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Privacy-Aware Examination Results Ranking for the Balance
Between Teachers and Mothers

Qunying Yuan, Dongxing Wang, Yuanyuan Zhao, Yong Sang�, Fan Wang, Yuwen Liu, and Ying Miao

Abstract: As the main parent and guardian, mothers are often concerned with the study performance of their children.

More specifically, most mothers are eager to know the concrete examination scores of their children. However,

with the continuous progress of modern education systems, most schools or teachers have now been forbidden to

release sensitive student examination scores to the public due to privacy concerns, which has made it infeasible for

mothers to know the real study level or examination performance of their children. Therefore, a conflict has come

to exist between teachers and mothers, which harms the general growing up of students in their study. In view of

this challenge, we propose a Privacy-aware Examination Results Ranking (PERR) method to attempt at balancing

teachers’ privacy disclosure concerns and the mothers’ concerns over their children’s examination performance.

By drawing on a relevant case study, we prove the effectiveness of the proposed PERR method in evaluating and

ranking students according to their examination scores while at the same time securing sensitive student information.
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1 Introduction

In modern family relations, father and mother often
play a key role in the educational development of their
children. More specifically, it has become commonplace
to place more educational responsibility on mothers
as they are generally regarded as “more professional”
in their children’s education. Thus, for a child who
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is studying at a school, his or her mother usually co-
operates with teachers to promote the child’s education
activities or possible issues[1, 2]. In effect, globally
speaking, mothers and teachers could be seen as the
main guardians of students. At present, these two groups
play a pivotal role in education.

To monitor the studying effects of students, mothers
are often eager to know the students’ studying behavior
and states at school. One of the most effective ways to
get to know the overall school performance of students
is examination scores. According to the examination
performance, a mother can enact appropriate study
improvement plans or strategies for her child to fix
the drawbacks or mistakes existing in current study
patterns or methods[3–5]. Yet, with the continuous
progress of modern education systems, most schools
or teachers are now not allowed to open the concrete
student examination scores in public due to possible
privacy concerns[6–10]. In this situation, it has become
increasingly difficult for a mother to know the real
study level or examination performance of her children.
Moreover, students themselves are often not willing to
tell their parents their concrete examination score or
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other performance due to various reasons.
In this situation, an inherent conflict has come to exist

between teachers and mothers, which harms the growing
up of most students in terms of both study at school
and life at home. In view of this challenge, a Privacy-
aware Examination Results Ranking (PERR) method
is proposed in this paper to try our best to balance the
teachers’ privacy disclosure concerns and the mothers’
concerns on examination performance. By drawing on
a relevant case study, we prove the effectiveness of
the proposed PERR method in evaluating and ranking
students according to their examination scores while
securing sensitive student information.

In summary, the contribution in this paper is two-fold.
(1) We introduce an objective and privacy-aware

evaluation technique, i.e., TOPSIS, into our focused
examination performance evaluation problems.
Then, we put forward a TOPSIS-based examination
performance ranking method, i.e., PERR. By critically
analyzing PERR, in turn, we can achieve a good tradeoff
(or balance) between teachers’ privacy disclosure
concerns and mothers’ concerns over examination
performance.

(2) To evaluate the feasibility and effectiveness of
the PERR method, we introduce a case study to
elaborate on the concrete process and procedure of our
proposed algorithm. This case study then validates the
effectiveness of PERR.

The remaining structure of this research paper is as
follows: In Section 2, an intriguing example from the
real world is presented to further describe the motivation
and research significance of our proposal. In Section 3,
concrete steps and procedures are described in more
detail. In Section 4, a real-world case study regarding
examination performance evaluation is introduced to
ease the algorithmic understanding for readers. In
Section 5, further discussions are presented. Finally, in
Section 6, we conclude this paper by pointing out some
possible future work scenarios in upcoming educational
research.

2 Motivation

A concrete example is presented here to demonstrate
the research significance of this paper. As Fig. 1
clearly indicates, the example involves three students
(John, Alex, and Lily) and their respective examination
performances in three courses (English, Sport, and
Nature). For example, Alex’s examination scores or
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evaluation & 

ranking  

Alex (80, 4, 20)  

Lily (90, 3, 10)  John (70, 5, 30)  

Privacy  

Privacy  Privacy  

Fig. 1 Two challenges in examination score evaluation and
ranking: diverse data scale and privacy leakage.

performance of the three courses are 80, 4, and 20. Here,
the score ranges for the three courses are different. In
concrete terms, English score range is [0, 100], Sport
score range is [0, 5], and Nature score range is [0,
30]. Such diverse data scales from different courses
often make it hard to fairly and objectively evaluate the
examination performance of these students. In addition,
examination scores or performance could be considered
as a kind of private information for students. Therefore,
although the three students are willing to share their
examination scores with the central score evaluation
and ranking agency, the agency should have the aim
of protecting their privacy. Here, motivated by the
above-mentioned two challenges, PERR is suggested.
In the following sections of this paper, a more detailed
procedure on the subject will be elaborated with an in-
depth analysis and relevant discussions.

3 PERR

The PERR method mainly consists of four distinct steps,
as illustrated in Fig. 2. We assume that there are m

students (stu1, . . . , stum/ and n courses (cou1, . . . , coun/.
Step 1: Data normalization
According to the known n examination scores of m

students, we can construct an m � n matrix M in the
following:

cou1 : : : coun

M W
stu1

:::

stum

264 v1;1 � � � v1;n

:::
: : :

:::

vm;1 � � � vm;n

375 (1)

where vi;j denotes student stui ’s score over course couj .
As shown in Fig. 1, the value ranges for all courses are

not the same. Thus, we need to normalize all the score
values in matrix M for the simplicity of the subsequent
processing. In concrete terms, we utilize the following
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Step 1: Data normalization
For each course, we normalize the course scores for all students
into a normalized value belonging to [0, 1].
Step 2: Determine Positive Ideal Solution (PIS) and Negative
Ideal Solution (NIS)
For each course involved in PERR, we can determine their
maximum and minimum values. Then, according to these values,
we construct PIS and NIS.
Step 3: Evaluate each student based on PIS and NIS
For each student, we can calculate the distance between their
examination scores and PIS (denoted by DC/, the distance
between their examination scores and NIS (denoted by D�/.
Then, according to DC and D�, each student is assigned a
concrete score evaluation value.
Step 4: Rank all students in descending order
According to the derived evaluation scores of all students, we can
rank them in a descending order.

Fig. 2 Major procedure of PERR method.

normalization formula to achieve the above-mentioned
purpose:

'i;j D
vi;j

2

qPm
kD1.vk;j /2

(2)

Through Eq. (2), we can convert each vi;j value in
matrix M into a normalized 'i;j belonging to [0, 1].

Step 2: Determine PIS and NIS
For each course involved in PERR, we can

determine their maximum and minimal normalized
values according to all student scores and performance.
Then, according to these values related to n courses, we
can construct a PIS and an NIS. The concrete generation
processes of PIS and NIS are formalized by the following
equations:

PIS D .Max1; Max2; : : : ; Maxn/ (3)

Maxj D max
˚
'1;j ; : : : ; 'm;j

	
.1 6 j 6 n/ (4)

NIS D .Min1; Min2; : : : ; Minn/ (5)

Minj D min
˚
'1;j ; : : : ; 'm;j

	
.1 6 j 6 n/ (6)

Here, scores are of “larger is better” property.
Therefore, PIS is constituted by the maximum
normalized values of n courses Maxj .1 6 j 6 n/ and
NIS is constituted by the minimum normalized values
of n courses Minj .1 6 j 6 n/. In addition, please note
that Eqs. (3)–(6) are only suitable for creating the PIS
and NIS, like examination scores. If the dimensions are
negative (e.g., time cost, delay, and price), the PIS and
NIS can be created based on Eqs. (4) and (6)–(8),

PIS D .Min1; Min2; : : : ; Minn/ (7)

NIS D .Max1; Max2; : : : ; Maxn/ (8)

Step 3: Evaluate each student based on PIS and
NIS

For each student stui (1 6 i 6 m/, we can model his or
her examination performance with a vector constituted
by the normalized score values 'i;j corresponding to
courses couj (1 6 j 6 n/. For instance, stu1('1;1, . . . ,
'1;n/, stu2('2;1, . . . , '2;n/, and so on. Next, we
calculate the distance between each student stui and
PIS,

DiC D Dist.stui ; PIS/ D 2

vuut nX
jD1

.'i;j �Maxj /2 (9)

Furthermore, we calculate the distance between each
student stui and NIS,

Di� D Dist .stui ; NIS/ D 2

vuut nX
jD1

.'i;j �Minj /2 (10)

Intuitively, for a student stui (1 6 i 6 m/, we often
expect a small DCi and a large D�i . Inspired by this
observation, we use Di to depict the overall performance
of stui ,

Di D
Di�

DiC CDi�
(11)

Moreover, Di is of “larger is better” property.
Step 4: Rank all students in a descending order
As analyzed in Step 3, each student stui (1 6 i 6

m/ is assigned a Di value to quantify the examination
performance of stui . The larger the Di is, the better
the stui performs in an examination. Thus, according
to the Di values of students, we can rank all students in
a descending order. Then, we can release the concrete
ranking to the mothers who care about the studying level
of their children. This way, the private information of
students is preserved. In particular, we have achieved a
good tradeoff (or balance) between teachers and mothers.

Furthermore, each student’s examination score is only
compared with PIS and NIS directly, without comparing
them with the examination scores of other students. This
way, the sensitive examination scores of students are
well protected. Importantly, this is the reason why we
claim that our proposed PERR method can also secure
user privacy.

Our proposed PERR method can be specified more
intuitively with Algorithm 1.

4 Case Study

In this section, a case study extracted from the example
in Fig. 1 is offered to demonstrate the concrete running
process of our proposed PERR method. Next, we
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Algorithm 1 PERR
Input: (1) m students: stu1, . . . , stum

(2) n courses: cou1, : : :; coun

(3) matrix M: vi;j (1 6 i 6 m, 1 6 j 6 n/

Output: (1) Student ranking list: SRL
1: for j D 1 to n do
2: sumj D 0

3: for i D 1 to m do
4: sumj D sumj C v2

i;j

5: end for
6: sumj D .sumj /1=2

7: for i D 1 to m do
8: 'i;j D vi;j / sumj

9: end for
10: end for
11: for j D 1 to n do
12: for i D 1 to m do
13: Maxj D maxf'1;j , . . . , 'm;j g

14: Minj D minf'1;j , . . . , 'm;j g

15: end for
16: end for
17: PIS D .Max1, Max2, . . . , Maxn/

18: NIS = (Min1, Min2, . . . , Minn/

19: for i D 1 to m do
20: Calculate DiC based on Eq. (9)
21: Calculate Di� based on Eq. (10)
22: Di D Di�=.Di�CDiC/

23: end for
24: Rank stui (1 6 i 6 m/ in a descending order based on Di

25: Put ordered stui (1 6 i 6 m/ into SRL
26: Return SRL

introduce PERR according to the four steps specified
in Fig. 2.

Step 1: Data normalization
According to the example in Fig.1, a student-course

performance matrix M is as follows:
English Sport Nature

M W
John
Alex
Lily

264 70 5 30

80 4 20

90 3 10

375 (12)

In concrete terms, M contains the examination scores
of the three students over three courses. We normalize
the score values of three columns according to Eq. (2).
Afterwards, we are able to get a new normalized matrix
M#,

English Sport Nature

M#
W

John
Alex
Lily

264 0:50 0:71 0:80

0:58 0:57 0:53

0:65 0:42 0:27

375 (13)

Step 2: Determine PIS and NIS
As normalized examination scores in matrix M# are

all positive dimensions, we determine PIS and NIS based
on Eqs. (3)–(6) and (13). In concrete terms, PIS and NIS
are shown below:

PIS D .0:65; 0:71; 0:80/ (14)

NIS D .0:50; 0:42; 0:27/ (15)

Step 3: Evaluate each student based on PIS and
NIS

As Eq. (13) shows, the normalized examination scores
of the three students can be represented by John (0.50,
0.71, 0.80), Alex (0.58, 0.57, 0.53), and Lily (0.65, 0.42,
0.27). Next, we calculate the distance of these three
students with PIS,

DJohnC D Dist ..0:50; 0:71; 0:80/ ;

.0:65; 0:71; 0:80// D 0:15;

DAlexC D Dist ..0:58; 0:57; 0:53/ ;

.0:65; 0:71; 0:80// D 0:31;

DLilyC D Dist ..0:65; 0:42; 0:27/ ;

.0:65; 0:71; 0:80// D 0:60 (16)

Moreover, we calculate the distance of these three
students with NIS,

DJohn� D Dist ..0:50; 0:71; 0:80/ ;

.0:50; 0:42; 0:27// D 0:60;

DAlex� D Dist ..0:58; 0:57; 0:53/ ;

.0:50; 0:42; 0:27// D 0:31;

DLily� D Dist ..0:65; 0:42; 0:27/ ;

.0:50; 0:42; 0:27// D 0:15 (17)

Then, according to Eq. (11), we can obtain the
comprehensive score for each student,

DJohn D DJohn�=.DJohnC CDJohn�/ D 0:80;

DAlex D DAlex�=.DAlexC CDAlex�/ D 0:50;

DLily D DLily�=.DLilyC CDLily�/ D 0:20 (18)

Step 4: Rank all students in descending order
According to the comprehensive scores of three

students, i.e., DJohn, DAlex, and DLily derived in Eq. (18),
we can rank them in descending order, i.e., John >

Alex > Lily. Finally, we can return the ranked list to
interested users.

5 Further Discussion

(1) Here, our focused examination score evaluation and
the ranking problem is essentially a decision-making
issue that involves multiple quality dimensions (or
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criteria) whose values are often of various types[11–16],
such as a real number, integer number, Boolean number,
and discrete number. In this paper, to simplify, we only
assume that the examination scores are from an integer
number.

(2) For the common multi-dimensional decision-
making problems, weight is recruited to indicate the
different significances of multiple dimensions[17–23].
Here, we assume that the involved multiple dimensions
are of the same weight. Nevertheless, we argue that
weight can also be easily integrated into the PERR
method we are using in this study.

(3) Privacy has become an increasingly contested
concept. While there is a variety of different private
information available; in this paper, we take the historical
data generated in past examinations as a kind of
user privacy, which are like private data at work in
Refs. [24–26].

(4) To simplify, we only discuss the student-course
score matrix which is dense enough. We acknowledge
that data sparsity is an inherent challenge in common
big data applications[27–30].

6 Conclusion and Future Work

Mothers are often eager to know the concrete
examination scores of their children at school. However,
most schools or teachers have now been now forbidden
to release sensitive student examination scores to the
public due to privacy concerns, which has made it
infeasible for mothers to know the real study level or
examination performance of their children. Therefore, a
conflict has come to exist between teachers and mothers,
which harms the general growing up of students in
their study. In critical view of this challenge, a PERR
ranking method was proposed in this paper to balance the
teachers’ privacy disclosure concerns and the mothers’
concerns over examination performance. Through a
relevant case study, finally, we proved the effectiveness
of the proposed PERR method in evaluating and ranking
students according to their examination scores while
securing sensitive student information at the same time.

Weight seems to be a crucial factor in multi-
dimensional decision-making problems. Therefore,
in our future academic research, we will aim to
further improve the proposed PERR method by
considering the weights of different dimensions
to enlarge the application scope of PERR. In
addition, we will continue to investigate the possibility

of integrating our privacy-aware PERR solution
with other classical privacy-preservation techniques,
such as blockchain[31–33], differential privacy[34, 35],
anonymization[36], and program code analyses[37, 38].
Moreover, computation offloading is often necessary,
especially in a big data environment[39–45]. Following
this, it is expected that more time-efficient and energy-
saving versions of PERR are to remain increasingly
relevant in future academic research.
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