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Review of Technologies for High-Voltage Integrated Circuits

Bo Zhang�, Wentong Zhang, Le Zhu, Jian Zu, Ming Qiao, and Zhaoji Li

Abstract: High-Voltage power Integrated Circuits (HVICs) are widely used to realize high-efficiency power conversions

(e.g., AC/DC conversion), gate drivers for power devices and LED lighting, and so on. The Bipolar-CMOS-DMOS

(BCD) process is proposed to fabricate devices with bipolar, CMOS, and DMOS modes, and thereby realize the

single-chip integration of HVICs. The basic integrated technologies of HVICs include High-Voltage (HV) integrated

device technology, HV interconnection technology, and isolation technology. The HV integrated device is the core of

HVICs. The basic requirements of the HV integrated device are high breakdown voltage, low specific on-resistance,

and process compatibility with low-voltage circuits. The REduced SURFace field (RESURF) technology and junction

termination technology are developed to optimize the surface field of integration power devices and breakdown

voltage. Furthermore, the ENhanced DIelectric layer Field (ENDIF) and REduced BULk Field (REBULF) technologies

are proposed to optimize bulk fields. The double/triple RESURF technologies are further developed, and the

superjunction concept is introduced to integrated power devices and to reduce the specific on-resistance. This work

presents a comprehensive review of these technologies, including the innovation technologies of the authors’ group,

such as ENDIF and REBULF, substrate termination technology prospective integrated technologies and HVICs in

wide band gap semiconductor materials are also discussed.

Key words: High-Voltage ICs (HVICs); high-voltage integrated technology; Bipolar-CMOS-DMOS (BCD) process;

integrated power semiconductor devices; superjunction

1 Introduction

Electric energy is expected to remain one of the most
widely used energy sources of mankind. More than
75% of electric energy needs to be converted by power
devices before its application to electric equipment.
The principle of increased integration is also suitable
for power semiconductors. Therefore, High-Voltage
power Integrated Circuits (HVICs) are widely used
in power systems to realize high-efficiency power
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conversions. The development of HVICs is based on
the innovations of HV integration technologies to realize
high breakdown voltage VB , low cost, and High Voltage
(HV) and Low Voltage (LV) integration. The current
work reviews the important HV integrated technologies
and their developments.

1.1 Fundamental structures of power devices

The fundamental structures of power devices are shown
in Fig. 1. A power device can be simply treated as a
series connection of a Voltage Sustaining Layer (VSL)
and a corresponding low-voltage device. VSLs come in
three typical forms. The first one comprises resistance-
type VSLs with single doping, such as those in
VDMOS. This VSL type is restricted by the well-known
Ron,sp/V

2:5
B relationship[1]. The second one comprises

the conductivity enhancement-type VSLs, such as
those in IGBTs[2]. The forward injection of the PN
junction is introduced to the VSL to realize conductivity
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Fig. 1 Power devices with (a) resistance-type, (b)
conductivity enhancement-type, and (c) junction-type
voltage sustaining layers.

enhancement. The injected nonequilibrium carriers in
the on-state also cause a current tail in the off-state. The
third form comprises the junction-type VSLs, such as
those in SuperJunction (SJ)[3–5]. In junction-type VSLs,
the reverse depletion of the PN junction is introduced
into the VSL to increase the doping dose. The SJ concept
breaks the conventional relationship of Ron,sp/V

2:5
B ,

and shows Ron,sp / V
1:32

B
[6], which is further developed

into the quasilinear Ron,sp / V
1:03

B relationship[7]. These
VSLs are widely studied in the context of HV integrated
devices.

1.2 HVICs and BCD process

HVICs are widely used in electric systems, such
as Alternating Current to Direct Current (AC/DC)
converters, HV gate drivers, Light-Emitting Diode
(LED) drivers, and inverters for motor control. Figure
2 shows the typical schematics of an AC/DC converter
and a half-bridge converter[8, 9]. Obviously, most of the
electric energy must be transmitted by the HV integrated
device. The AC/DC converter requires a low-side HV
integrated device as an HV switch, whereas the half-
bridge converter requires high-side and low-side HV
integrated devices. As the root mean square of the
AC input worldwide is approximately 90–265 V[8], the
VB value of HV integrated devices is usually in the

(a)

(b)

Fig. 2 Simplified circuit schematic of (a) AC/DC converter[8]

and (b) half-bridge converter[9].

range of 500–900 V when considering surge voltage and
inductance in circuits.

Single-chip integration is an important development
direction of HVICs. Integrated HV devices are usually
voltage-controlled lateral devices, such as LDMOS
or LIGBT, because of their superior performance
and easy-to-drive feature. The main challenge is
fabricating devices that function under different applied
voltage levels and modes. The Bipolar-CMOS-DMOS
(BCD) processes (Fig. 3) are proposed to solve this
problem[10, 11]. Figure 3a shows a silicon-based BCD
process platform, which integrates 40–700 V HV
LDMOS devices, LV CMOS devices, and bipolar
transistors[12–15]. All these devices can be fabricated
under the same process. The SOI-based BCD process
with full dielectric isolation technology (Fig. 3b) further
reduces the modulations and crosstalk among all types
of devices[16]. The superior isolation performance of
the SOI-based BCD process also makes it a proper
platform to integrate high-performance LIGBTs[17, 18].
Figure 4 shows a micrograph of an AC/DC converter
fabricated by BCD technology. Most of the chip area
is determined by the HV integrated device. Therefore,
HV integrated devices are the core of HVICs, the basic
requirements of which are high VB , low Ron;sp, and
process compatibility.
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(a)

(b)

Fig. 3 Schematic cross-section of (a) BCD process on silicon and (b) BCD process on SOI.

Integrated HV devices

Fig. 4 Micrograph of AC/DC converter fabricated by BCD
technology.

1.3 Summarization of HV integrated technologies

The development of HV integrated technologies is the
cornerstone of the BCD process. This work reviews some
of the most important HV integrated technologies.

Section 2 provides the basic integration technologies,
including the REduced SURFace field (RESURF)
technology, Junction Termination Technology (JTT),
and High-Voltage Interconnection (HVI) technology.
Section 3 reviews the ENhanced DIelectric layer Field
(ENDIF) technology for integrated HV SOI devices
and the REduced BULk Field (REBULF) technology
for integrated HV silicon-based devices. Section 4
discusses HV integrated SJ devices. Section 5 explains
the prospects of new integrated technologies and HVICs
in wide band gap semiconductor materials.

2 Basic Integrated Technologies

As shown in Fig. 4, HV integrated devices have an
interdigitated structure to realize high current ability.
Therefore, basic integration technologies focus on high
breakdown voltages at the drift and termination regions.
Moreover, circuit topologies cause the HVI between HV
and LV devices, and thereby cause a reduction in VB .
This part introduces several integrated technologies to
solve these problems.
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2.1 RESURF technology

HV integrated devices are usually fabricated at the
surface of a wafer, hence their long and thin drift regions.
As the impact ionization rate in semiconductors strongly
depends on the electric field, premature breakdown may
occur at the peak field point at the surface. The schematic
views of LDMOS devices using RESURF technology[19]

are shown in Fig. 5. For the single RESURF LDMOS,
shown in Fig. 5a, the possible peak field occurs near
the drain or the source with the variation of drift doping
concentration. The maximum VB is realized when the

(a)

(b)

(c)

(d)

Fig. 5 Schematic views of (a) single RESURF LDMOS[19],
(b) double RESURF LDMOS[20], (c) triple RESURF
LDMOS[21], and (d) local charge-balanced RESURF
LDMOS[22, 23].

peak fields near the source and the drain are equal. Such
equality indicates an optimized vertical doping doseDop

of almost 1012 cm�2.
In further reducing Ron,sp, the additional reverse

depletion of the PN junction discussed in Section 1.1
is introduced into the single N-type doped drift region to
form double and triple RESURF structures, as shown in
Figs. 5b and 5c[20, 21, 24, 25]. As the number of depletion
junctions increases from 1 to 2 – 3, the Dop values of
the double and triple RESURF devices also increase to
about 2 � 1012 – 3 � 1012 cm�2, respectively[21].

The Dop value of the RESURF technology appears
proportional to the number of depletion junctions. This
conclusion includes an implicit assumption that all
vertical PN junctions have vertical peak electric fields
with the same value. In fact, the optimized doping dose
can be significantly increased by reducing the depletion
length of the local PN junction. Figure 5d shows a
RESURF LDMOS with surface local charge-balanced
N-top and P-bury layers[22, 23], whose Dop increases to
5 � 1012 cm�2[26]. Furthermore, a sandwich N-P-N
structure is proposed for a high Dop

[27].

2.2 Junction termination technology

The breakdown points of an HV integrated device
with an interdigitated structure always occur at the
fingertip region. As a result of the curvature effect, the
peak electric field is located at the PN junction with a
small curvature radius[28, 29]. In realizing a high VB , the
termination region should be designed very carefully.
The cylindric PN junction can be used for the qualitative
analysis of the curvature effect (Fig. 6). rj , rd , and
Wd are the curvature radii of the PN junction, depletion
edge, and width of the depletion region, respectively.
The maximum electric field Emax is expressed as

Emax D
qNWd

"s

�
1C

Wd

2rj

�
(1)

Fig. 6 Electric field distribution of curvature junction. The
maximum field Emax is increased by the curvature effect.
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where q, N , and "s are the electron charge, doping
concentration of the N-region, and dielectric constant of
the silicon, respectively.

The curvature effect obviously causes an increased
Emax with the reduction of rj . All JTTs focus on the
reduction of Emax. Equation (1) comprises three main
variables rj , N , and Wd . Accordingly, the mechanisms
of the three types of JTT can be deduced as follows: (1)
JTT with increased rj , (2) JTT with reduced N , and (3)
JTT with reduced Wd .

2.2.1 JTT with increased rj

The first method for alleviating the curvature effect is
to increase the curvature radius. Figure 7 shows two
structures with increased rj [30, 31]. The curvature radius
of the fingertip region is increased to reduce Emax at
the curvature junction. Equation (1) indicates that the
low Emax can only be realized by adopting a large rj .
Therefore, this type of JTT results in a large chip area.

2.2.2 JTT with reduced N
The second method for alleviating the curvature effect
is to reduce N . This approach can be realized by
introducing opposite-type doping into the termination
region or reducing a part of drift doping. Figure 8 shows

N+

Gate

N+

N-drift

(a) (b)

Fig. 7 JTT with increased curvature radii[28–31].

Fig. 8 JTT with P-islands and N-compensations[32].

a JTT with P-islands and N-compensations[32]. Emax is
reduced by the opposite-type doping compensation. An
additional doping process is needed in this structure.

Figure 9a shows a structure that uses Substrate
Termination Technology (STT)[33, 34]. A part of the P-
type substrate is introduced at the surface of the fingertip
region by removing a part of the N-drift region. The
STT structure can realize an HV device with drain and
source fingertip radii below 10 �m without additional
compensation doping. Figures 9b and 9c show that the
STT is a universal technology that can be used for the
integrated RESURF[35], SJ[33], N-top devices[36, 37], etc.

2.2.3 JTT with reduced Wd

The third type of JTT is reducing the depletion width
Wd . In the first two methods, Wd is determined by
VB . The high VB results in a large Wd . Thus, reducing

(a)

(b)

(c)

Fig. 9 Substrate termination technology: (a) basic structure,
(b) SJ LDMOS with STT[33], and (c) N-top LDMOS with
STT[34, 35].
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Emax by reducing Wd and maintaining a high VB

is difficult. Figure 10 shows the schematic of the
Dielectric Termination Technology (DTT)[38]. The
fingertip region in Fig. 10a is surrounded by n trench
dielectric rings. The potential difference �V between
the adjacent rings is reduced from VB to �V � VB=n.
Therefore, the depletion width Wd of the curvature
PN junction is reduced significantly. The voltage
sustaining distance along AA0 can be further reduced to
a full dielectric termination structure to realize a small
termination length (Fig. 10b). The LDMOS using DTT
realizes a VB of 600 V with a small termination length
of 25�m.

2.3 HVI technology

HVI is necessary for HVICs because of its circuit
topologies. Take nLDMOS as an example. The HVI
needs to be extended across the entire drift region
because the integrated HV device always has a closed
structure with HV at the inner drain. The HVI line may
cause a significant reduction in VB because of the strong
field modulation effect[39, 40], which may also induce
hot carrier injection in power devices[41]. The physical
essence of HVI may be equivalent to the introduction
of positive charges QE on the surface of a device and
QE D CE�VI , where CE is the equivalent capacitance

D

N-drift
P-well

N-well

P+

Drain N+

ΔV ≈ VB / n

P-sub

A

A'  

(a)

(b)

Fig. 10 Schematic cross-sectional view of (a) proposed DTT
structure and (b) 2D cross-sectional view of full-dielectric
termination structure along AA0[38].

under the HVI line and �VI is the potential difference
between the upper and lower interfaces of the insulator.
Hence, two main mechanisms of HVI technology have
been reported: (1) reducingQE by reducing CE or�VI ;
and (2) introducing opposite-type charges to keep a new
charge balance with QE .

2.3.1 HVI technology with thick insulator
The simplest way to avoid the impact of HVI is to
increase the thickness of the insulator under the HVI line.
As a result of the low CE from the thick insulator, QE

is reduced to alleviate the impact of HVI. A possible
approach to realizing a thick insulator is shown in
Fig. 11[42], in which the step height from the thick
insulator at the surface of the device is reduced by the
wet etching of silicon before field oxidation.

In a real process, the thickness of an insulator film is
usually limited to less than 5�m. Applying this structure
solely to HV devices with an interconnect voltage of over
600 V is unrealistic. On the basis of the same mechanism,
a bonding wire is used as the HVI line[43]. As the bonding
wire is separated from the silicon by a passivation layer
and a thick air region, this HVI structure could efficiently
avoid the impact of HVI without the limitation of a thick
insulator. However, the wire bonding outside the device
requires an extra chip area.

2.3.2 HVI technology with the self-shielding
capability

Another way to reduce QE is to reduce �VI .
Figure 12a shows the HVI technology with self-shielding
capability[44, 45]. The inevitable crossing of HVI is
eliminated by changing the topology of the HVJT region.
In the self-shielding HVI structure, the high �VI is
removed from the circuit, and the low QE reduces
the impact of HVI. Figures 12b and 12c show that
the HV nLDMOS and pLDMOS use the self-shielding
HVI technology. The double RESURF mechanism is

Fig. 11 Processing of thick insulator[42].
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(a)

(b)

(c)

Fig. 12 Integrated nLDMOS and pLDMOS with self-
shielding HVIs: (a) top view[44, 45], (b) cross section of
nLDMOS[46, 47], and (c) cross section of pLDMOS[46].

observed in both devices. As �VI in the self-shielding
HVI structure is independent of VB , 1200 V gate drivers
can be realized. The divided RESURF technology is
further developed to reduce the crosstalk between two-
level shifters[46, 47].

2.3.3 HVI technology with new charge balance
The HVI technology breaks the perfect charge balance
developed by the RESURF technology. Opposite-type
charges are introduced to maintain the new charge
balance with QE . Figures 13 and 14 present two typical
HVI structures designed with this mechanism. In the
HVI structure in Fig. 13, an additional JT extension
P-region is introduced at the surface of the device[40, 48].
The ionized acceptors from the P-region keep a new
charge balance with QE . As shown in Fig. 14, the
new charge balance is introduced by the single-layer
or double-layer floating field plate[49]. As the charge

Fig. 13 Junction termination extension structure in HVI
structure. Ionized negative charges from the surface’s P-
region are introduced to keep a new charge balance with
QE

[49].

Fig. 14 Cross section of LDMOS using HVI structures with
single- and double- layer floating field plate[49].

balance is developed mainly in the insulator layer and
is almost independent of the depletion in the drift
region, the HVI structure in Fig. 14 can realize a better
characteristic than that in Fig. 13.

3 Bulk Field Optimization Technology

The surface electric field of an integrated HV device
is optimized by RESURF and JTT. If the premature
breakdown at the surface is eliminated, then the vertical
breakdown in the bulk becomes the main limitation of
the device in achieving high VB .

Bulk field optimization technologies are proposed
to increase the vertical VB of HV integrated devices,
including the ENDIF and REBULF for SOI- and silicon-
based devices, respectively.

3.1 ENDIF

The schematic diagram of the ENDIF rule is shown
in Fig. 15[50, 51]. The structure of an HV SOI device is
shown in Fig. 15a. The vertical VB is given by VB D

0:5tsEC CEI tI , where ts and tI are the thicknesses of
the silicon and insulator layers, respectively. EC and EI
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(a)

(b)

Fig. 15 Schematic diagram of ENDIF rule: (a) typical
structure of SOI device and (b) three approaches to increase
EI based on ENDIF[50].

are the critical electric field of silicon and the electric
field of the insulator layer, respectively. In a conventional
HV SOI device, EI is only about 100 V/�m, which
is much lower than the critical electric field (i.e., 600–
1000 V/�m). The concept of ENDIF is to improve the
vertical VB of the SOI device by enhancing EI . Given
the continuity of electric displacement, including the
interface charge �in, EI is expressed as Ref. [50],

EI D
q

"I
�in C

"sEC

"I
(2)

where "I is the dielectric constant of the insulator.
The qualitative enhancement effects of EI are

illustrated in Fig. 15b. According to Eq. (2), ENDIF
gives three approaches to increase EI : (1) �EI1 by
using a thin silicon layer with a high EC

[52–56]; (2)
�EI2 by introducing a low-k (low permittivity)
dielectric buried layer[57, 58]; and (3) �EI3 by
implementing interface charges[59–61].
� in and "I are determined by the device structure and

material of the insulator. Ec of the silicon is determined
by the integral of the impact ionization rate ˛ withR ts

0
˛ds D 1[62]. It can be expressed as a function of

ts ,

EC D 4:7 exp
�

19:64

ln.3227:4ts/

�
(3)

where ts is in micron.

The maximum deviation of Eq. (3) is smaller than
2% in the range 0.05�m 6 ts 6 100�m. In Eq. (3), ts
of the SOI under a given EC can be directly calculated
by tsD1=3227:4 expŒ19:64=ln.EC=4:7/�, which is also
a simple design guide of the thickness of an HV SOI
device. Figure 16 shows EC of the silicon as a function
of ts . Ec varies very slowly in the thick silicon structure
with 1�m 6 ts 6 100�m, which can be treated as a
constant. EC is increased dramatically in the submicron
scale, e.g., EC is up to over 100 V/�m at ts < 0:19�m.
Analytical Ec from Eq. (3) is in good agreement with
simulations and experiments.

Typical HV SOI devices based on the three approaches
of the ENDIF rule are illustrated in Fig. 17. Figure
17a shows a thin-layer SOI device[53]. The EC value
of the silicon is increased according to Eq. (3) to realize
high EI . Figure 17b shows an SOI device with an LK
insulator under the drain[57]. EI is increased by reducing
"I of the insulator. In Figs. 17c and 17d, interface ionized
charges[59] or holes[60] are introduced at the interfaces of
the silicon and insulator to enhance EI . Other reported
devices can also be included in these three approaches.

3.2 REBULF

For a bulk silicon-based HV device, the vertical VB

is restricted by the planar junction breakdown at the
interface of the N-drift and P-substrate. The RESURF
technology can realize an optimized surface electric field.
The vertical VB is the main limiting factor to further
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m
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Theory in Ref. [3]

Theory in Ref. [62]

Theory in Ref. [63] 

Experiments in Refs. [55, 64] 

Experiments in Refs. [65, 66] 

Experiments in Ref. [52] 

Simulation

Fig. 16 Critical electric field EC of silicon as a function of
ts. EC is increased dramatically in the thin silicon layer (ts <<<
1���m).
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Fig. 17 Typical HV SOI devices based on ENDIF rule
with (a) thin silicon layer and high Ec

[53]; (b) LK dielectric
buried layer[57]; (c) Reference [59] interface charges, and (d)
Reference [60] interface charges.

improve the voltage handling capability, especially for a
high VB of over 1000 V.

The basic structure of REBULF involves the
introduction of an N-type floating layer in the P-substrate.
Thus, the vertical VB in the new structure is sustained
by multiple PN junctions. The electric field at the main
junction between the N-drift and the P-substrate is thus
reduced to improve the vertical VB .

Figure 18 shows typical REBULF devices. An N+
floating layer is introduced into the P-substrate, as shown
in Fig. 18a[67, 70]. The vertical VB is sustained by the
main junctionD1 and the subjunctionD2. The new peak
field ofD2 decreases the peak field atD1. The VB value
of the REBULF LDMOS is 75% greater than that of
the conventional RESURF device. Figure 18b shows
another REBULF structure with a partial N floating
layer[68]. The similar additional D2 also helps to deplete
the P-substrate to improve VB . In obtaining the best

N-drift

P-sub

S
G

D

P-base

N+ N+

P-sub

P-buried

N+ floating layer

P+

ts

tsub

D1

D2

(a)

N-drift

P-sub

S
G

D

P-base

N+ N+

P-epi

P-buried

P+

N floating layer

ts

tb

Lb

Ld

D1

D2

(b)
Vs

N-epi

P-sub

P-top

Oxide

VG VD

P-well
P1 P2 P3

Vsub

N+ N+

(c)

Fig. 18 Typical HV devices based on REBULF rule with (a)
N+ floating layer[67]; (b) partial N floating layer[68]; and (c)
substrate bias voltage Vsub for SOI[69].
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tradeoff between VB and Ron,sp, the following REBULF
condition should be satisfied:8<:Nsubtsub61�1012 cm�2; for NC floating layerI

Nd tsCNbtb
Lb

Ld

Dconst1; for partial N floating layer

(4)
where Nsub and tsub are the doping concentration and
depth of the P-substrate layer above the NC floating
layer, respectively. Nd , ts , and Ld are the doping
concentration, the thickness, and the length of the drift
region, respectively. Nb , tb , and Lb are the doping
concentration, the thickness, and the length of the
N floating layer, respectively. “const1” is between
1.5�1012 and 2.5 � 1012 cm�2.

The bulk electric field of the HV SOI device can also
be reduced by applying a substrate bias voltage Vsub, as
shown in Fig. 18c[69]. If a positive Vsub is applied at the
substrate, then the high drain voltage is supported not
only by the drain side, but also by the depletion layers
between the source electrode and the substrate electrode.
Thus, VB of the SOI REBULF device is improved.

4 Integrated SJ Technology

SJ is the most important innovation concept in power
MOSFETs, and it has been introduced into HV
integrated devices to further reduceRon; sp. However, the
Substrate-Assisted Depletion (SAD) effect[71] reduces
the vertical VB of integrated SJ devices. The essence of
the SAD effect is revealed by the Equivalent Substrate
(ES) model[72]. This part introduces the ES mode,
SJ realization technology, and typical integrated SJ
devices.

4.1 ES model

The schematic diagram of the ES model is shown in
Fig. 19[72]. Figure 19a illustrates the structure of the
integrated SJ with a Charge Compensation Layer (CCL).

The CCL and depleted substrate region are defined as the
ES to analyze the impact of the substrate on the surface
SJ layer, as shown in Fig. 19b. The ES model reveals the
essence of the SAD effect: the charge balance between
the N- and P-regions of the surface SJ is interrupted
because of the ionized negative charges of the P-sub
that lead to the non-full depletion of the P-pillars and
decreased VB of the conventional integrated SJ. If the
SAD effect is fully eliminated, then the optimized and
integrated SJ has a similar VB to that of the vertical SJ
with the same Ld , as shown in Fig. 19c. On the basis
of the ES model, the optimized substrate conditions,
including the equivalent charge density QES and surface
electric field EES of the ES layer, is deduced as[72](

QES ! 0I

EES D const2
(5)

The physical means of Eq. (5) include two aspects:
(1) The electrical neutrality is satisfied in the ES model,
with QES being zero. Then, the charge balance of SJ is
ensured. (2) A uniform EES of the ES is realized, and
thus, the premature breakdown caused by the substrate
is avoided.

4.2 SJ realization technology

The key process steps of integrated SJ devices are
the realizations of the surface N- and P-regions.
Figure 20 shows the simplified schematics of two
typical SJ realization technologies. The lateral SJ
may be realized by a CMOS-compatible process
with N- and P-type implantations. The SJs realized
by one-time surface implantation[73, 74] or multiple
implantations with the same implantation dose and
different implantation energies[64] are shown in Figs. 20a
and 20b, respectively. In alleviating the influences
of mutual impurity diffusion and compensation, the
implantations should be performed after all the

(a) (b) (c)

Fig. 19 Schematic diagram of ES model: (a) integrated SJ, (b) ES concept, and (c) optimized integrated SJ[72].
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high-temperature processes. Moreover, the maximum
implantation depth is restricted by the photoetching
accuracy because of thick photoresists.

The surface SJ can also be realized by silicon
trench etching and P-type epitaxy filling process[75].
Figures 20c and 20d show the simplified schematics.
With this process, the SJ with a high aspect ratio in the
bulk of the drift can be realized. The high quantitative
etching and epitaxy filling abilities are essential in this
process.

4.3 Typical integrated SJ devices

Extensive research has focused on the suppression of the
SAD effect. As the SAD effect is from the unbalanced

(a)

(b)

(c)

(d)

Fig. 20 Simplified schematics of integrated SJ realization
technology. SJ realized by (a) one-time surface
implantation[73, 74], (b) multiple implantations[64], (c) silicon
trench etching, and (d) P-type epitaxy filling process[75].

charges in the substrate, two main technologies are
proposed: (1) removal of unbalanced charges in the
substrate, and (2) introduction of opposite-type charge
compensation.

Figure 21 shows the integrated SJ structures removing
the unbalanced charges in the substrate via the sapphire
substrate[71] or via substrate etching[76]. The optimized
substrate Formula (5) is satisfied because the substrate
material for generating charges is removed. However, the
process compatibility is weakened by special substrates.

Typical integrated SJ structures with opposite-type
charge compensations are shown in Fig. 22. N-type
compensations could be introduced in different
directions.

Figures 22a and 22b show the SJ structure in the x-
direction[73, 74, 77, 83, 84]. An N-well or N-buffer layer is
introduced under the surface SJ layer to improve VB .
Figures 22c and 22d show the SJ struture in the y-
direction[58, 78, 85]. The SJ structure is only fabricated
near the source, and the N-type compensation is near the
source. For the SOI structure, a thin silicon layer may
be adopted to enhance EC[58]. Figures 22e and 22f show
the SJ struture in the z-direction[79, 86, 87]. The N-region
is designed with an increased width from the source to
the drain. The P-region can also be replaced by a highK
material[80]. Figures 22g and 22h show the SJ structure
in y- and z-directions[81, 82]. The above compensations
in two directions may realize a good charge balance in
the ES.

5 Conclusion and Prospect

HVICs are widely used to realize high-efficiency power
conversions. HV integrated devices are the core of
HVICs. This work presents a comprehensive review of
the important HV integrated technologies to realize high
VB , low Ron;sp, and process compatibility. The main
development directions of HV integrated technologies
are new integrated technologies and HVICs in wide band
gap semiconductor materials.
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Fig. 21 Integrated SJ structures removing the unbalanced
charges in the substrate, (a) with the sapphire substrate[71]

and (b) with substrate etching[76].
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Fig. 22 Integrated SJ structures with charge compensations.
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y-direction[78], (e) and (f) in z-direction[79, 80], and (g) and (h)
in y- and z-directions[81, 82].

5.1 New HVICs integrated technology

First, new integrated technologies are proposed to
realize superior performance. For example, Fig. 23a
shows a novel HOmogenization Field (HOF) technology
for HV integrated devices[88, 89]. Periodically discrete
Metal Insulator Semiconductor (MIS) structures are
introduced to resistance-type VSLs. Full-region MIS
depletion develops a new self-charge balance between
the ionized donors in the drift and the electrons and
holes in the floating electrons, as shown in Fig. 23b. The
HOF technology homogenizes the surface and bulk
electric fields. Therefore, the new device harvests higher
VB and lower Ron;sp than those of the conventional
RESURF technology in a much higher and wider

S G D
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N-drift

N+P+

P-sub

Nb

Equal-potential metals

Deep trench oxide

Field oxide

(a)

S 
(Silicon)

M 
(Poly Si)

I 
(Oxide)

Positive charge

Ionized donors

Negative charge

(b)

Fig. 23 New integrated technologies of (a) HOF technology
for HV integrated devices[88] and (b) self-charge balance by
MIS depletion.

doping dose range. Furthermore, these HV devices
can be integrated with new control circuits such as
the small-size AC/DC circuits[90], new functions such
as ElectroStatic Discharge (ESD) protection[91], or
designed by new tools such as the Asynchronous Neural
Network (ANN)[92].

5.2 HV integration beyond silicon

Second, HV integrated technologies are extended
to other materials, such as the wide band gap
semiconductor materials GaN and SiC. Figure 24 shows
the HVIC process platform based on GaN material[93–95].
The power transistors and LV peripheral devices are
integrated into a single chip. Figure 25 shows the HVIC
BCD process platform based on SiC material[96, 97].
BCD devices are formed by the same compatible
process.

The development trend of HV integrated technology
is summarized in Fig. 26. HVICs integrate HV and
LV devices with multiple BCD modes to realize
high integration levels and low power dissipation.
Many integrated technologies, such as RESURF,
ENDIF, HOFT, and JTT, are proposed to realize
high performances. These technologies have been
extended from silicon to SOI, SiC, GaN, etc. Single-
chip heterogeneous integrations[98, 99] for HVICs may
be an important development direction to combine the
advantages of different materials.
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Fig. 24 HVIC process platform based on GaN material: Power transistors and LV peripheral devices[90, 91].
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