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Automatic Modulation Recognition Based on CNN and GRU

Fugang Liu, Ziwei Zhang, and Ruolin Zhou�

Abstract: Based on a comparative analysis of the Long Short-Term Memory (LSTM) and Gated Recurrent Unit

(GRU) networks, we optimize the structure of the GRU network and propose a new modulation recognition method

based on feature extraction and a deep learning algorithm. High-order cumulant, Signal-to-Noise Ratio (SNR),

instantaneous feature, and the cyclic spectrum of signals are extracted firstly, and then input into the Convolutional

Neural Network (CNN) and the parallel network of GRU for recognition. Eight modulation modes of communication

signals are recognized automatically. Simulation results show that the proposed method can achieve high recognition

rate at low SNR.

Key words: modulation recognition; deep learning; Gated Recurrent Unit (GRU); Convolutional Neural Network (CNN)

1 Introduction

With the development of wireless communication
technology, modulation classification has been widely
used in electronic countermeasures, cost reduction of
cooperative communication, electronic reconnaissance,
and other fields. Automatic modulation recognition
technology can be roughly divided into three categories:
Likelihood-Based (LB) signal recognition methods
based on hypothesis testing, Feature-Based (FB)
methods based on feature extraction, and deep learning-
based methods[1]. LB recognition has two methods:
Average Likelihood Ratio Test (ALRT) and Generalized
Likelihood Ratio Test (GLRT). ALRT takes unknown
variables as random variables and calculates the
likelihood function by computing the average value.
GLRT calculates the probability density function of the
input signal on the basis of the maximum likelihood
estimation of unknown quantity and determines the
modulation mode accordingly[2–4]. The LB classification
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method can theoretically obtain the optimal classification
performance, but it requires substantial prior knowledge
and a considerable amount of computation. The
recognition method of FB relies on features, such as
instantaneous feature[5], High-Order Cumulant (HOC)
feature[6, 7]. Artificial neutral networks[8], Support Vector
Machine (SVM)[9], Decision Trees (DTs)[10–12], and
k-nearest neighbor[13], are used in FB methods. The
recognition effect of these methods is not optimal, but
the required prior knowledge and computation power
are remarkable improved in comparison with the first
method. However, the selection of features greatly
affects the recognition rate of signals.

In recent years, deep learning theory has been widely
used due to its effective feature extraction capability in
image processing; thus, many researchers have begun
to apply deep learning to modulation recognition[14].
For example, the Long Short-Term Memory network
(LSTM) is directly used to identify signals[15], or a
Convolutional Neural Network (CNN) is used to identify
the orthogonal and in-phase components of the signal[16]

for blind recognition; however, the recognition accuracy
of this method is poor at low Signal-to-Noise Ratio
(SNR). Later, some researchers used deep learning
theory to introduce a priori knowledge to a certain
extent, conducted feature transformation on the target
signal, extracted the signal constellation[17] and time-
frequency energy graph[18], and used a CNN to identify
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classification. The recognition effect is better than the
previous blind recognition, but the recognition rate
is still not high enough when the SNR is low. The
feature maps of some signals are similar or identical
to those of other signals, such as the Quadrature Phase
Shift Keying (QPSK) signal, and the offset QPSK
signal constellations[19] are completely consistent; thus,
the recognition method based on deep learning and
constellation map alone is not effective.

On the basis of the above conditions and problems,
modulation recognition techniques of eight kinds of
digital signals, including M-ary Phase Shift Keying
(MPSK), M-ary Amplitude Shift Keying (MASK),
M-ary Frequency Shift Keying (MFSK), and M-
ary Quadrature Amplitude Modulation (MQAM), are
studied. After extracting the features of signals (e.g.,
HOC, SNR estimation, and cyclic spectrum), the
feature data obtained are input into the CNN and
Gated Recurrent Unit (GRU) for recognition; then, the
recognition results of the two neural networks are input
into the recognition system designed in this study for
the final decision. Experimental results show that the
recognition rate of this method is significantly improved
in comparison with other methods at low SNR.

The paper is organized as follows: Section 2 briefly
introduces the features of eight kinds of signals. Section
3 analyzes related deep learning models. Section 4
demonstrates the feasibility of using CNN and GRU
to recognize eight wireless signals using MATLAB.
Section 5 summarizes the paper.

2 Analysis of Signal Characteristic
Parameters

2.1 HOC characteristics

Under the assumption that the signal received by the
receiver has undergone carrier synchronization, symbol
timing, and matched filtering, and the channel noise is
Gaussian white noise, the symbol synchronous sampling
complex signal sequence[6] obtained at the output is
x .t/ D s .t/C n .t/ D
p
A

gP
k

�k
p

En�.t�nTs/ exp Œj .2 fcC�c/�Cn .t/

(1)
where k D 1; 2; : : : ; g, and g is the length of the
transmitted code element sequence; A is the unknown
amplitude factor; �k represents the code element
sequence; � .t/ is the transmitted code element
waveform; Ts is the width of the code element; fc is

the carrier frequency; �c is the carrier phase; En is the
signal energy; n .t/ is the zero-mean complex Gaussian
white noise; x .t/ is the signal received at the receiving
end, and s .t/ is the signal at the transmitting end.

For zero-mean stationary random process X.t/, the
p-order mixing moment and k-order HOC are defined as
follows[20]:

Mpq D E
�
X .t/p�q X� .t/q

�
(2)

Ckx.�1; �2; : : : ; �k�1/ D

Cum .x .t/ ; x .t C �1/ ; : : : ; x .t C �kC1// (3)

where E is the expected operator, q is the position of
conjugation, � is the delay parameter, X� .t/ is the
conjugate transpose of X .t/, Cum .�/ is the operator
of HOC, and Ckx.�/ is the k-order cumulant of x .t/.
Table 1 is a list of the derivation values of HOC for
wireless communication digital modulation signals.

As shown in Table 1, appropriate characteristic
parameters can be designed in accordance with the
HOCs of eight kinds of signals. By using Eq. (4), three
feature parameters (i.e., F1, F2, and F3) are extracted,

F1 D
jC40j

C42
; F2 D

jC41j

C42
; F3 D

jC63j
2

jC42j
3

(4)

The three signal features extracted from HOC have
strong robustness at low SNR. Theoretically, 4PSK and
4ASK can be identified from eight signals by setting
an appropriate threshold, and the remaining six signals
can be divided into three groups: 16QAM and 64QAM,
2FSK and 4FSK, and 2PSK and 2ASK.

2.2 Wavelet transform characteristics

Wavelet transform can represent local time-varying states
in the time and frequency domains, and then reflect
the subtle change of signals. During the process of
signal modulation, the frequency, amplitude, and phase
parameters of a signal often change between different
code elements, and the wavelet transform can well reflect
the local transient information of the signal and detect

Table 1 Derivation values of HOC for wireless digital
modulation signals.

Signal jC40j jC41j jC42j jC60j jC63j

2ASK 2En2 2En2 2En2 16En3 16En3

4ASK 1:36En2 1:36En2 1:36En2 8:32En3 8:32En3

2PSK 2En2 2En2 2En2 16En3 16En3

4PSK En2 0 En2 0 4En3

2FSK 0 0 En2 0 4En3

4FSK 0 0 En2 0 4En3

16QAM 0:68En2 0 0:68En2 0 2:08En3

64QAM 0:62En2 0 0:62En2 0 1:08En3
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the abrupt part of the signal by scaling and shifting. The
Continuous Wavelet Transform (CWT) of a signal is
defined as[21]

CWT.l; �/D
Z
s.t/	�l .t/dtD

1
p
l

Z
s.t/	�

�
t��

l

�
dt

(5)
where 	�.�/ is the wavelet basis function, l is the scale
factor, and � is the displacement factor. The wavelet
basis function selected in this study is complex Gaussian
wavelet cgau4. First, the received modulated signal is
wavelet transformed. After this operation, the signal
waveform generates many small burrs, and then the burrs
are filtered via median filtering. Lastly, the variance
of the signal is calculated, and the wavelet transform
feature of the signal is obtained. This feature reflects
the stability of the amplitude of the wavelet transform of
various signals.

2.3 Instantaneous characteristics

For the real signal Ox .t/, Hilbert transformed signal is
Oy .t/. It can be represented by

Oy .t/ D
1

 t
˝ Ox .t/ D

1

 

Z 1
�1

�
Ox .�/

t � �

�
dt (6)

and s .t/ D Ox .t/C j Oy .t/. Ox.i/ and Oy.i/ are the discrete
values after sampling. Instantaneous amplitude A .i/,
instantaneous phase � .i/, and instantaneous frequency
f .i/[22] are in the following:

A.i/ D
�
Ox2 .i/C Oy2 .i/

� 1
2 (7)

�.i/ D tan�1
�
Oy .i/

Ox .i/

�
(8)

f .i/ D
1

2 T
Œ� .i/C � .i � 1/� (9)

where T is the sampling period.
The standard deviation of the absolute value of the

instantaneous frequency of nonweak signals is assumed
to be �af , and the standard deviation of the instantaneous
phase nonlinear component of the zero-center nonweak
signal segment is �dp [5]. Their expressions are shown in
the following:
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where �af is used to distinguish signals with
absolute frequency information, fB.i/ is the nonlinear
component of f .i/; a.i/ is the amplitude of the
signal, au.i/ is an amplitude judgment threshold
level for judging the weak signal segment, and
a.i/ > au.i/ means selecting non-weak signal segment

from the signal. The absolute value of the normalized
instantaneous frequency of the zero center of 2FSK is
a constant, and its standard deviation is zero. However,
this system is implemented under noisy environments;
thus �af of 2FSK is a relatively small constant.
By contrast, the absolute value of the instantaneous
frequency of 4FSK is not zero; thus �af of 4FSK is
greater than 2FSK. Therefore, 2FSK and 4FSK can be
identified with an appropriate threshold.

�dpD
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where �dp can be used to distinguish signals with
different direct phase information, c is the number of
non-weak signals, and˚B.i/ is the nonlinear component
of ˚.i/.

For example, 2ASK does not contain direct phase
information; thus �dp is approximately equal to 0. The
2PSK signal contains direct phase information (its
instantaneous phase is 0 or  ); thus �dp is greater than 0,
and 2ASK and 2PSK can be separated by characteristic
�dp .

2.4 Analysis of SNR estimation

The n-order statistic of Gaussian white noise is nonzero,
except for the second-order statistic; thus, the second-
order statistic of the signal contains some noise
information, but the fourth-order statistic does not.
For MPSK signals in complex Gaussian channels, the
estimated value of SNR is[23]

1SNR D

q
2M 2

2 �M4

M2 �

q
2M 2

2 �M4

(12)

The actual expressions of the second-order and fourth-
order moment method (M2M4) are as follows:

M2 D
1
N

N�1P
nD0

jx .n/j2;M4 D
1
N

N�1P
nD0

jx .n/j4 (13)

where N is the length of the signal, and x .n/ is the
received signal. This method only needs to calculate the
envelope of the signal to obtain the estimated value of
the SNR without signal modulation information, and it
can blindly estimate the SNR.

2.5 Cyclic spectrum characteristics

Communication signals usually have cyclic stationarity,
and cyclic spectral density function is an important tool
for analyzing stationary signals. The cyclic spectrum
of communication signals has a large nonzero value
at the point where the cyclic frequency is not zero,
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whereas the cyclic spectrum of stationary noise is mainly
concentrated at the point where the cyclic frequency is
zero. Stationary noise has zero or considerably small
value at nonzero cyclic frequency. Therefore, the cyclic
spectrum can well suppress noise or interference. Most
modulated signals can be modeled as a cyclically
stationary random process, and the cyclic spectrum of
signals can be expressed as[24]

S˛x .f / D

Z 1
�1

R˛x .�/ e�j2 
R
�d� (14)

where ˛ is the cyclic frequency, f is the spectral
frequency, and R˛x.�/ is the cyclic autocorrelation of
signals. Common cyclic spectrum estimation algorithms
use the frequency- and time-domain smoothing methods.
Considering that the algorithm based on the time-domain
smoothing cannot achieve a high-frequency resolution,
this study uses the discrete frequency-domain smoothing
algorithm to estimate the cyclic spectrum with the
following expression[25]:
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(16)
where ��t is the truncated window function, G is the
total number of sampling points, L is the length of
the smoothing window in the frequency domain, Ts
is the sampling interval, �f is the frequency range
corresponding to the smoothing window in the frequency
domain, �f D LFn D L= .NTs/, the truncated time
length is �t D T D NTs , and the frequency resolution
of the discrete fourier transformation is Fn D 1=NTs .

As can be seen from Fig. 1, the 2-Dimensional
(2-D) cyclic spectrum graphs of MQAM, 4PSK, 2ASK,
and 4ASK are similar, and the recognition effect
without image enhancement is poor, while the in-class
recognition and inter-class recognition of MFSK are both
good.

3 CNN and GRU

CNNs are a feedforward neural network consisting of
convolution computation and a deep structure. As shown
in Fig. 2, the basic structural unit of CNNs[26] includes
a convolutional layer, an activation layer, a pooling
layer[27], and a full connection layer. The convolution

(a) 2ASK (b) 4ASK

(c) 2FSK (d) 4FSK

(e) 2PSK (f) 4PSK

(g) 16QAM (h) 64QAM

Fig. 1 Cyclic spectrums of 8 signals (at 5 dB SNR).

Input

Output

Conv&

ReLU

Conv&

ReLU
Pooling Pooling

FC

Fig. 2 Basic structural unit of CNNs.

function is for extracting image features where each
neuron in the input and the previous layer of local
receptive field is linked together, along with the network
gradually deepening. The function of the activation layer
is to perform nonlinear transformation on the extracted
features, activate the extracted features, and make the
feature mapping have displacement invariance. The
pooling layer, also known as the lower sampling layer,
can effectively reduce the parameters in the network and
prevent the occurrence of overfitting. In general, one
or more full connection layers are connected at the end
of the CNN. Each neuron in the full connection layer is
connected with each neuron in the upper layer. The full



426 Tsinghua Science and Technology, April 2022, 27(2): 422–431

connection layer acts as a classifier in the entire CNN and
maps the learned features to the sample marker space.

Recurrent Neural Network (RNN) is a kind of neural
network used to process sequence data. RNNs remember
the previous information and apply it to the calculation
of the current output. The nodes between the RNNs’
hidden layers are no longer connected, the input of the
hidden layer includes not only the output of the input
layer, but also the output of the hidden layer in the last
moment. In RNNs, gradient disappearance and gradient
explosion easily occur during the training process,
thus leading to the unsatisfactory effect of RNNs
in practical application. Hochreiter and Schmidhuber
proposed LSTM with memory function[28]. It consists
of three parts: the input, forget, and output gates[29].
The input data are judged by whether it is needed
in accordance with the algorithm. If needed, data are
retained; otherwise, data are forgotten.

The emergence of the LSTM solves the inability of
RNNs to handle long-distance dependencies. Cho et
al.[30] proposed an improved GRU neural network of
LSTM in 2014. Its basic structure is shown in Fig. 3,
and its expressions are as follows:

zt D � .Wz � Œht�1; xt �/ (17)

rt D � .Wr � Œht�1; xt �/ (18)

Qht D tanh
�
W Qh � Œrt � ht�1; xt �

�
(19)

ht D .1�zt / � ht�1 C zt � Qht (20)

where �.�/ and tanh.�/ are the sigmoid and hyperbolic
tangent functions, respectively; xt and ht�1 represent
the input of the current cell, and ht represents the output
of the current cell; zt and rt are the states of the update
and reset gates, respectively; Qht is the output candidate
set; W Qh, Wr , and Wz are the weights of the candidate
set, update gate, and reset gate, respectively. In this

× + 

1−

tanh

× × 

Updata gate Reset gate

~

Fig. 3 Basic structural unit of GRU.

study, the GRU neural network is adopted, as shown in
Fig. 3. Compared with LSTM, GRU simplifies the three
doors into reset and update doors, reduces the number of
parameters required in the calculation process, reduces
the time required for training, and speeds up convergence.
When the dataset is large, the effect is improved because
of the numerous LSTM parameters. However, in the
application of small-batch datasets, GRU can achieve
the same processing effect as LSTM under the condition
of short training time. In practical applications, data
that can be used to train the network model are usually
relatively small. Therefore, this study adopts the GRU
network for modulation recognition.

4 Implementation of the Modulation
Identification System

4.1 Data generation

Data in this study were simulated on MATLAB software
platform. There were 256 symbols in the signal and the
carrier frequency was 4000 Hz, the sampling frequency
was 16 000 Hz, the noise was Gaussian white noise, and
the SNR was –10 dB to 20 dB. Eight modulated signals
(2PSK, 2ASK, 2FSK, 4PSK, 4ASK, 4FSK, 16QAM, and
64QAM) were generated, with a total of 4960 groups
of data and 620 groups of each signal (this paper used
small batch datasets that are closer to the real data).
After preprocessing, the signal generated by MATLAB
was superimposed with Gaussian white noise. Several
features, such as HOC, wavelet transform, instantaneous,
and SNR estimation features, were extracted, and their
cyclic spectrum was calculated. The obtained cyclic
spectrum was transformed into 2-D grayscale images,
and each image size was set as 150 pixel � 200 pixel.
The dataset obtained was allocated at a ratio of 1 W 1 in
accordance with the training and test sets.

The neural network was built and trained using the
Deep Learning Toolbox provided by MATLAB. The
platform for model training was the Win10 system, the
CPU was an Intel i7-9700KF, and the graphics card was
the NVIDIA RTX2070S.

4.2 Design and experiment

The training set was placed into the GRU with different
parameters and structures for training. Each case was
trained 100 times, and the average value of the
recognition rate obtained after 100 tests was taken for
comparison.

As shown in Fig. 4a, the recognition rate of double-
layered GRU is better than single- and three-layered
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Fig. 4 Recognition rate of signals on the basis of different
GRU parameters.

GRUs. The recognition rate of single- and three-layered
GRUs is lower than that of the double-layered GRU
due to the insufficient depth of the neural network and
the disappearance of gradient. As shown in Fig. 4b, the
order of input features in this paper is HOC feature,
instantaneous feature, wavelet transform feature, and
SNR estimation feature. Randoms 1 and 2 are the
random order of the above features. For the same
signal, the order of input characteristic parameters
of the training set has almost no influence on the
recognition rate, and the difference of recognition rate
of the three sequence datasets floats within the normal
range. In Fig. 4c, the numbers of nodes in different GRU
hidden layers and iteration rounds are compared, where
100 num-100 poch represents the numbers of nodes and
iterations of the hidden layer are both 100. When the
number of nodes in hidden layers and iteration rounds
are both 100, the comprehensive recognition rate of the
eight signals is optimal. In Fig. 4d, Adam and Sgdm are
two gradient descent algorithms, the gradient descent
algorithm with Adam has faster convergence speed and
higher accuracy during training.

On the basis of the above comparison, new types of
GRU networks and CNNs are designed in this study.
The GRU is shown in Fig. 5a; the network consists of
two GRU layers, a Full Connection (FC) layer, and a
SoftMax layer. The numbers in input (7), GRU (128),
and output (8) mean the numbers of nodes in the layers.
The new type of CNN is shown in Fig. 5b; it consists
of convolutional layer C1, batch normalization layer
B1, activation layer R1, and pooling layer P1 to form

F
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FC

Received signal

Input(7) GRU(128) GRU(128) Output(8)

2ASK

2PSK

2FSK
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16QAM
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(a) Structure of GRU

Cyclic

spectrogram

Gray&
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C1&B1 P1&R1 C2&B2 P2&R2

F1

(b) Structure of CNN

Fig. 5 Structural diagrams of the GRU and CNN.
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the first round of convolution combination layer. The
network structure consists of two of such convolution
combination layers; after two convolution combination
layers, the full connection layer F1 and the SoftMax
layer are connected.

The 800 test sets of cyclic spectra generated by
eight signals under –5 dB and the corresponding test
sets of seven characteristic parameters were input into
the trained CNN and GRU models, respectively; the
confusion matrix is shown in Fig. 6.

As shown in Fig. 6, the darker the color in the
confusion matrix, the greater the number of times the
modulation method is judged, and vice versa. The
recognition rate of the three signals of CNN based on
the cyclic spectrum is poor due to the similarity between
the 2-D cyclic spectrum of MQAM and that of 4PSK. A
certain confusion also exists between 2ASK and 4ASK.
The recognition effects of 2PSK and MFSK are better.
Compared with CNN, the GRU based on feature
extraction has better intraclass and interclass recognition
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(b) GRU confusion matrix

Fig. 6 Confusion matrix of eight signals based on CNN and
GRU.

of MQAM; moreover, the intraclass recognition of
MASK is good. However, the interclass recognition
of MFSK and MASK is poor.

4.3 Implementation of the algorithm

Based on the recognition characteristics of above two
neural networks, this study summarizes the recognition
methods based on feature extraction GRU and cyclic
spectrogram CNN. The specific steps are described as
follows:

Step 1: The receiver receives signals of enough length,
conducts sampling and signal preprocessing, and uses
the M2M4 method to perform a blind estimation of SNR.

Step 2: Extract the characteristic parameters of the
signal (i.e., HOC, wavelet transform, instantaneous, and
SNR estimation features) and arrange the characteristic
parameters in a certain order.

Step 3: Extract the three-dimensional circular
spectrum of the signal, transform the 3-D diagram into a
2-D top view, and simplify data. Then, perform gray
processing and histogram equalization on 2-D color
diagram to enhance the image, and thus further simplify
the data and enhance the robustness of the data.

Step 4: Input the characteristic parameters and the
2-D gray map of the cyclic spectrum into the GRU and
CNN designed in this study, respectively, and obtain two
recognition results.

Step 5: Make the final decision according to the effects
of two kinds of network recognition: when the predicted
result of CNN is MFSK and 2PSK, the predicted result
is directly output; when CNN predicts MASK, MQAM,
and 4PSK, the GRU-predicted result is taken as the
output result.

4.4 Simulation results

The generated datasets of characteristic parameters
were input into GRU, Back Propagation (BP) neural
network, and SVM. In accordance with the values of six
characteristic parameters (no SNR estimation features),
appropriate threshold values were set to form the DT
recognition mode. Then, six features of the estimation
without SNR were input into GRU. The generated cyclic
spectrum was input into the CNN designed in this study
as a dataset. The above method and the method in this
study are statistically compared with each other in terms
of the comprehensive recognition rate of eight signals
with an SNR of �10 dB to 20 dB. The results are shown
in Fig. 7.

The method based on DT has the worst recognition
rate when the SNR is low, and the recognition rate is
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Fig. 7 Synthetic recognition rate of 8 signals under 5
methods.

close to 100% when just the SNR is 10 dB. The reason
for poor result is that with the reduction of SNR, each
characteristic parameter experiences serious distortion,
and the modulation method based on a single threshold
is seriously affected. The recognition rate of SVM-
based and BP neural network is still not high when
the SNR is low, especially when the SNR is less than
�5 dB. However, the recognition rate of SVM is better
than that of the BP neural network when the SNR is
between –5 dB and 5 dB, and the recognition rate of
both is close to 100% when the SNR is more than
5 dB. The feature extraction method based on GRU is
superior to other traditional recognition methods based
on statistical patterns, thus proving that the feature
extraction method based on GRU is more accurate and
reliable than the traditional recognition methods based
on statistical patterns. The algorithm proposed in this
study still has a high recognition rate at low SNR, i.e.,
above 80% at –10 dB, above 90% at –8 dB, and 100% at
–1 dB.

Figure 8 shows the confusion matrixes when the
SNRs of this method are –5 and –10 dB, respectively.
As shown in Fig. 8a, this method combines the
recognition characteristics of the two networks, and the
recognition rate of the network is significantly improved
in comparison with that of running only the CNN or
GRU network. As shown in Fig. 8b, this method still
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Fig. 8 Confusion matrix of 8 signals based on the proposed
method.

has a relatively stable recognition performance at a low
SNR.

Table 2 shows the compared recognition rate of feature
parameters without SNR estimation. Table 3 shows
the compared recognition rate of feature parameters
with SNR estimation. After adding SNR features, the
recognition rate of the four methods is improved to
some extent in comparison with that without SNR
features. The method in this study reaches 100%
recognition rate earlier after adding SNR estimation
features. The SVM-based method is not as effective
as the BP neural network method in the case of low
SNR. However, with the improvement of SNR, the SVM-

Table 2 Recognition rate when SNRs are not estimated.

Method
SNR (dB)

�10 �8 �6 �4 �2 0 2 4 6
SVM 0.2700 0.2840 0.3320 0.4878 0.7142 0.9130 0.9725 0.9890 0.9888
BP 0.3812 0.4487 0.4462 0.4300 0.5157 0.6613 0.7538 0.9363 0.9587

GRU 0.5212 0.5388 0.5887 0.6387 0.7925 0.9088 0.9763 0.9925 0.9963
Our proposed 0.6875 0.7188 0.7813 0.8125 0.8750 0.9688 0.9963 1.0000 1.0000
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Table 3 Recognition rate when SNRs are estimated.

Method
SNR (dB)

�10 �8 �6 �4 �2 0 2 4 6
SVM 0.2840 0.2900 0.3395 0.4983 0.7188 0.9195 0.9770 0.9902 0.9895
BP 0.4975 0.5012 0.4900 0.4550 0.5400 0.7350 0.9000 0.9550 0.9925

GRU 0.6238 0.6375 0.6813 0.8113 0.9000 0.9750 1.0000 1.0000 1.0000
Our proposed 0.8125 0.8938 0.9063 0.9313 0.9875 1.0000 1.0000 1.0000 1.0000

based method has more advantages than the BP neural
network. The recognition performance of the method
based on the GRU network is still better than that of
the traditional method based on SVM and BP neural
network, even without the addition of SNR estimation
features. The method presented in this study is superior
to the other three methods, regardless of whether or not
SNR estimation features are added.

5 Conclusion

To solve the low recognition rate of traditional
modulation recognition methods at low SNR and small
dataset in actual applications, this study designs and
optimizes a GRU network structure and proposes a
GRU recognition method based on feature extraction.
This method incorporates SNR estimation into feature
extraction and has a certain degree of improvement
in comparison with traditional modulation recognition
at low SNR. In addition, this study proposes a new
modulation recognition method, which combines GRU
based on feature extraction and CNN based on cyclic
spectrum. The recognition rate is more than 90% when
SNR is –6 dB and 100% when SNR is –1 dB. Future
work will improve the accuracy of the estimation of
nonconstant modulus signal by M2M4. The algorithm
of SNR estimation can also be further optimized.
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