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Visual Information Based Social Force Model for Crowd Evacuation

Wenhan Wu, Maoyin Chen, Jinghai Li, Binglu Liu, Xiaolu Wang, and Xiaoping Zheng�

Abstract: With the increase in large-scale incidents in real life, crowd evacuation plays a pivotal role in ensuring

the safety of human crowds during emergency situations. The behavior patterns of crowds are well rendered by

existing crowd dynamics models. However, most related studies ignore the information perception of pedestrians.

To overcome this issue, we develop a visual information based social force model to simulate the interpretable

evacuation process from the perspective of visual perception. Numerical experiments indicate that the evacuation

efficiency and decision-making ability promote rapidly within a small range with the increase in unbalanced prior

knowledge. The propagation of acceleration behavior caused by emergencies is asymmetric due to the anisotropy of

visual information. Therefore, this model effectively characterizes the effect of visual information on crowd evacuation

and provides new insights into the information perception of individuals in complex scenarios.

Key words: crowd evacuation; visual information; social force model; decision-making

1 Introduction

In light of the increasing size and frequency
of mass events in public places[1], ignoring the
existence of crowd safety is becoming extremely
difficult[2, 3]. Effective crowd management[4] and
evacuation schemes[5] are essential to reduce casualties
and property loss during accidents[6]. For the purpose
of revealing the underlying mechanism[7] of crowd
motion in real life, many models[8] of pedestrian
behavior have been proposed. As one of the most
well-known crowd dynamics models, the social
force model (SFM)[9, 10] is based on Newtonian
mechanics, successfully accounting for a number of
self-organization phenomena[11, 12] found in empirical
observations. However, the information interaction of
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pedestrians, which can be regarded as valid prior
knowledge[13], is not fully utilized in SFM. In addition,
little is known about the quantification of the impact of
information perception.

Existing studies recognize the significant role
of information perception, especially for visual
information[14, 15], in understanding crowd evacuation[16].
Visual information-driven models are established on
the basis of psychological or physiological theories.
Lemasson et al.[17] proposed a simplified retinal
model to characterize the influence of neighbors based
on neurobiological research results of information
perception. Moreover, other crowd motion models, such
as the lattice hydrodynamic model considering the visual
field effect[18], the perceived cost potential field cellular
automata model[19], and the heuristics-based SFM[20, 21],
have been developed to incorporate the impact of visual
information. Nevertheless, most of these models involve
the influence of several factors, such as the view field
and blind angle, and lack the systematic analysis for the
impact of visual information on individual behaviors in
evacuation scenarios.

With the increase in quantitative data describing
social interactions, recent studies have provided
important guidance on visual information-driven models.
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Rosenthal et al.[22] calculated the view fields of
individuals and constructed a visual interaction network
by investigating the behavioral changes in golden shiners.
Collignon et al.[23] illustrated the stochastic vision
based model inspired by zebrafish collective behavior in
heterogeneous environments. Lin et al.[24] established
the visually guided obstacle flight model inspired by
bird eyes. Although the above visual information-
driven models are adopted to explore simple behavior
patterns[25, 26] in ideal environments, whether they are
appropriate for explicating the latent laws of crowd
evacuation remains unsettled.

This paper proposes a visual information based
SFM (VISFM) to surmount the weakness of existing
models on information perception. The visual perception
mechanisms are effectively integrated into this model,
which is developed as a framework to simulate intelligent
behavior patterns of pedestrians without additional
assumptions. Numerical simulation experiments indicate
that the VISFM is interpretable and can achieve the
intelligent behavior of crowds in complex scenarios. The
increase in unbalanced prior knowledge is beneficial for
the enhancement of evacuation efficiency and decision-
making ability. Moreover, the propagation of accelerated
behavior is asymmetric due to the anisotropy of visual
information.

The rest of this paper is organized as follows. In
Section 2, the VISFM is proposed. Section 3 provides
the corresponding numerical experiments and analyzes
the effect of visual information on crowd evacuation.
Finally, Section 4 describes the discussion and future
research topics.

2 Method

2.1 Model expression

Considering the impact of visual information, the desired
direction of pedestrians depends on their own decisions
and the neighbor information in their visual fields. On
the one hand, esi .t/ is defined as the desired direction
based on prior knowledge and scene information. On the
other hand, evi .t/ denotes the desired direction based
on neighbor information. Hence, the desired direction
of pedestrian i is expressed by the following:

e0i .t/ D !e � evi .t/C .1 � !e/ esi .t/ (1)

where !e represents the weighting coefficient presenting
a tradeoff between the above two factors. When the
pedestrian understands the escape path, !e is close to 0;

otherwise, it is close to 1 when the pedestrian follows
the behavior of neighbors. In our case, !e is obtained by
sampling with the sigmoid function in accordance with
its own decision confidence fs and neighbor information
confidence fn, which is given as follows:

!e D
1

1C e�krr
(2)

where kr indicates its slope, and r is a random
variable following the uniform distribution r �

U .�10 � fs C fn; 10 � fs C fn/.
We assume that esoi .t/ and esvi .t/ represent the

correct escape direction corresponding to the fastest
decline of the static ground field and the desired direction
based on visual information, respectively. Thus, esi .t/
corresponds to the correct escape direction esoi .t/when
pedestrian i is familiar with the escape route information,
whereas esi .t/ refers to the desired direction esvi .t/
judged by the visual information.

Additionally, evi .t/ is the desired direction based on
neighbor information. In the retinal model, individuals
select the average value of the occlusion boundary as the
desired movement direction[27]. Inspired by this model,
the visual occlusion curves are adopted to indicate the
approximate direction of neighbor distribution. Suppose
the visual occlusion curve g

�
�ij
�

is the number of
neighbors observed from each angle. Individuals with
heterogenous heights are blocked to varying degrees,
resulting in different visual occlusion curves. Based on
the visual occlusion curve, the average angle of neighbor
distribution direction is calculated as follows:

ı
.t/
i D

1

NI

NIX
jD1

�
�ij � g

�
�ij
��

(3)

where NI is the number of neighbors in the view field.
From the above-mentioned analysis, the visual

occlusion curve and the alignment effect in the crowd
are comprehensively considered to form the desired
direction evi .t/ based on the neighbor information:

evi .t/ D !ne
ı
i .t/C .1 � !n/ �

˝
e0i .t � 1/

˛
(4)

where eıi .t/ D Œcos.ı.t/i /; sin.ı.t/i /� is the direction
vector of ı.t/i ,

˝
e0i .t � 1/

˛
denotes the average direction

of neighbors in the previous step, and !n is regarded
as a weighting factor, with a general approximation of
!n D 0:5.

Given that the capability to avoid obstacles of visual
information, visual heuristic rules[21] are used to modify
the escape expectation, and the desired direction and
desired speed are obtained by minimizing the collision
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loss function:
d .˛/ D d2max C f .˛/

2
� 2dmaxf .˛/ cos

�
˛0i .t/ � ˛

�
(5)

where ˛0i is the angle corresponding to the desired
direction e0i .t/, and the potential collision distance f .˛/
of angle ˛ is given by the following:

f .˛/ D min
˚
fj .˛/ ; fb .˛/

	
(6)

where fj .˛/ is the distance to collide with pedestrian
j , and fb .˛/ is the distance to collide with obstacles or
walls. If no collision appears, the collision distance is
the view field distance dmax.

Thereby, the optimal escape direction evi .t/,
corresponding to the optimal escape angle Ǫ i , is deduced
by minimizing the collision loss function. Meanwhile,
the optimal escape speed vvi .t/ is given as follows:

vvi .t/ D min
�
v0i .t/ ;

dh

�

�
(7)

where v0i .t/ is the escape desired speed, dh represents
the distance between pedestrian i and the nearest
obstacle, and � is related to a certain relaxation time.

In view of the aforementioned derivation and
discussion, we develop a VISFM incorporating the
impact of visual information. The combined effect
of forces leads to dynamic changes in the pedestrian
acceleration, which is expressed by the nonlinear
coupled Langevin equations of motion:

mi
dvi .t/

dt
D fiv C

X
j .¤i/

fij C
X
w

fib (8)

where fiv, fij , and fib represent a self-driven force
based on the visual information, a force due to an agent-
to-agent interaction, and the interaction force between
the pedestrian and obstacles, respectively.

Herein, the self-driven force based on visual
information is written in the following form:

fiv D mi
vvi .t/ e

v
i .t/ � vi .t/

�
(9)

where mi is the mass of pedestrian i , vvi .t/ and evi .t/
represent the optimal escape speed and direction by
minimizing the collision loss function, respectively.

The interaction force fij between pedestrians i and j
is referred to SFM and expressed as follows:
fij D kg

�
rij � dij

�
nij C�g

�
rij � dij

�
�vtj i tij (10)

where kg
�
rij � dij

�
nij and �g

�
rij � dij

�
�vtj i tij

correspond to the body force and sliding friction force
from pedestrians i to j , respectively. Here, rij and dij
refer to the radius sum and the distance between the
centroids of pedestrian i and j , respectively, and g .x/
is zero if the two pedestrians do not touch each other;

otherwise, it equals to x. For the body force, k denotes
the body elasticity coefficient and nij is the normalized
vector pointing from pedestrians j to i . For the sliding
friction force, � is the sliding friction coefficient and tij
represents the tangential direction.

The physical force fib of surrounding obstacles or
walls on pedestrians is similar to the expression of fij :
fib D kg .ri � dib/ nib � �g .ri � dib/ .vi � tib/ tib

(11)
where kg .ri � dib/ nib and �g .ri � dib/ .vi � tib/ tib
represent the body force and sliding friction force from
pedestrian i to obstacles or walls, respectively. Here,
dib and nib represent the distance and normalized vector
perpendicular from pedestrian i to obstacles or walls,
and tib is the tangential direction.

2.2 Dynamic update of parameters

In the previous section, the detailed expression of
VISFM is developed. Here, we introduce the dynamic
update of parameters in this model. The psychological
states of pedestrians are affected by visual information
perception, which may lead to changes in certain
parameters.

On the one hand, pedestrians promote their desired
speed to escape as the urgency increases from empirical
observations. Figure 1 shows the division of hazardous
areas based on this phenomenon. In the first-level
dangerous area, pedestrian i immediately moves away
from the danger source by increasing the desired speed
by kd1

v0i .t/. The second-level dangerous area is a
visible area of the danger source, where pedestrian i
increases the desired speed by kd2

v0i .t/ and maintains
it to escape, and the desired direction is the original

Fig. 1 Division of hazardous areas���the darker color refers
to the first-level dangerous area, whereas, the lighter color
corresponds to the second-level dangerous area.
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desired direction deviates from the danger source. Note
that kd1

> kd2
> 1 in this case.

On the other hand, the weighting coefficient !e,
the trust level of self-decision fs , and neighbor
information fn are also updated reasonably based on
the psychological states of pedestrians. The trust level
of self-decision fs is affected by prior knowledge and
scene information, such as evacuation signs and terrain
information. If the pedestrian has prior knowledge
(sdi D 1), then fs is extremely high, and !e ! 0;
otherwise, the prior knowledge is ignored (sdi D 0),
and fs and !e are determined by the scene information
in Fig. 2.

In addition, the trust level of neighbor information fn
is affected by the characteristics of neighbor distribution,
including the number and direction of neighbors, which
is given by the following:

fn D

8̂̂<̂
:̂
6; N > 1 and

ˇ̌̌X
ej

.
N
ˇ̌̌
> 0:7I

3; N D 1 or
ˇ̌̌X

ej

.
N
ˇ̌̌
< 0:7I

0; N < 1

(12)

where N denotes the number of total pedestrians, andP
ej corresponds to the sum of direction angles of

neighbors.
For simplicity, the detailed simulation steps and

parameters update of VISFM are summarized in the
following procedure:

Step 1: Initialize parameters based on the pedestrians
distributed in the scene.

Area 1

Area 2

Area 3

Area 4

Fig. 2 Schematic of the weighting coefficient !!!e and the
trust level of self-decision fs affected by the scene information.
In area 1, fs DDD 6 when the evacuation sign can be observed.
In area 2, !!!e DDD 0 if an evacuation sign exists in the local exit;
otherwise, fs DDD 6. In area 3, fs DDD 3 when the pedestrian can
discover the wall or a corner. In area 4, fs DDD 0 for the open
area.

Step 2: Check remaining pedestrians. If all
pedestrians left the scene, go to Step 7.

Step 3: Express multidimensional features of visual
information.

Step 4: Dynamic update parameters v0i , !e, fs , and
fn.

Step 5: Calculate self-driven force based on visual
information.

Step 6: Update the positions of pedestrians with the
VISFM and then go to Step 2.

Step 7: Finish the simulation.
For the above-mentioned parameters, we mainly

consider the influence of visual information on the
mentality involving the cognition of scene information,
such as local exits, escape signs, and neighbor features.
For the position of pedestrians, through the obstacle
avoidance behavior generated by visual information, the
escape expectation is obtained from prior knowledge,
scene information, and neighbor information. Then, the
positions of pedestrians are updated by our model.

3 Results and Discussion

3.1 Effect of visual perception on crowd evacuation

In this section, we simulate crowd evacuation in the
subway station scene (90 m length and 22.5 m width).
Figure 3a depicts the detailed map of the subway station
scene, and the corresponding static ground field is shown
in Fig. 3b, where the correct escape direction is always
the fastest direction decreasing along the navigation
ground field. Based on empirical data, the ordinary
pedestrian in our model is regarded as a circular particle

(a)

(b)

Fig. 3 2D floor plan of a subway station scene (90 m length
and 22.5 m width). (a) Detailed map of the subway station
scene. Red and green areas correspond to the entry and exit,
respectively. (b) Static ground field of the subway station
scene. The blue and red areas indicate the areas closer to
and farther from the exit, respectively.
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with radius r 2 Œ0:25m; 0:35m�, mass m D 80 kg,
initial desired speed v0i D 0:8m�s�1, and relaxation time
� D 0:5 s. Additionally, the time step �t D 0:04 s and
scene visibility dmax D 5m are selected, and the height
of the crowd is uniformly distributed in the interval
Œ1:4m; 2m�.

Figure 4 shows the comparison of the evacuation
processes simulated by SFM and VISFM in the subway
station scene. The temporal evolution curves of the
number of exited pedestrians in Fig. 4a reveal that
the evacuation efficiencies simulated by both models
are nearly consistent. Thus, our model effectively
simulates the pedestrian evacuation process. From the
spatial dimension, however, evident differences exist
in the spatial distribution of crowd performed by SFM
and VISFM. Figure 4b illustrates snapshots of crowd
evacuation simulated by SFM and VISFM at t D
53 s. The crowd simulated by SFM is arranged in a
relatively neat queue, whereas the distribution of crowd
simulated by VISFM is more decentralized, which is
more consistent with empirical observations.

Although the evacuation efficiencies simulated by
SFM and VISFM are similar, VISFM performs looser
crowd distribution and higher space utilization in terms
of spatial dimension. This indicates that pedestrians
adjust their movement directions based on visual
information, which is more interpretable and can achieve
the intelligent behavior of crowds in complex scenarios.

3.2 Analysis of crowd evacuation with unbalanced
prior knowledge

The same as the experimental scene in the previous
section, we explore the effect of unbalanced prior
knowledge on crowd evacuation. For pedestrians who

possess prior knowledge about the evacuation path,
sdi D 1; otherwise, other pedestrians in the crowd
are given sdi D 0. To characterize the unbalanced
degree of prior knowledge, we express the proportion
of pedestrians who have prior knowledge using the
following:

p
PK
D

1

N

NX
iD0

sdi (13)

In the following simulations, we analyze the impact of
unbalanced prior knowledge on evacuation efficiency
and decision-making ability.

Figure 5 illustrates the influence of unbalanced prior
knowledge on evacuation efficiency. As shown in Fig. 5a,
the slopes of multiple curves are distinct when p

PK

varies from 0.0 to 1.0. Notably, the increased proportion
of pedestrians who have prior knowledge greatly
promotes evacuation efficiency. Figure 5b intuitively
illustrates the effect of unbalanced prior knowledge by
conducting 100 trials to avoid accidental results. With
the increase in the proportion p

PK
, the number of exited

pedestrians within 120 s increases, causing the average
evacuation time to decrease significantly. The evacuation
efficiency increases at a fast rate when p

PK
6 0:3

(gray area) but at a slow rate when p
PK

> 0:3. The
findings preliminarily demonstrate that when p

PK
is

higher than 0.3, although others are unfamiliar with
the evacuation path, the majority of them successfully
escape by obtaining the navigation information of their
neighbors through visual perception.

To evaluate the impact of unbalanced prior knowledge
on the decision-making ability, we define the ratio
of average effective time �E , the average escape
direction declination angle �d , and the proportion of

(a) (b)

SFM, t = 53 s

VISFM, t = 53 s

Fig. 4 Comparison of evacuation processes simulated by SFM and VISFM in the subway station scene. (a) The number of
exited pedestrians, as shown by the temporal evolution curves of SFM and VISFM during the evacuation process. (b) Snapshots
of crowd evacuation simulated by SFM and VISFM at tDDD 53 s.
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(a) (b)

Fig. 5 Influence of unbalanced prior knowledge on the evacuation efficiency. (a) The number of exited pedestrians shows as a
function of the evacuation time; different colors correspond to various proportions of the pedestrians who have prior knowledge.
(b) Evacuation efficiency curves of varying unbalanced prior knowledge. The black and red curves represent the number of
exited pedestrians within 120 s and average evacuation time, respectively. The shape points and error bars denote the mean and
standard deviation based on 100 trials.

steps followed by neighbors c!e (Appendix A). As the
prior knowledge proportion pPK increases (Fig. 6), the
ratio of average effective time �E improves, whereas
the average escape direction declination angle �d and
the proportion of steps followed by neighbors c!e
decrease, indicating that pedestrians familiar with the
evacuation path prefer to escape relying on their own
decisions. Hence, the increased proportion of pedestrians
who possess prior information promotes the crowd’s
decision-making ability due to the sharing of navigation
information.

Figure 7 shows the influence of unbalanced prior
knowledge on the decision-making ability under
different numbers of pedestrians. In Figs. 7a and 7c, the
ratio of average effective time �E and the proportion of
steps followed by neighbors c!e increase as the number
of pedestrians increases owing to the large probabilities
of pedestrians acquiring visual information, which leads

Fig. 6 Influence of unbalanced prior knowledge on the
decision-making ability. The evaluation indicators���E, ���d, and
c!!!e show as a function of the prior knowledge proportion
pPK. The shape points and error bars denote the mean and
standard deviation based on 100 trials.

(a)  (b)     (c)

Fig. 7 Influence of unbalanced prior knowledge on decision-making ability under different numbers of pedestrians. (a) Ratio
of average effective time ���E. (b) Average escape direction declination angle ���d. (c) Proportion of steps followed by neighbors c!!!e.
The shape points denote the mean based on 100 trials.
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to the effective propagation of navigation information.
In addition, a high crowd density corresponds to a small
average escape direction declination angle �d (Fig. 7b).
This result reveals that increasing the number of
pedestrians is beneficial for the decision-making ability
of pedestrians.

3.3 Asymmetric propagation of accelerated
behavior

Our model describes that pedestrian state parameters are
affected by visual information, which can be utilized
to simulate and analyze the propagation of accelerated
behavior in the crowd caused by emergencies. Given
that a pedestrian may follow neighbors when he observes
crowd acceleration, a visual interaction network[22] is
constructed to describe the propagation of accelerated
behavior among individuals (Appendix B).

Figure 8 shows the process of acceleration behavioral
contagion in the unidirectional flow scene (80 m
length and 10 m width). On the one hand, when the
danger source appears behind the crowd in Fig. 8a,
individuals behind the crowd perform remarkably
accelerated behavior at the initial time (t D 3:56 s).
The propagation process is interrupted until several
accelerated individuals surpass other individuals from
the side (t D 14:08 s and t D 16:28 s), which leads to
the spread of the accelerated behavior to the entire group

(a) (b)

(a) (b)

Fig. 8 Process of acceleration behavioral contagion in the
unidirectional flow scene (80 m length and 10 m width). (a)
Danger source appearing behind the crowd. (b) Danger
source on the front side of the crowd. The blue, orange,
and red circles represent the normal, critical accelerated, and
accelerated individuals, respectively.

in a short time (t D 17:20 s). On the other hand, when
the danger source is in front of the crowd, pedestrians
easily discover the danger source by visual perception
(t D 1:12 s and t D 1:24 s). Thereby, the accelerated
behavior quickly spreads from individuals closer to
the danger source in the entire group (t D 2:32 s and
t D 3:28 s), shown in Fig. 8b.

To quantitatively explore the influence of the location
of the danger source on the accelerated behavior, we set
up four different danger source areas in the unidirectional
flow scene. Figure 9 depicts the danger source behind
the crowd, on the side of the crowd, on the front side of
the crowd, and in front of the crowd, where red areas
correspond to the different locations of the danger source.
The crowd is randomly distributed on the left side of the
unidirectional flow scene (gray area), escaping toward
the exit on the right side (green strip area).

Figure 10 illustrates the accelerated behavior of
pedestrians under the four different situations. When
the number of pedestrians is fixed asN D 30 (Figs. 10a–
10d), the propagation speed of the accelerated behavior
gradually increases as the danger source moves forward.
A similar phenomenon is observed in Figs. 10e–10h
where the number is increased by N D 50, indicating
the propagation of accelerated behavioral is asymmetric
due to the anisotropy of visual information. Moreover,
with the increase in crowd density, the propagation speed
of the accelerated behavior slows down if the danger
source is behind the crowd, but it enhances when the
danger source is on the side of the crowd. This condition
is observed because the increase in the crowd density

(a)

(b)

(c)

(d)

Fig. 9 Location of danger source in the unidirectional flow
scene. (a) Danger source behind the crowd. (b) Danger
source on the side of the crowd. (c) Danger source on the
front side of the crowd. (d) Danger source in front of the
crowd.



626 Tsinghua Science and Technology, June 2022, 27(3): 619–629

(e) (f ) (g) (h)

(a) (b) (c) (d)

Fig. 10 Influence of the location of danger source on the accelerated behavior. (a)–(d) Evacuation process of 30 pedestrians for
the danger source behind the crowd (a), on the side of the crowd (b), on the front side of the crowd (c), and in front of the crowd
(d). (e)–(h) Evacuation process of 50 pedestrians for the danger source behind the crowd (e), on the side of the crowd (f), on the
front side of the crowd (g), and in front of the crowd (h).

may hinder the surpassing of pedestrians in the rear and
reduce the propagation speed of information to the front.
However, the propagation speed from the side to other
directions will be promoted.

4 Conclusion

In this paper, we use multidimensional visual
information to construct a VISFM innovatively.
By conducting numerical experiments in different
interaction scenarios, several prime and interesting
conclusions are summarized as follows:

(1) Compared with SFM, our model is more
interpretable and realistic for simulating crowd
evacuation processes in complex scenarios.

(2) The VISFM effectively characterizes the
spontaneous evacuation process with unbalanced prior
knowledge, demonstrating that evacuation efficiency and
decision-making ability are promoted as the proportion
of pedestrians with prior knowledge increases.

(3) The propagation of accelerated behavior is
asymmetric due to the anisotropy of visual information,
and crowd density has a certain effect on the propagation
process.

Although VISFM involves the visual information
perception of pedestrians, certain limitations still exist in
this model. How to enhance the generality and accuracy
of VISFM deserves in-depth consideration. Future

research should pay attention to the following points:
First, heterogeneous prior knowledge can be designed
to explore the impact of different personnel structures
on the evacuation process. Second, our model may be
applied in complex scenarios to analyze the influence
of the crowd distribution[28], distribution of obstacles[29],
etc. In addition, visual interaction networks will be used
to describe other state changes or behavioral propagation
recognized by visual perception. Therefore, we expect
that this model can stimulate the generation of more
effective evacuation models, which will provide new
insights into the field of crowd dynamics.

Appendix

A Evaluation indicators

Several evaluation indicators are defined to quantitatively
analyze the effect of unbalanced prior knowledge on the
decision-making ability.

First, the step is considered to be effective when the
deviation angle between the actual and correct escape
directions is limited to 20ı. The average effective time
tE corresponds to the mean effective step time of all
pedestrians and is calculated as follows:

tE D
1

N

NX
iD1

SiX
sD1

I

 
arccos

 
esi � ec

s
iˇ̌

esi

ˇ̌
�
ˇ̌
ecsi

ˇ̌! <  

9

!
��t

(A1)
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where I .�/ denotes the indicator function, Si holds the
total steps of pedestrian i , �t denotes the time step, esi is
the escape direction in step s, and ecsi corresponds to the
correct escape direction. Assuming that tT is the average
time, the ratio of average effective time is calculated by the
following:

�E D
tE

tT
(A2)

Then, the deflection angle of escape direction is
computed as the average value of the deflection angle
between the correct and actual escape directions, which
indicates the decision-making ability. The average escape
direction declination angle is given by the following:

�d D
1

N

NX
iD1

1

Si

SiX
sD1

arccos

 
esi � ec

s
iˇ̌

esi

ˇ̌
�
ˇ̌
ecsi

ˇ̌! (A3)

Finally, the weighting coefficient is used to balance the
information of self, neighbors, and scenes. The proportion
of steps followed by neighbors c!e is defined below to
express this subsequent effect:

c!e D
1

N

NX
iD1

1

Si

SiX
sD1

I
�
!se > 0:5

�
(A4)

Herein, if pedestrians prefer to follow neighbors to escape
in step s, then !se > 0:5; otherwise, !se 6 0:5.

B Visual interaction network

According to the ranking based on the distance and angle
of neighbors to pedestrian i , the response probability pi;j
from pedestrians i to j is given by the following:

pi;j D
1

1C e�ˇ1�ˇ2LMD�ˇ3AR
(A5)

where ˇ1, ˇ2, and ˇ3 are constants, LMD is the logarithm
of the distance between pedestrians i and j , AR is
the angle ranking of pedestrian j in the view field of
pedestrian i . In the case of the response probability, the
propagation model of the visual interaction network is
expressed by the following:

D
.t/
i D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
1;

NX
jD1

i;j > �i I

0;

NX
jD1

i;j 6 �i

(A6)

where D.t/
i D 1 denotes the accelerated state; otherwise,

D
.t/
i D 0 represents the normal state. The selection

function of response probability i;j is given by the
following:

i;j D I.pi;jD
.t�1/
j > ui;j / (A7)

where D
.t�1/
j is the state of neighbor j at time

t � 1. The parameters ui;j and �i are determined

by the propagation model, which has three forms,
namely, random propagation, numerical propagation, and
fractional propagation.

In the random propagation model, �i D 1. A neighbor
of pedestrian i is randomly selected as the responding
neighbor, and ui;j 2 Œ0; 1� is defined as a random number.
For the remaining neighbors, ui;j D 1. The pedestrian i
randomly selects a neighbor as a response behavior.

In the numerical propagation model, �i D nc where nc
is a fixed numerical threshold. For all unblocked neighbors
in the view field of pedestrian i , ui;j 2 Œ0; 1� is a random
number; for other neighbors, ui;j D 1. The pedestrian i
responds to the behavior state only when the number of
responding neighbors exceeds the fixed threshold nc .

In the fractional propagation model, �i D kcMi where
kc is the fixed fractional threshold, and Mi is the number
of neighbors. For all unblocked neighbors in the view
field of pedestrian i , ui;j 2 Œ0; 1� is a random number;
for other neighbors, ui;j D 1. The pedestrian i responds
to the behavior state only when the number of responding
neighbors exceeds the fixed fractional threshold kc .
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