.1 Verification of the 1-Hop subgraph setting
We first conducted experiments to verify the
effectiveness of the 1-hop subgraph setting. We
used SAGPool and ASAP as the base models. As shown
in Eqs. (4) and (5), we replaced the feature matrix X
with our subgraph feature matrix XsG when computing
attention scores. We followed the network structure in
Ref. [8]. They both have the same network structure.
We set the batch size to 128, learning rate to 0:01,
weight decay to 1 � 10�5, pooling ratio to k D 0:5,
and the hidden dimension of node features F to 64.
The experimental results are shown in Table 2, with an
average increase of 0:77%. Because we only changed
the feature matrix, the 1-hop subgraph setting allowed
the pooling layer to retain discernible subgraphs. In the
remaining experiments, we used Eq. (4) to compute the
attention scores in the pooling layers.
4.3.2 Verification of Conjecture 1
In this section, we verify Conjecture 1 by examining how
the graph classification accuracy varies with the layer
number in the graph classification task on the NCI1 and
NCI109 datasets. We set the number of GCN layers to

Table 2 Effectiveness verification of the 1-hop subgraph
setting in different base models. 1-Hop represents that the
1-hop subgraph setting will be used in base models.

(%)
1-Hop setting NCI1 NCI109

SAGPool 70.71 69.95
SAGPoolC 1-Hop 71.87 70.67

ASAP 71.14 69.28
ASAPC 1-Hop 72.33 70.28

2, 4, 6, and 8. The hyperparameters are set as follows:
batch sizeD 128, learning rateD 0:01, weight decay D
1 � 10�5, and feature hidden dimension F D 64. The
results are shown in Table 3.

From Table 3, we have the following observations:
As we extend the network depth, the accuracy
of graph classification rapidly drops. We consider
that over-smoothing leads to indistinguishable node
representation, which further results in indistinguishable
graph-level representation extracted from the feature
matrix.

4.3.3 Experiments on graph classification dataset
Baselines and the RCGNN uniformly use the learning
rate 1 � 10�3 on the DD and FRANKENSTEIN
datasets and 1 � 10�2 on the NCI1, NCI109, and
PROTEINS datasets. This is because the nodes in DD
and FRANKENSTEIN have high dimensional feature
vectors. In the experiment, the pooling ratio was selected
from k 2 Œ0:1; 0:9� and the hidden dimension of node
features in GCN was selected from 16, 32, 64, and
128. Every approach trained 150 epochs in each dataset.
Because the authors[24] did not publish the code, we cited
the results in the paper, as shown in Table 4.

4.3.4 Ablation study
To verify the effectiveness of the GRLB, 1-hop subgraph
setting, and GRAS module in the network, we ablated
them separately. For the GRLB, we replaced it with
a single layer of the GCN. Furthermore, we ablated
Table 3 Verification of Conjecture 1. Results of the
graph classification task using different numbers of graph
convolutional layers. (%)

Dataset
Number of GCN layers

2 4 6 8
NCI1 70.44 71.12 57.91 50.07

NCI109 70.12 65.56 52.45 50.37

Table 4 Graph classification results on the validation/test sets (best viewed in bold). All results are averaged over ten different
runs. “�” represents that the method does not show results on this dataset.

(%)
Dataset D&D PROTEINS NCI1 NCI109 FRANKENSTEIN
GCN 74.89 / 72.25 76.17 / 72.51 73.64 / 71.67 71.93 / 69.56 64.42 / 61.59

GRAPHSAGE 74.30 / 71.19 74.32 / 70.47 77.35 / 74.52 74.63 / 71.74 66.26 / 64.05
SORT-POOL 73.95 / 71.87 75.83 / 72.73 76.75 / 72.29 74.62 / 70.73 69.54 / 65.04

SET2SET 76.48 / 72.41 74.77 / 71.62 75.79 / 71.99 75.90 / 71.90 64.38 / 62.02
SAGPool(G) 78.23 / 76.45 78.34 / 73.91 78.34 / 73.91 75.33 / 73.35 68.44 / 65.80

TopK 76.60 / 73.68 77.04 / 73.86 77.01 / 74.12 72.36 / 68.96 62.89 / 58.84
SAGPool(H) 79.92 / 76.10 78.72 / 72.81 77.25 / 71.63 76.24 / 70.32 67.02 / 62.81

ASAP 79.86 / 76.78 77.09 / 73.79 74.64 / 71.43 73.62 / 70.08 69.03 / 66.36
PANGCNC PANPool � / � � / 72.65 � / 68.98 � / � � / �

RCGNN(Ours) 81.67 / 77.65 80.07 / 75.09 82.20 / 80.45 81.00 / 78.67 70.51 / 68.11



660 Tsinghua Science and Technology, August 2022, 27(4): 653–663

the residual connection of the GRLB to verify the
effectiveness of the residual connection. For the 1-hop
subgraph setting, we used the original feature matrix to
participate in the calculation. For the GRAS module,
we also used the output of the readout layer, similar to
Lee et al.[6] The results of the ablation experiments are
shown in Tables 5 and 6. We also conducted comparison
experiments using a single-layer GCN/3-layer GCN
instead of the GRLB. The results of the comparison
experiments are shown in Table 7.

In addition, we conducted the ablation experiment of
the pooling ratio k. We used different pooling ratios
for the experiments and reported the results (graph
classification accuracy) of our proposed model on the
NCI1 dataset. We also compared the results with ASAP.
The experimental results are shown in Fig. 5.

4.4 Result

Table 4 shows that the RCGNN can achieve top
performance on a variety of graph classification
datasets. Tables 5 and 6 report the results of the
ablation experiments. The experimental results show
that the RCGNN’s performance degrades if it lacks the
GRLB, GRAS, or 1-hop subgraph settings, but it still
achieves top performance on most datasets. This finding
indicates that each part of the RCGNN achieves the
purpose of retaining critical or structural information for
classification.

The results in Fig. 5 show that the RCGNN

Table 5 Ablation experiments to verify the effectiveness
of each module in RCGNN. FRANKEN represents the
FRANKENSTEIN dataset. (%)

GRLB 1-HOP GRAS NCI1 NCI109 FRANKEN
X X 75.17 75.07 63.61
X X 76.82 75.22 66.60

X X 79.46 77.62 67.30
X X X 80.45 78.67 68.11

Table 6 Ablation study (graph classification results) of the
GRLB’s residual connection. (%)

GRLB NCI1 NCI109 FRANKEN
No Residual 79.32 77.95 67.34

Residual 80.45 78.67 68.11

Table 7 Comparison experiments of using a single-layer
GCN/3-layer GCN instead of the GRLB. (%)

GRLB NCI1 NCI109 FRANKEN
Model with a GCN layer 79.46 77.62 67.30
Model with 3-layer GCN 79.32 77.89 67.32

Model with GRLB 80.45 78.67 68.11

Fig. 5 Validation accuracy vs. sampling ratio k on the NCI1
dataset.

consistently outperforms ASAP. Moreover, a higher k
will lead to better performance and more information
retention, as shown in Fig. 5. However, for different
datasets, the k corresponding to the best performance
is different. For example, in the PROTEINS and DD
datasets, the performance is the best when k D 0:8 and
k D 0:4.

4.5 Analysis

4.5.1 Effects of the GRLB
Li et al.[11] and Micheli[25] found that the graph
convolutional layer can extract complete structural
information by stacking local graph convolutional layers.
Thus, we replaced a single graph convolutional layer
with three graph convolutional layers.

In addition, we set the start of the residual connection
after the first convolutional layer because the first
convolutional layer has different input and output
dimensions. Although the full connection layer is used
to change dimensions, as proposed by Chen et al.[26],
we consider that it damages the original features of
nodes. Furthermore, Li et al.[27] argued that the original
information of nodes ultimately determines the node
representation. We installed the end of the residual
after the third convolution layer. Because stacking
the convolutional layer can cause the over-smoothing
problem, the early information was fed to the network
again, and it was not propagated many times, which
alleviated the over-smoothing problem.

In this way, we can expand the receptive field
of the network, which can learn complete structural
information. The experimental results and the results
of the ablation studies indicate that the GRLB is
effective. Residual connections are also responsible for
model performance. In ablation studies, the average



Yutai Duan et al.: Residual Convolutional Graph Neural Network with Subgraph Attention Pooling 661

performance was improved by 1%.
The comparison of the experiment results of using the

single-layer GCN/3-layer GCN instead of the GRLB is
shown in Table 7. The model with the three-layer GCN
hardly improved the performance of the model, and there
was a performance degradation on the NCI1 dataset.
After adding residual connections, the performance was
improved. The results reflect the advantages of GRLB
over a single-layer GCN and three-layer GCN.

4.5.2 Effects of the 1-hop subgraph setting
In the ablation experiment, we find that using the 1-
hop subgraph information will greatly improve the
performance of the model.

Hence, it is reasonable to take the subgraph
information as a sampling basis. The pooling layer
determines whether a node is retained/discarded based
on the attention score (node importance). After message
passing by the graph convolutional layer, the subgraphs
generated by the pooling layers may be composed
of nodes with high attention scores and their local
neighbors. Thus, the reserved subgraphs are a cluster of
high-scoring nodes rather than a representative structure
of the graph. To avoid this situation, we chose to use
Eq. (3) to evaluate the relative values of a node and
its neighbors. Based on the experimental results and
ablation studies, this evaluation method significantly
improves the performance of the model, which indicates
that the 1-hop SAPooling layer can capture more
representative graph structures to improve the loss of
key information for graph classification.

4.5.3 Effects of graph representation
In the existing method, the features of a pooled graph
were extracted by max/mean/sum aggregators. However,
this approach does not distinguish nodes removed by
different pooling layers. For example, a part of the nodes
was removed by the second pooling layer, and nodes
were not removed, but these nodes will participate in the
final graph representation through global aggregation
without any difference.

After passing the GCN layer, node representations
tend to be similar. The phenomenon that can lead to
graph representations cannot be distinguished by the
Weisfeiler-Lehman (WL) algorithm. The reason is that
the upper bound of the GCN is the WL algorithm,
which was proven by Xu et al.[28] Thus, the essence
of distinguishing graphs is to make different nodes
have different representations. Essentially, the GRAS
module summarizes different amounts of information

for different nodes. Then, it learns which nodes have
a great impact on the graph representation and attaches
attention to them. This process leads to differentiated
representations of different types of nodes, which can
distinguish the graphs.

In GRAS, xA
i D

P
m xsG

m;i . Thus, a large M indicates
that the nodes remain in the graph for a long time, which
will be represented by different-level information. In
the next step, the GRAS assigns attention to the 1-hop
subgraph information of each node, so it is possible to
essentially distinguish different contributions of nodes to
the graph-level representation. Accordingly, the model
can retain complete graph structure information to avoid
the loss of critical information for classification. In
ablation studies, the average performance was improved
by 2:86%.

4.5.4 Complexity analysis
Because GRLB is made up of GCN layers, its complexity
is the same as the complexity of GCN. The 1-hop
subgraph setting is a non-learning feature extraction
strategy, which is calculated by Eq. (3) without
introducing any new parameters. Therefore, the time
complexity of the 1-hop SAPooling layer depends
on which pooling layer is combined with the 1-hop
subgraph setting. In this work, the time complexity
of a single 1-hop SAPooling layer is O.jEjF /. F is
the hidden dimension of node features. Only two fully
connected layers in the GRAS module contain learnable
weights. The number of neurons in the first layer is F ,
and the number of neurons in the second layer should be
1=2F . Thus, the time complexity of GRAS is O.NF 2/.

5 Conclusion

In this paper, we introduce the RCGNN for graph
classification. It is intended to alleviate the loss of critical
and structural information for graph classification in a
previous graph classification framework that was applied
to the pooling layer and to alleviate the degradation
of GNNs. To this end, we designed a GRLB to
learn the complete node representation and introduce
different-level information, and then designed the 1-hop
SAPooling layer to generate a representative subgraph
structure of roots. Finally, a novel graph information
summary module was designed to distinguish the
different contributions of nodes to the graph-level
representation and retained the complete graph structure
information to aid in graph classification. The RCGNN
achieved state-of-the-art performance on several graph
classification datasets, which demonstrated that it retains



662 Tsinghua Science and Technology, August 2022, 27(4): 653–663

more effective information and structural information
for graph classification. In addition, we conducted
ablation experiments on the RCGNN, which proved the
effectiveness and interpretability of our modules.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (No. 62072335) and
the Tianjin Science and Technology Program (No.
19PTZWHZ00020).

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[2] T. Mikolov, G. Corrado, K. Chen, and J. Dean, Efficient
estimation of word representations in vector space,
in Proc. of the International Conference on Learning
Representations, Scottsdale, AZ, USA, 2013.

[3] J. Atwood and D. Towsley, Diffusion-convolutional neural
networks, in Proc. of the 30th International Conference on
Neural Information Processing Systems, Barcelona, Spain,
2016, pp. 2001–2009.

[4] T. N. Kipf and M. Welling, Semi-supervised classification
with graph convolutional networks, presented at the 5th
International Conference on Learning Representations,
Toulon, France, 2017.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu,
A comprehensive survey on graph neural networks, IEEE
Transactions on Neural Networks and Learning Systems,
vol. 32, no. 1, pp. 4–24, 2021.

[6] J. Lee, I. Lee, and J. Kang, Self-attention graph pooling,
in Proc. the 36th International Conference on Machine
Learning, Long Beach, CA, USA, 2019, pp. 3734–3743.

[7] K. Zhou, Y. Dong, K. Wang, W. S. Lee, B. Hooi,
H. Xu, and J. Feng, Understanding and resolving
performance degradation in graph convolutional networks,
https://arxiv.org/abs/2006.07107, 2021.

[8] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning
for image recognition, in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 2016, pp. 770–778.

[9] W. L. Hamilton, R. Ying, and J. Leskovec, Inductive
representation learning on large graphs, in Proc. of the
31th NIPS. Conference on Neural Information Processing
Systems, Long Beach, CA, USA, 2017, pp. 1025–1035.

[10] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, Graph attention networks, presented at the
6th International Conference on Learning Representations,
Vancouver, Canada, 2018.

[11] G. Li, M. Müller, A. K. Thabet, and B. Ghanem, Inductive
DeepGCNs: Can GCNs go as deep as CNNs? in Proc. of
the 2019 IEEE/CVF International Conference on Computer
Vision, Seoul, Republic of Korea, 2017, pp. 9266–9275.

[12] Y. Rong, W. Huang, T. Xu, and J. Huang, DropEdge:
Towards deep graph convolutional networks on node
classification, presented at the 8th International Conference

on Learning Representations, Addis Ababa, Ethiopia, 2020.
[13] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J.

Leskovec, Hierarchical graph representation learning with
differentiable pooling, in Proc. of the 32th International
Conference on Neural Information Processing Systems,
Montréal, Canada, 2018, pp. 4805–4815.

[14] H. Gao and S. Ji, Graph U-nets, in Proc. of the 36th
International Conference on Machine Learning, Long
Beach, CA, USA, 2019, pp. 2083–2092.

[15] E. Ranjan, S. Sanyal, and P. Talukdar, ASAP: Adaptive
structure aware pooling for learning hierarchical graph
representations, in Proc. of the 34th AAAI Conference on
Artificial Intelligence, New York, NY, USA, 2020, pp. 5470–
5477.

[16] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun,
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view, in Proc.
34th AAAI Conference on Artificial Intelligence, New York,
NY, USA, 2020, pp. 3438–3445.

[17] M. Fey and J. E. Lenssen, Fast graph representation learning
with PyTorch geometric, presented at the 7th International
Conference on Learning Representations, New Orleans, LA,
USA, 2019.

[18] P. D. Dobson and A. J. Doig, Distinguishing enzyme
structures from non-enzymes without alignments, Journal
of Molecular Biology, vol. 330, no. 4, pp. 771–783, 2003.

[19] K. M. Abrahams, C. S. Ong, S. Schönauer, S. V. N.
Vishwanathan, A. J. Smola, and H. P. Kriegel, Protein
function prediction via graph kernels, Bioinformatics, vol.
21, no. 1, pp. 47–56, 2005.

[20] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K.
Mehlhorn, and K. M. Borgwardt, Weisfeiler-lehman graph
kernels, The Journal of Machine Learning Research, vol.
12, no. 3, pp. 2539–2561, 2011.

[21] N. Wale, I. A. Watson, and G. Karypis, Comparison of
descriptor spaces for chemical compound retrieval and
classification, Knowledge and Information Systems, vol.
14, no. 3, pp. 347–375, 2008.

[22] O. Vinyals, S. Bengio, and M. Kudlur, Order matters:
Sequence to sequence for sets, presented at the 4th
International Conference on Learning Representations, San
Juan, Puerto Rico, 2016.

[23] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, An end-to-
end deep learning architecture for graph classification, in
Proc. 32th AAAI Conference on Artificial Intelligence, New
Orleans, LA, USA, 2018, pp. 1127–1137.

[24] Z. Ma, J. Xuan, Y. G. Wang, M. Li, and P. Liò, Path integral
based convolution and pooling for graph neural networks,
presented at the 33th Conference on Neural Information
Processing Systems, Vancouver, Canada, 2020.

[25] A. Micheli, Neural network for graphs: A contextual
constructive approach, IEEE Transactions on Neural
Networks, vol. 20, no. 3, pp. 498–511, 2009.

[26] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, Simple and
deep graph convolutional networks, in Proc. of the
37th International Conference on Machine Learning, New
Orleans, LA, USA, 2020, pp. 1725–1735.



Yutai Duan et al.: Residual Convolutional Graph Neural Network with Subgraph Attention Pooling 663

[27] E. Chien, J. Peng, P. Li, and O. Milenkovic, Adaptive
universal generalized PageRank graph neural network,
presented at the 8th International Conference on Learning
Representations, Addis Ababa, Ethiopia, 2020.

[28] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerful
are graph neural networks? presented at the 7th ICLR
International Conference on Learning Representations, New
Orleans, LA, USA, 2019.

Yutai Duan received the BS degree
in electronic information science and
technology from Inner Mongolia University
of Technology, China in 2019. He is
a master student at Information and
Communication Engineering Department,
Tiangong University. His main research
interests are graph machine learning and

computer vision.

Jianming Wang received the MS and PhD
degrees from Tianjin University, China
in 2000 and 2003, respectively. From
September 2007 to September 2008, he
was a visiting scholar at the Department
of Statistics, Carnegie Mellon University,
United States. He is now a full professor at
Computer Science Department, Tiangong

University, China. His research interests are in computer vision,
robotics, and electrical tomography.

Haoran Ma received the BE degree
in software engineering from Hebei
University, China in 2020. He is a
master student at Software Engineering
Department, Tiangong University. His
main research interest is graph machine
learning.

Yukuan Sun received the BE and MS
degrees from Tiangong University, in 2009
and 2014, respectively. Since 2019, he
has been studying for a PhD degree at
Ajou University, Republic of Korea. Since
2014, he has been an engineer at Tiangong
University. His main research interests are
model compression and pruning, distributed

deep neural network, Meta-learning, and swarm intelligent
robot. He has published more than five papers in journals and
international conferences.


