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An Axiom System of Probabilistic Mu-Calculus

Wanwei Liu�, Junnan Xu, David N. Jansen, Andrea Turrini, and Lijun Zhang

Abstract: Mu-calculus (a.k.a. �TL) is built up from modal/dynamic logic via adding the least fixpoint operator �.

This type of logic has attracted increasing attention since Kozen’s seminal work. P�TL is a succinct probabilistic

extension of the standard �TL obtained by making the modal operators probabilistic. Properties of this logic, such as

expressiveness and satisfiability decision, have been studied elsewhere. We consider another important problem:

the axiomatization of that logic. By extending the approaches of Kozen and Walukiewicz, we present an axiom

system for P�TL. In addition, we show that the axiom system is complete for aconjunctive formulas.
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1 Introduction

In Ref. [1], Kozen presented propositional �-calculus,
(a.k.a. �TL), which is an extension of modal logic with
the least fixed point operator. �TL has been proved
to be such an important mathematical tool that it is
widely used in reasoning and verification. Kozen also
investigated an axiom system for �TL, and showed
its completeness for aconjunctive formulas. That is,
the negations of all unsatisfiable aconjunctive formulas
are provable. However, completeness for the full
logic is considerably intricate. After a decade, such
property was finally shown in Ref. [2] by Walukiewicz
based on the basis of the deep investigations given in
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Refs. [3–5]. Later, Tamura[6] reported an easy proof by
introducing the notion of wide tableaux and by providing
an alternative definition of a tableau consequence.

Probabilistic extensions of modal/temporal logics are
highly important in both theory and practice, particularly
in verification and game theory[7]. For example, the
semantics of probabilistic programs were studied by
Kozen in Ref. [8]. PCTL, which is the probabilistic
version of CTL, was introduced in Ref. [9], and it
has become the most important specification language
in probabilistic model checking. In addition, the
logic PCTL* subsumes PCTL and PLTL, whose model
checking and satisfiability problem have been intensively
studied[10–14]. In Ref. [15], a deductive approach for
PCTL* was presented, but it was incomplete.

In Ref. [16], it is shown that some crucial properties
used in probabilistic systems (e.g., Ref. [17]), such as the
“safety property”, cannot be captured by PCTL. Actually,
a desirable system is one that can guarantee with a large
probability that error does not occur. However, from
a perspective described by PCTL, such system leads
to error with probability 1 in the long run, and is thus
counterintuitive; hence, no quantitative description of
safety can be yielded by such logic.

Various probabilistic extensions of �TL have also
been investigated[4, 18–21]. In Ref. [22], Mio presented an
extension of �-calculus by interpreting a formula into a
function from states to Œ0; 1�. The extension could encode
full PCTL, but its model checking and satisfiability
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algorithms are open. In Ref. [23], another probabilistic
�-calculus was introduced. It also subsumes PCTL
formulas, but it only involves alternation-free formulas.

Direct extensions of �TL were introduced
independently in Refs. [16, 24]. The logic P�TL
in Ref. [16] uses the probabilistic “next” operator
X&p to replace the modal operators 3 and operator
2. Indeed, the modalities 3 and 2 can be represented
by X>0 and X>1, respectively. The logic suggested in
Ref. [24] subsumes that in Ref. [16], but its satisfiability
problem remains open. By contrast, the satisfiability
problem of P�TL was proved to be decidable in
2EXPTIME in Ref. [16]. In Ref. [25], the problem was
found to be EXPTIME-complete. In Ref. [26], P�TL
was further extended into the alternating-time case. In
Ref. [27], another probabilistic �-calculus is presented,
and that logic allows the encoding of inequational
conditions. The authors also presented an axiom system,
which is sound and complete for alternation-free
formulas[27]. Such axiom system includes 9 axioms
and 2 inference rules for basic formulas, together with
3 inference rules for maximal equation blocks and 3
inference rules for minimum blocks.

In the current work, we intend to establish a Kozen-
style axiom system for P�TL. Our approach is based on
Refs. [1, 2]. The axiom schemes such as haif _haig$
hai.f _ g/ and haif ^ Œa�g ! hai.f ^ g/ suffice for
standard modal logic, but the same is not true in the
probabilistic setting. For example, these schemes cannot
prove probability deductions such as

X>0:7f ^ X>0:7g! X>0:4.f ^ g/:

To show the completeness of Kozen’s axiom
system for �TL, Walukiewicz[2] first established a
tableau/refutation-based approach (which was first
suggested by Streett and Emerson[28]), and reduced the
satisfiability problem of �TL to a special game upon the
tableau. By observing the fact that if a formula has a thin
refutation then its negation is provable, he showed the
completeness for aconjunctive formulas[2]. In addition,
he showed the completeness for the whole logic via
defining the so-called tableau-consequence[2].

We add an axiom (PROB) and an inference rule (COV)
to Kozen’s system. Then, we adopt Kozen’s approach
to our axiom system and show the completeness of
P�TL on aconjunctive formulas. Tableaux/refutations
are also adapted to match the probabilistic settings. We
show that the existence of a consistent tableau implies
the satisfiability of the corresponding formula. We also
reveal that an unsatisfiable (i.e., inconsistent) formula

must have a feasible refutation. Then we prove that if
a P�TL formula has a thin refutation then its negation
must be provable. Extending the completeness proof
to all formulas (i.e., non-acoujunctive formulas) is
quite involved, and the detailed reasons are analyzed
in Section 6. We leave this part as our future work.

This paper is an extension and deep revision of the
conference version[29]. In comparison to the conference
version, we do not use the game-based definitions on
tableaux and/or refutations to make these notions more
intuitive and succinct. Meanwhile, we have added as new
material illustrations how to use the presented axiom
system, but more importantly, we also provide a new
proof of the main completeness theorem (Theorem 10
in this paper), and we fixed some imperfections of the
original proof.

The remainder of this paper is organized as follows.
In Section 2, we revisit some related notions, including
P�TL, automata, and games. In Section 3, we introduce
tableaux for P�TL. And in Section 4, we present an
axiom system of P�TL. In Section 5, we prove the
soundness and completeness of the presented axiom
system for aconjunctive formulas. In Section 6, we
discuss the technical difficulties when we try to adapt
Walukiewicz’s proof to the full logic P�TL.

2 Preliminary

2.1 Logic P���TL

We first recall the logic P�TL defined in Ref. [16]. To
define the syntax of this logic, we need to fix a countable
set A of atomic propositions (the elements of which
are typically a, a1, a2, etc.) and a countable set Z of
variables (such as Z, Z1, Z2, etc.). In addition, we use
p, p1, p2, etc. to denote probabilities.

P�TL formulas, ranging over f; g; etc., can be
described by BNF as follows:
f WWD a 2 A j Z 2 Z j :f j f _ g j X>pf j �Z:f:

For the formulas with the form �Z:f we require all free
occurrences of Z in f to be positive, i.e., within the
scope of an even number of negations.

For a variableZ 2 Z , we regard an occurrence of it in
f as bound if it is in some subformula �Z:g; otherwise,
this occurrence is free.

We call a formula involving no free variables a closed
formula. Given two formulas f and g, a variable Z,
we denote by f Œg=Z� the formula obtained from f via
replacing each free occurrence of Z in f by g.

We also define the derived operators >, ?, ^, X>p,
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and � as follows:
>

def
D a _ :a;

?
def
D :>;

f ^ g
def
D :.:f _ :g/;

X>pf
def
D :X>1�p:f;

�Z:f
def
D :�Z::f Œ:Z=Z�:

For convenience, we use the symbol & to range over
f>;>g, and we use >� to represent the other inequality
sign, i.e., >� 2 f>;>g n f&g. In addition, we use � to
range over f�; �g and let � be its dual, that is, � D �

if � D � and � D � if � D �. We also use the usual
definition for ? and >.

A Markov chain is a tuple M D .S; P;L/, where S
is a set of states that may be infinite; P WS � S ! Œ0; 1�

is a distribution function, satisfying
P
s02S P.s; s

0/ D

1 for every s 2 S ; and LWS ! 2A is the labeling
function. For each s 2 S , we call the tuple .M; s/ a
pointed Markov chain.

The Semantics of a P�TL formula f can be given
w.r.t. a Markov chain M D .S; P;L/ and an evaluation
E WZ ! 2S . A formula can capture a subset of S
satisfying f , and we denoted it by ŒŒf ��EM , which can
be inductively defined as follows:

� ŒŒa��EM D f s 2 S j a 2 L.s/ g;

� ŒŒZ��EM D E.Z/;

� ŒŒ:f ��EM D S n ŒŒf ��
E
M ;

� ŒŒf _ g��EM D ŒŒf ��
E
M [ ŒŒg��

E
M ;

� ŒŒX>pf ��EM D f s 2 S j
P
s02ŒŒf ��EM

P.s; s0/ > p g;

� ŒŒ�Z:f ��EM D
T
fS 0 � S j ŒŒf ��

EŒZ 7!S 0�
M � S 0 g,

where E ŒZ 7! S 0� is an evaluation that agrees with E
except that it assigns S 0 to Z.

For convenience, we sometimes directly write s 2
ŒŒf ��EM as M; s ˆEf . When f is closed, we may
abbreviate it to M; s ˆf . We sometimes drop off the
subscripts/superscripts from the semantics notation (i.e.,
ŒŒ � ��), when we are not concerned about the model or
evaluation.

We say that f is satisfiable (resp. valid) if M; s ˆE

f holds for some (resp. every) Markov chain M ,
some (resp. each) state s of M , and some (resp.
every) evaluation E . A formula f is unsatisfiable (or,
inconsistent) if :f is valid. We write ˆ f if f is a
valid formula.

As shown in Ref. [16], for P�TL, we have the
following results on the expressiveness and satisfiability
decision:
� P�TL and PCTL are incompatible in

expressiveness, that is, there exist some properties that
can only be expressed by one logic, and not by another.
� Once we are concerned about the qualitative

fragment, that is, formulas use only the extreme
probabilities 0 and 1, then qualitative PCTL is a proper
fragment of qualitative P�TL if we further confine the
models to finite ones.
� The satisfiability problem of P�TL is decidable. In

Ref. [25], it is proved that this problem is EXPTIME-
complete. Furthermore, P�TL formulas enjoy the finite-
model property, that is, a formula is satisfiable if and
only if it is satisfied by some finite Markov chain.

2.2 Binders and expansions

In this section, we revisit some notions relative to
tableaux, that were originally presented for �TL. All
these notions are mainly syntactic, and can thus be
extended to P�TL.

By using the following rewriting rules,
::f ) f;

:.f ^ g/ ) :f _ :g;

:.f _ g/ ) :f ^ :g;

:X&pf ) X>�1�p:f;

:�Z:f ) �Z::f Œ:Z=Z�;

one can equivalently convert a formula into its negation
normal form (NNF). Formulas in NNF can then be
described by the following grammar:
f WWD > j ? j a j :a j Z j :Z j f _ g j f ^ g

j X>pf j X>pf j �Z:f j �Z:f:

We denote the variables in f by Z.f / and the
subformulas of f by S.f /. A formula of the form
a, :a, ? or > is called a literal.

A formula is said to be well-named if each bound
variable is bound exactly once, in addition, bound
variables and free variables do not share the same names.

For a well-named formula f and a bound variable
Z 2 Z.f /, the binder of Z in f is the subformula
�Z:g 2 S.f /, denoted by Df .Z/.

A formula f is guarded, if for each bound variable
Z 2 Z.f /, each of its occurrences must be in the scope
of some X operator within Df .Z/.

Given a well-named formula f , we can define the
dependency relation <f over its bound variables, this
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relation is the minimal strict partial order such that Z1
being free in Df .Z2/ implies Z1 <f Z2.

Example 1 Let
f D �Z1:.a1 ^ �Z2:.a2 _ X>0:7Z2 _ X>0:4Z1//:

Then we have Df .Z1/ D f and
Df .Z2/ D �Z2:.a2 _ X>0:7Z2 _ X>0:4Z1/:

Z1 has a free occurrence in Df .Z2/, and thus we have
Z1 <f Z2. The formula �Z:.a ^ X>0:5Z/ is guarded,
while X>0:6�Z:.:a ^Z _ X>0:4a/ is not, because the
occurrence of Z in its binder is not in the scope of any
X operator.

For every g 2 S.f /, the expansion of g with respect
to Df is defined as

hjgjiDf D gŒDf .Zn/=Zn� � � � ŒDf .Z1/=Z1�;

where the linear order .Z1; Z2; : : : ; Zn/ of the bound
variables in Z.f / is compatible with <f , i.e., Zi <f
Zj implies i < j . We call the set

fhjgjiDf j g 2 S.f /g;
to be the Fisher–Ladner closure of f .

Note that the expansion of g may not be well-named
in the case that some bound variable Z appears freely
more than once in some �Z0:gZ0 , but Z <f Z

0. In this
case, a systematic renaming is required.

2.3 Probabilistic alternating parity automata

The notion of probabilistic alternating parity automata
(PAPA) was first introduced in Ref. [16] to characterize
(closed) P�TL formulas.

Recall that a PAPA A is a tuple .Q; q0; ı;˝/ where
� Q is a finite set of states;
� q0 2 Q is the unique initial state;
� ı is the transition function, that assigns each state a

transition condition over Q (we will define the notion of
transition conditions later);
� ˝ W Q ; N, is a partial function, that assigns an

integer to some states.
The set of transition conditions over Q can be

inductively defined as follows:
(1) Each literal is a transition condition over Q.
(2) Each state q 2 Q is a transition condition over

Q.
(3) If q 2 Q and p is a probability, then X&pq is a

transition condition over Q, where & 2 f>; >g.
(4) If q1 and q2 are two states inQ, then both q1_q2

and q1 ^ q2 are transition conditions over Q.
Given a pointed Markov chain .M; s0/ where M D

.S; P;L/ and s0 2 S , then a run of A over .M; s0/ is a
Q � S -labeled tree .T; �/ that fulfills: �.v0/ D .q0; s0/,

where v0 is the root vertex; and for each internal vertex v
with �.v/ D .q; s/, we have the following requirements:
� If ı.q/ D ? or ı.q/ D > then v has no child.
� If ı.q/ D a then a 2 L.s/; and if ı.q/ D :a then

a … L.s/.
� If ı.q/ D q0 then v has one child v0 with �.v0/ D

.q0; s/.
� If ı.q/ D q1 ^ q2 then v has two children v1

and v2 such that �.v1/ D .q1; s/ and �.v2/ D .q2; s/,
respectively.
� If ı.q/ D q1 _ q2 then v has one child v0, either

�.v0/ D .q1; s/ or �.v0/ D .q2; s/.
� If ı.q/ D X&pq0 then v has a set of children

v1; : : : ; vn such that �.vi / D .q0; si /, where
Pn
iD1 P.s;

si / & p.
For an infinite path � D v0; v1; : : : of T , we let n� be

the number
maxf n j #fi j ˝.Proj1.�.vi /// D ng D 1g;

where Proj1.q; s/ D q for every q 2 Q and s 2 S .
A run .T; �/ is accepting if: (1) n� is an even number

for every infinite branch � of T ; and (2) for each vertex
v of T with �.v/ D .q; s/, we have ı.q/ ¤ ?.

A pointed Markov chain .M; s0/ can be accepted by
A, if A has some accepting run over it. Let L .A/ be the
set of pointed Markov chains that can be accepted by A.

For each closed P�TL formula f , we can create a
PAPA Af D .Qf ; qf ; ıf ; f̋ /, where
� Qf D f qg j g 2 S.f / g, hence we have the state

qf 2 Qf ;
� ıf is defined as follows:
– ıf .q?/ D ? and ıf .q>/ D >;
– ıf .qa/ D a and ıf .q:a/ D :a;
– ıf .qg1̂ g2/Dqg1^qg2 and ıf .qg1_g2/Dqg1 _qg2 ;
– ıf .qX&pg

/ D X&pqg ;
– ıf .q�Z:g/ D qg ;
– ıf .qZ/ D qg if Df .z/ D �Z:g.
� f̋ is defined at every state qZ with Z 2 Z

fulfilling: (1) if Z is a �-variable (resp. �-variable), then
f̋ .qZ/ is an odd (resp. even) number; (2) ifZ1 <f Z2,

then we require that f̋ .qZ1/ > f̋ .qZ2/.
Theorem 1 (Ref. [16]) M; s ˆ f if and only if

.M; s/ 2 L .Af /.

3 Tableaux

We define the tableaux of P�TL formulas in this section.
For convenience, we fix a formula f , and assume
that it is (1) closed, (2) well-named, (3) in NNF, and
(4) guarded. A formula satisfying these conditions is
in tableau normal-form. We will later see that under
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our presented axiom system, every P�TL formula is
equivalent to a formula in tableau normal-form.

A set � of formulas of the form
fX&p1f1; : : : ;X&pnfn; l1; : : : ; lsg;

where l1; : : : ; ls are literals, is called a modal set.
Furthermore, we define Post.� / D ff1; : : : ; fng. A
modal set is called (locally) consistent if and only if it
contains neither ? nor conflicting literals (e.g., a and
:a).

For a modal set � � S.f /, a cover C of � is a
subset of 2Post.� / such that there exists a weight function
wW C ! Œ0; 1� satisfying

(1)
P
�2C w.�/ 6 1, and

(2)
P
�2f�02Cjg2�0 gw.�/ & p for every X&pg2� .

We denote the set of covers of � by C .� /.
To prepare for tableaux, we first list the tableau rules

for P�TL.

ŒAND�
�; f1; f2

�; f1 ^ f2
I ŒOR�

�; fi

�; f1 _ f2
; i 2 f1; 2gI

Œ��
�; g

�; �Z:g
I Œ��

�; g

�; �Z:g
I

ŒREG�
�; g

�;Z
; if Df .Z/ D �Z:gI

ŒMOD�
�1; : : : ; �n

�
;

� is a consistent modal set;
f�1; : : : ; �ng is a cover of � .

For convenience, we always consider f to be a closed
formula in this section. As a matter of fact, free variables
can be treated in the same way as literals, and thus this
condition is never an actual restriction.

A tableau of f is a labeled tree Tf D .V; v0; E;L/,
where V denotes the nodes and v0 2 V denotes the
root, E are the edges from parent to child, and LWV !
2S.f / labels each node with a set of subformulas of f .
Intuitively, the tableau has the following properties: (1) if
the labels of the children are satisfiable, then so does the
parent’s label; (2) the labels of leaf nodes are satisfiable
if they are consistent.

We require that L.v0/ D ff g. And, for each node
v 2 V , if L.v/ contains a pair of conflicting literals or
?, then v is a leaf node of the labeled tree; otherwise,
� if L.v/ is not a modal set, then v has a single child

v0 with a label L.v0/ such that
L.v0/

L.v/
is some tableau

rule;
� if L.v/ is a modal set, then we apply the [MOD]-

rule in the following way: we find some cover C D
f�1; : : : ; �ng of L.v/ and create n children of v, each

is labeled with one distinct element of C (note that v
becomes a leaf if L.v/ consists of literals only).

For each edge .v; v0/ 2 E, we call v an [X]-node if
L.v0/ is obtained from L.v/ by applying the [X]-rule. It
is indeed well-defined because only [MOD]-nodes may
have more than one child.

In addition, if v is neither a [MOD]-node nor an [AND]-
node, then L.v/ and L.v0/ must be of the forms �; g
and �; g0, respectively. In this case, we say that .g; g0/ is
the reduction pair w.r.t. v and v0. If v is an [AND]-node,
then we have L.v/ D �; g1 ^ g2, and L.v0/ D �; gi
where i 2 f1; 2g. Hence we have two reduction pairs
.g1 ^ g2; gi /. Otherwise, if v is a [MOD]-node and v0 is
one of its children, then a reduction pair must be of the
form .X&pg; g/ where X&pg 2 L.v/ and g 2 L.v0/.

For the tableau Tf D .V; v0; E;L/, a (maximum) path
˘ is a sequence

L.v0/; L.v1/; : : : ; L.vi /; : : : ;

where v0 is the root and each .vi ; viC1/ 2 E. For
convenience, we sometimes call

v0; v1; : : : ; vi ; : : :

a path, if doing so does not result in ambiguity.
A trace � within ˘ is a sequence of formulas

g0; g1; : : : ; gi ; : : : ;

where gi 2 L.vi /, and each .gi ; giC1/ is (1) either a
reduction pair w.r.t. vi and viC1; or (2) gi D giC1 (i.e.,
gi is not rewritten in L.vi /).

For some variable Z, if we have gi D Z and
giC1 D g, where Df .Z/ D �Z:g, then we say that
Z regenerates at vi . In other words, vi must be a
[REG]-node. For an infinite trace, there must exist
at least one bound variable that regenerates infinitely
often. The reason is that (1) formulas in a trace cannot
remain unchanged forever, because a path will eventually
encounter [MOD]-nodes; and (2) [REG] is the only
tableau rule that can increase formula size.

Given an infinite trace � , we call it a �-trace (resp.
�-trace) if the least variable (w.r.t. <f ) regenerating
infinitely often along it is a �-variable (resp. �-variable).

Then, the tableau Tf D .V; v0; E;L/ is said to be
consistent if it is

locally consistent: L.v/ contains no conflicting pair
of literals or ?, for each node v 2 V ; and

globally consistent: no �-trace exists in Tf .
Theorem 2 If f has a consistent tableau, then it is

satisfiable.
Proof Let Tf D .V; v0; E;L/ be a tableau. We first

construct a Markov chain M D .S; P;L0/ from Tf in
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the following way:
(1) For each node v 2 V , let ˚.v/ be the nearest

[MOD] descendant (if v is a [MOD]-node, then just let
˚.v/ D v). Note that nodes other than [MOD]-nodes
must have a unique child, the function ˚ is a well-
defined one.

(2) For each [MOD]-node v 2 V , we create a state sv
in the Markov chain. Let S consist of all such states, in
addition to one extra state ssink.

(3) For each sv 2 S n fssinkg, we choose L0.sv/ such
that it satisfies the following: for each a 2 A, if a 2
L.v/ then a 2 L0.sv/; and if :a 2 L.v/ then a …
L0.sv/. As Tf is locally consistent, L0.sv/ does exist.
L0.ssink/ can be any subset of A.

(4) The distribution function P is determined as
follows. For each [MOD]-node v, if v1; v2; : : : ; vn
are all its children, then C D fL.vi / j i D 1; : : : ; n g
forms a cover of L.v/. By definition, there exists
a weight function wv from C to Œ0; 1�. Then, we
set P.sv; s˚.vi // D wv.L.vi // for each i , and set
P.sv; ssink/ D 1 �

Pn
iD1wv.L.vi //.

Let Af be the PAPA of f . To show .M; s˚.v0// is
accepted by Af , we construct an accepting run of Af on
it with the following steps.

(1) For each node v 2 V and each g 2 L.v/, we
create a tuple .g; v; s˚ .v//, all such tuples constitute the
node set of the run tree.

(2) We let .g; v; s˚.v0// be the parent of .g0; v0;
s˚.v0// if the following hold:
� There exists some trace � D g0; g1; : : : ; gi ; : : :

within a maximal path ˘ D L.v0/; L.v1/; : : : ;

L.vi /; : : : , where each gi 2 L.vi /.
� There exist some i 6 k < j such that v D vi and

v0 D vj ; and g D gi D � � � D gk , and g0 D gkC1 D

� � � D gj , and g ¤ g0.
(3) For each tuple .g; v; s˚.v//, we label it with

.qg ; s˚.v//.
Then, according to the construction of Af and M ,

one can directly check that this run is indeed accepting
because Tf is also globally consistent.

Finally, we have L .Af / ¤ ∅, and this implies that
f is satisfiable by Theorem 1. �

The dual concept of tableau is refutation. The rules of
a refutation are almost the same as those for a tableau,
but [OR] and [MOD] are respectively replaced by the
following [OR0]- and [MOD0]-rules:

ŒOR0�
�; f1 �; f2

�; f1 _ f2
I

ŒMOD0�
�1; : : : ; �m

�
;

for each C 2 C .� /,
there is some �i 2 C.

Therefore, an [OR0]-node labeled with � [ ff1 _ f2g
has two children that are labeled with � [ ff1g and
� [ ff2g. Meanwhile, for a [MOD0]-node labeled with
� , for each C 2 C .� /, there is a child labeled with
some �i 2 C.

A refutation is feasible if (1) either some node has
a label containing a conflicting pair of literals or ?; or
(2) each infinite path contains a �-trace.

Lemma 1 For a formula f , it has either a consistent
tableau or a feasible refutation.

Proof We define a two-player game (played by
Satisfier and Refuter) as follows: For each set � �
S.f /:

(1) If it is not a modal set, then Satisfier picks some
successor � 0 according to some tableau rule other than
[MOD].

(2) If it is a modal set, then first Satisfier provides a
cover C of � , and then Refuter chooses some � 0 2 C
as the successor of � .

The game starts from ff g, and Refuter wins only if
� the path (defined exactly as that in tableaux) has a

node that involves either ? or some conflicting pairs; or
� the path is infinite and contains some �-trace.
This game is definitely deterministic (i.e., well

partitioned and the winning conditions of players are
complementary), then according to Martin’s theory[30],
the game has exactly one winner.

If Satisfier wins, she can construct a consistent
tableau of f , and refer to her winning strategy to
make suitable choices in [OR]-nodes and [MOD]-nodes.
Likewise, if Refuter has a winning strategy, she can
establish a feasible refutation by querying her winning
strategy in choosing [MOD0]-nodes. �

Theorem 3 If f is not satisfiable then it has a
feasible refutation.

Proof Suppose that f is not satisfiable. From
Theorem 2, Satisfier (cf. Lemma 1) cannot have a
winning strategy, and Refuter wins the corresponding
game, thus, f has a feasible refutation. �

4 Axiom System

In this section, we extend Kozen’s system to that for
P�TL as follows:

(TAUT) All tautologies,
(PROB) X>bf ! ?;
(REC) f Œ�Z:f=Z�! �Z:f;
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where in (PROB), we require b > 1. In addition, the
system includes the inference rules

(MP)
f ! g; f

g
;

(LFP)
f Œg=Z�! g

.�Z:f /! g
;

(COV)
W
B2B

V
B ! ?V

� ! ?
:

For the rule (COV), we require � to be a modal set,
and B � 2Post.� / such that B \ C ¤ ∅ for each C 2
C .� /.

Formally, a proof of f is a sequence
f0; f1; : : : ; fn D f;

where each fi is either an instance of some axiom
or obtained by applying some inference rule from
f0; : : : ; fi�1.

We say that f is provable, denoted as ` f , if there
exists a proof for f ; and, f is irrefutable if :f is not
provable.

Different from Kozen’s axiom system, we add the
axiom (PROB) and the inference rule (COV). For a set
of X-formulas � , the probabilities of mutually exclusive
formulas in Post.� / may be so high that no cover
of � exists. Then, a complete proof system should
allow inference of

V
� ! ?. The antecedents of

(COV) describe the mutually exclusive formulas: every
B � Post.� / in B is such a set of mutually exclusive
formulas.

Example 2 Consider the formula set
� D fX>0:7a;X>0:7b;X>0:7.:a _ :b/g;

where we definitely have Post.� / D fa; b;:a _ :bg.
In addition, we let B be the set fPost.� /g, the set

consists of all maximal proper subsets of Post.� /, i.e.,
the set

ffa; bg; fa;:a _ :bg; fb;:a _ :bgg;

is not a cover of � , because of the absence of a proper
weight function for this set. Therefore, each C 2 C .� /
must contain Post.� /, so B \ C ¤ ∅.

Thus we can infer
X>0:7a ^ X>0:7b ^ X>0:7.:a _ :b/! ?;

from the tautology
a ^ b ^ .:a _ :b/! ?;

by applying (COV).

4.1 Equivalent formulation of COv

Although the inference rule (COV) appears neat and
intuitive, calculating all the covers of a modal set is

inconvenient. We thus present an equivalent rule called
(COV0), which is relatively easy to use. This rule reads

(COV0)
W
B2B

V
B ! ?V

� ! X&pWPost.� /
;

where � is a modal set, B � 2Post.� /, and p is the
optimization goal of the following linear programming
(LP) problem:
p D inf

P
�W��Post.� /

w�;

s.t. w� > 0; 8� � Post.� /I
w� D 0; 8� 2 BIP
�Wg2�

w� & p0; 8X&p0g 2 � I

where

& D

(
>; if the infimum is achievable;

>; otherwise.

Note that (COV0) can be applied only when this LP
problem has a solution.

Example 3 Consider the formula set
� D fX>0:7a;X>0:7b;X>0:7.:a _ :b/g;

and still let B D fPost.� /g. Then, we can obtain the
following LP problem:
p D inf

P
�W��Post.� /w�; s.t.

w� > 0; 8� � Post.� /I
wfa;b;:a_:bg D 0;

wfag C wfa;bg C wfa;:a_:bg C wfa;b;:a_:bg > 0:7;

wfbg C wfa;bg C wfb;:a_:bg C wfa;b;:a_:bg > 0:7;

wf:a_:bg C wfa;:a_:bg C wfb;:a_:bgC

wfa;b;:a_:bg > 0:7:

One may check that its minimum value p D 1:05 is not
achievable, we thus have

X>0:7a ^ X>0:7b ^ X>0:7.:a _ :b/! ?;
by applying (COV0) to

a ^ b ^ .:a _ :b/! ?:

Note that we have
X>1:05.a _ b _ :a _ :b/! ?;

according to (PROB).
Let A D f.TAUT/; .PROB/; .REC/; .MP/; .LFP/g.

Then, Theorems 4 and 5 prove the equivalence of .COV/

and (COV0) cooperating with A .
Theorem 4 The system A [ f.COV/g can derive

(COV0).
Proof Suppose � is a modal set, and let B �

2Post.� / be such a set family that for every B 2 B we
can infer

V
B ! ?. In this situation, the premise of

(COV0) is satisfied. Suppose that & p is determined
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by the corresponding LP problem. At this point, the
obligation is to show^

� ! X&p
_

Post.� /:

For convenience, we prove the following equivalent
formulation:̂

� ^
�
X>�1�p

^
g2Post.� /

:g
�
! ? (1)

remind that :X>�1�p:g is equivalent to X&pg in our
logic, and >� 2 f>;>g n f&g.

To prepare the premises of (COV); and we let
� 0 D � [ fX>�1�qhg;

where h D
V
g2Post.� /:g and let

B0 D B [ f� � Post.� 0/ j h 2 � g n ffhgg:

Note that each� 2 B0nB contains some g 2 Post.� /
and h D

V
g2Post.� /:g. Therefore, we have

V
�! ?

for each � 2 B0.
In addition, for every cover C of � 0 there must exist

some weight function wW C ! Œ0; 1� fulfillingX
�2C

w.�/ 6 1 (2)X
�2f�02Cjh2�0 g

w.�/ >� 1 � p (3)

X
�2f�02Cjg2�0 g

w.�/ & q 8X&qg 2 � (4)

We can now define the extension w0W 2Post.� 0/ !

Œ0; 1� as follows:

w0.�/ D

(
w.�/; if � 2 C;

0; otherwise.

Then the above can be reformulated asX
�22Post.� 0/

w0.�/ 6 1 (5)

X
�2f�022Post.� 0/j h2�0g

w0.�/ >� 1 � p (6)

X
�2f�022Post.� 0/j g2�0 g

w0.�/ & q 8X&qg 2 � (7)

Assume by contradiction that C \ B0 D ∅, then we
have the following observations:
� The summation in Formula (7) accounts for all such

� that either it is a subset of 2Post.� / or it contains h.
For the second case, it does not belong to C.
� According to the definition ofw0, we havew0.�/ D

0. Thus, for every X&qg 2 � , we can assert thatX
�2f�022Post.� /jg2� g

w0.�0/ & q:

� The restriction of w0 to 2Post.� / also satisfies the

first two requirements of the corresponding LP problem,
hence we have X

�22Post.� /

w0.�/ & p:

� From Formula (6) we haveX
�22Post.� /

w0.�/ 6& p;

thus we have a contradiction (take note of the
difference between >� and 6&).

Therefore, the assumption C \ B0 D ∅ is incorrect.
Now, we can apply (COV) with � 0 and B0 and then can
obtain Formula (1). �

Theorem 5 The system A [ f(COV0)g can derive
(COV).

Proof Suppose that we have a modal set � � S.f /
and a set B � 2Post.� / such that for every C 2 C .� /,
we have C \ B ¤ ∅. As we have the axiom (PROB),
it suffices to show that the optimal value of the LP
problem is greater than or equal to 1, but this value
is not achievable.

Assume by contradiction that the optimal value is less
than 1 (or, equals to 1 and it is achievable), then there
must exist a solution having

P
�22Post.� / w� 6 1. As a

result, the set
C D f� 2 2Post.� /

j w� > 0 g;

is a cover of � . By assumption, we have C \ B ¤ ∅.
This contradicts the fact that w� D 0 for every � 2 B.

�

4.2 Some provable formulas

In this section, we present some useful formulas that are
provable in the presented P�TL axiom system.

As our axiom system subsumes Kozen’s system,
we can show the following theorems analogously by
adapting the quantifiers with the probabilistic version.

Theorem 6 For each closed formula f there exists
some g in tableau normal form such that ` f $ g.

The proof of the fact that every formula can be
equivalently transformed into a positive guarded one
under Kozen’s axiom system can be found in Ref. [2,
Proposition 2].

Theorem 7 (Ref. [1]) Given a variable Z and three
formulas f , g, and h, suppose that all occurrences of Z
in f and g are positive, and let � 2 f�; �g. Then,

(1) If ` f ! g then ` f Œh=Z�! gŒh=Z�.
(2) If ` f1 ! f2 then ` gŒf1=Z�! gŒf2=Z�.
(3) If ` f ! g then ` �Z:f ! �Z:g.
(4) ` �Z:f $ f Œ�Z:f=Z�.
(5) If ` f Œ�Z:.g^f /=Z�! g then ` �Z:f ! g.
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(6) Supposing Z1; : : : ; Zn are free variables of f ,
and a1; : : : ; an … L.f /, then ` f if and only if `
f Œa1=Z1� : : : Œan=Zn�.

We now proceed to some formulas characterizing
probabilistic quantifiers. Their proofs demonstrate how
.PROB/ and .COV/ work.

Theorem 8 With the axiom system, we can show
the following:

(1) ` X>pf ^ X>p0g! X>pCp0�1.f ^ g/.
(2) ` X>pf ^ :X>p0g! X>p�p0.f ^ :g/.
(3) ` :X>pf ^ :X>p0g! X>1�p�p0.:f ^ :g/.
(4) ` X>pf ! X>pf .
(5) ` X>pf ! X>p�p0f .
(6) ` X>pf ! X>p�p0f .
(7) ` X>pf ! X>p�p0f where p0 > 0.
(8) If ` f ! ? then ` X>pf ! ?.
(9) If ` f then ` X>1f .
(10) If `f !g then ` X>pf ! X>pg.
(11) If `f !g then `X>pf !X>pg.
Proof First of all, we can see that the hypothetical

syllogism (HS) can be proven: i.e., if ` f ! g and
` g! h then we have ` f ! h. As

.f ! g/! ..g! h/! .f ! h// ;

is a tautology, we thus derive the conclusion by applying
(MP) twice.

(1) ` X>pf ^ X>p0g! X>pCp0�1.f ^ g/.
(a) f ^ g ^ :.f ^ g/! ?, (TAUT);
(b) X>pf ^ X>p0g ^ X>1�.pCp0�1/:.f ^ g/!

X>1 .f _ g _ :.f ^ g//, (a) and (COV0);
(c) X>1 .f _ g _ :.f ^ g//! ?, (PROB);
(d) X>pf ^X>p0g^X>1�.pCp0�1/:.f ^g/! ?,

(b), (c), and (HS);
(e) X>pf ^ X>p0g! X>pCp0�1.f ^ g/, (d),

(TAUT), and (MP).
(2) ` X>pf ^ :X>p0g! X>p�p0.f ^ :g/.

(a) f ^ :g ^ :.f ^ :g/! ?, (TAUT);
(b) X>pf^X>1�p0:g^X>1�.p�p0/:.f ^:g/!

X>1 .f _:g_:.f ^:g//, (a) and (COV0);
(c) X>1 .f _ :g _ :.f ^ :g//! ?, (PROB);
(d) X>pf ^ X>1�p0:g ^ X>1�.p�p0/:.f ^

:g/! ?, (b), (c), and (HS);
(e) X>pf ^ :X>p0g! X>p�p0.f ^ :g/, (d),

(TAUT), and (MP).
(3) ` :X>pf ^ :X>p0g! X>1�p�p0.:f ^ :g/.

(a) :f ^ :g ^ :.:f ^ :g/! ?, (TAUT);
(b) X>1�p:f ^X>1�p0:g^X>1�.1�p�p0/:.:f ^
:g/! X>1:f _:g_:.:f ^:g/, (a) and (COV0);

(c) X>1:f _ :g _ :.:f ^ :g/! ?, (PROB);
(d) X>1�p:f ^X>1�p0:g^X>1�.1�p�p0/:.:f ^
:g/! ?, (b), (c), and (HS);

(e) :X>pf ^ :X>p0g! X>1�p�p0.:f ^ :g/,
(d), (TAUT), and (MP).

(4) ` X>pf ! X>pf .
(a) f ^ :f ! ?, (TAUT);
(b) X>0.f ^ :f /! ?, (a) and (COV);
(c) X>pf ^ X>1�p:f ! X>0.f ^ :f /,

Theorem 8 (1);
(d) X>pf ^ X>1�p:f ! ?, (b), (c), and (HS);
(e) X>pf ! X>pf , (d), (TAUT), and (MP).

(5) ` X>pf ! X>p�p0f .
(a) ? ! ?, (TAUT);
(b) X>p0? ! ?, (PROB);
(c) > ! :X>p0?, (TAUT);
(d) :X>p0?, (b), (c), and (MP);
(e) X>pf ^ :X>p0? ! X>p�p0.f ^ :?/,

Theorem 8 (2);
(f) X>pf ! X>p�p0f , (e), (TAUT), and (MP).

(6) ` X>pf ! X>p�p0f .
(a) X>1�.p�p0/:f ! X>1�.p�p0/�p0:f ,

Theorem 8 (5);
(b) :X>1�p:f ! :X>1�.p�p0/:f , (TAUT);
(c) X>pf ! X>p�p0f , (b), (TAUT), and (MP).

(7) ` X>pf ! X>p�p0f , where p0 > 0.
(a) f ^ :f ! ?, (TAUT);
(b) X>pf ^ X>1�.p�p0/:f ! X>1.f _ :f /,

(a) and (COV0);
(c) X>1.f _ :f /! ?, (PROB);
(d) X>1Cp�.p�p0/.f _ :f /! ?,

(b), (c), and (HS);
(e) X>pf ! X>p�p0f , (d), (TAUT), and (MP).

(8) If ` f ! ? then ` X>pf ! ?.
It is immediate form (COV0)

(9) If ` f then ` X>1f .
(a) f ! .:f ! ?/, (TAUT);
(b) :f ! ?, (a), premise, and (MP);
(c) X>0:f ! ?, Theorem 8 (8);
(d) .X>0:f ! ?/! :X>0:f , (TAUT);
(e) X>1f , (c), (d), and (MP).

(10) If ` f !g then `X>pf !X>pg.
(a) X>1.f ! g/, Theorem 8 (7);
(b) X>pf ^ X>1.f ! g/! X>pg,

Theorem 8 (2);
(c) X>pf ! X>pg, (a), (b), and (MP).
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(11) If ` f !g then ` X>pf !X>pg.
(a) X>1.f ! g/, Theorem 8 (7);
(b) X>pf^X>1.f!g/!X>pg, Theorem 8 (3);
(c) X>pf ! X>pg, (a), (b), and (MP).

�

5 Soundness and Completeness

In this section, we discuss the soundness and
completeness (for aconjunctive formulas) of the
presented axiom system.

Theorem 9 (Soundness) The axiom system is
sound, i.e., ` f impliesˆ f .

Proof By induction on the proof sequence. Consider
the base case. As X>1f is not satisfiable, we have ˆ
X>1f ! ?. The other axioms can be handled similarly
as in standard �TL.

For the induction step, we only consider (COV0), as
the other cases are also similar to the nonprobabilistic
settings.

Let � be a modal set and B � 2Post.� /. Suppose that
we have ˆ

V
B ! ? for all B 2 B and that & p is

determined by its corresponding LP problem. Our goal
is to prove

ˆ

^
� ! X&p

_
Post.� /.

It suffices to prove that for every Markov chain M and
state s such that M; s ˆ

V
� , we haveX

t WM;tˆ
W

Post.� /

P.s; t/ & p (8)

We divide the state space into equivalence classes
according to which formulas in Post.� / a state satisfies.
Formally, for each state t , let

�t D fg 2 Post.� / jM; t ˆ g g:

Then, each S� D f t j �t D � g indeed forms an
equivalence class (or is empty). Furthermore, we define
w� D

P
t2S�

P.s; t/ as the probability that a one-step

transition from s enters the class S�. Hence, w� > 0
for each � � Post.� /.

The sum on the left-hand side of Formula (8) can be
rewritten asX
t WM;tˆ

W
Post.� /

P.s; t/ D
X
�¤∅

X
t2S�

P.s; t/ D
X
�¤∅

w�.

Note that for all X&pg 2 � , we have M; s ˆ X&pg.
In other words, by summing up per equivalence class,X

t WM;tˆg

P.s; t/ D
X
�Wg2�

w� & p;

holds. In addition, by induction hypothesis, for all B 2
B we have wB D 0. Hence all the constraints of the LP

problem are fulfilled. Therefore, w�j�¤∅ is a valid
solution to the LP problem, that is,

P
�¤∅w�&p. �

For a P�TL formula f , we say a bound variable Z is
active in g 2 S.f /, if either Z is free in g, or another
bound variable Z0 occurs in g such that Z <f Z

0.
Let Z be a variable with its natural binder function

Df .Z/ D �Z:g. The variable Z is called aconjunctive
if for each subformula of the form g1 ^ g2, we require
that Z cannot be active in both g1 and g2. A formula is
aconjunctive if all its �-variables are aconjunctive.

We call a refutation thin if and only if no variable
is active in both g1 and g2 whenever a formula of the
form g1 ^ g2 is reduced in some node of the refutation.
Similar to �TL, since variables cannot be active in both
conjuncts of an aconjunctive formula, the refutation of
any aconjunctive formula is thin.

For thin refutations, we have the following important
theorem.

Theorem 10 For a closed aconjunctive formula, its
negation is provable if it has a thin refutation.

Proof This proof is adapted from that of Kozen
in Ref. [1] and that of Walukiewicz in Ref. [2] to the
probabilistic case. Note that some modifications are
crucial, and we will address them in our proof.

Suppose that formula f has a thin refutation of Rf .
From Theorem 6, we can also suppose that f is in
tableau normal form. The proof idea is to assign some
formula gn to each node n of Rf and show that each
gn is provable. As the root node is assigned :f , it
concludes the proof.

First of all, we need to attach a list of tokens to each
node. A token t is labeled with a pair .g;Z/ where g 2
S.f / and Z is a bound variable of f . Meanwhile, each
token is associated with a counter, which records the
number of regenerations of the bound variable since its
creation. Tokens in the list can be removed. Meanwhile,
one can add a new token to the right of this list.

Let us recall some notions and operations defined in
Ref. [2]. We say that g is replaceable by h in some list
of tokens if one of the conditions holds:

(1) h does not appear in any label of a token in the
current list.

(2) Zg <f Zh, where
Zg D minfZ j .g;Z/ appears in the listg

and
Zh D fZ j .h;Z/ appears in the listg:

(3) Zg and Zh defined above are the same, but the
token labeled with .g;Zg/ in the list is to the left of that
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labeled with .h;Zh/.
When g is replaceable by h, then we can perform the

following (called replace g by h): delete all tokens like
.h;Z/ (for all Z 2 Z), and then replace every .g;Z/ by
.h;Z/. Meanwhile, if g is not replaceable by h, we
can remove all tokens labeled with .g;Z/ for some
variable Z.

We assign an empty token list to the root of Rf .
Suppose that we have already assigned a token list to
an internal node m. Then, with the following rules, we
construct the token list for its child node n:

(1) If [OR0] is applied inm to g1_g2, thenm has two
children. Suppose that gi (herein i 2 f1; 2g) appears
in the label of n. The token list for n is obtained by
replacing g1 _ g2 with gi if g1 _ g2 is replaceable by
gi .

(2) Suppose that [REG] is applied in m to variable Z,
and that Df .Z/ D �Z:g. We replace Z with g if Z is
replaceable by g. In the case that Z is a �-variable, we
also need to increase the counter of the token labeled
with .g;Z/, and set the counters of the tokens to the
right of that to 0.

(3) Suppose that [�] is applied in m to �Z:g (herein
� is either � or �). We need to replace �Z:g with g if
the former is replaceable by the latter. In addition, if Z
is a �-variable we need to create a new token labeled
with .g;Z/, add it to the end of the token list, and set its
counter to 0.

(4) Suppose [AND] is applied in m to g1 ^ g2. As
Rf is thin, every �-variable is active in at most one
of gi (herein i D 1; 2). For each token labeled with
.g1 ^ g2; Z/, we replace g1 ^ g2 with gi wherein Z is
active, if g1 ^ g2 is replaceable by gi (i D 1; 2). Note
that at this point, the thinness of the refutation is used.

(5) Suppose that [MOD0] is applied in m, and
let LT .m/ D fX&p1f1; : : : ;X&pnfn; l1; : : : ; lsg and
LT .n/ � Post.LT .m// for each of its child n. For every
token labeled with .X&pifi ; Z/ such that fi 2 LT .n/,
we simply need to replace its label by .fi ; Z/.

Lastly, we need to remove all tokens that are either
labeled with .g;Z/ such that Z is not active in g, or
labeled with a formula not appearing in what labeled to
the node.

In the same way as that in Ref. [2], we can also show
that for every path of Rf there exists a token whose
counter becomes arbitrarily big.

Subsequently, we need to assign a formula to each
node of Rf . Similar to that done in Refs. [1, 2], for
every node n of Rf and every formula g 2 LT .n/ we

define a new version of binder function Dn;g . For some
�-variables Z, we have

Dn;g.Z/ D �Z::1 ^ � � � ^ :k ^ gZ ;

where the formulas 1; : : : ; k are determined as
follows:
� Suppose that n0 is the nearest ancestor of n whose

list includes a token labeled with .g;Z/ and that its
counter is just 0.
� Along the path from n0 to n, suppose that

n1; : : : ; nk are all the nodes having the counter of this
token increased; then, for i D 1; : : : ; k, let

i D
^
f hjhjiDni ;h

j h 2 LT .ni /; h ¤ gZ g.

� Since f is aconjunctive, each i is well-defined.
The formula assigned to the node n is just

:

^
f hjgjiDn;g j g 2 LT .n/ g (9)

For our construction, we have the following proposition.
Proposition 1 For a node m, if its associated

formula :
V
f hjgjiDm;g j g 2 LT .m/ g is unprovable,

then there is a child n of m such that :
V
f hjgjiDn;g j

g 2 LT .n/ g is unprovable.
Proof The proof is done by cases depending on the

rule applied to m, for P�TL, the only new case is that
for [MOD0].

The [MOD0] case is a deduction of the (COV)-rule.
Let m be such [MOD0]-node. According to the rules in
constructing tokens, the tokens in any child node n of m
are just renamed or deleted. Hence hjhjiDm;h ! hjhjiDn;h
for all h 2 LT .n/. If no child satisfies the property we
want, then we have a proof of^

f hjgjiDm;g j g 2 LT .n/ g ! ?

for all children n. We set � D LT .m/ and B D
fLT .n/ j n is a child of m g. Then all the premises of
(COV) are fulfilled. We obtain ` :

V
f hjgjiDm;g j g 2

LT .m/ g, which is a contradiction. Hence there is at
least one child such that :

V
f hjgjiDn;g j g 2 LT .n/ g is

unprovable.
Most of the other cases are routine, and the only tough

case is the regeneration of a �-variable where Df .Z/ D
�Z:g. Luckily this case is essentially the same as the
case in the proof for �TL, and the proof details of this
case are provided in Ref. [2]. �

Back to Theorem 10, we have Dr;f D Df for the
root r of Rf . Assume that :f is unprovable, from
Proposition 1 we then immediately obtain an infinite path
˘ of Rf along which every node’s associated formula
is unprovable.

Note that the following proof is different from that in
Ref. [2].
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Let t be the token whose counter can be unbounded
on this path. Let Z be a bound �-variable occurring in
the label of t , and suppose Df .Z/ D �Z:g.

As the counter of t can be arbitrarily large, two nodes
On1 and On2 must exist on ˘ such that

(1) On1 is an ancestor of On2, the parent of On1 is a [REG]-
node, and On2 itself is a [REG]-node;

(2) LT . On1/ D fgg [ � and LT . On2/ D fZg [ � ,
where g … � and Z … � ;

(3) in On1 and On2, the parts in the token list to the left
of t are the same;

(4) the token t is labelled .g;Z/ at On1, and is labelled
.Z;Z/ at On2;

(5) the counter of t has increased at least once, and
has not reset between On1 and On2.

At this point, we will show that the formula
:
V
f hjhjiD On2;h

j h 2 LT . On2/ g must be provable.
According to the definition in Formula (9), from

Theorem 7 (1) we have that

` hjhjiD On2;h
! hjhjiD On1;h

(10)

for every formula h 2 LT . On1/ if h ¤ Z, because: (1)
all formulas occurring in R are in NNF, and (2) tokens
to the right of t have reset their counters at node On1,
whereas others remain unchanged.

From the assumption, we have

D On1;Z.Z/ D �Z::1 ^ � � � ^ :i ^ g;

D On2;Z.Z/ D �Z::1 ^ � � � ^ :j ^ g;

where j > i and 1; : : : ; j are determined by
Formula (9). On one hand, we have

i D
^
f hjhjiD On1;h

j h 2 LT . On1/; h ¤ g g D^
h2�

hjhjiD On1;h
:

According to Formula (10), we can infer

`

^
fhjhjiD On2;h

j h 2 � g ! i (11)

Thus we have

:

^
f hjhjiD On2;g

j h 2 LT . On2/ g D

:

�^
fhjhjiD On2;h

j h 2 � g ^ hjZjiD On2;Z

�
D

:

�^
fhjhjiD On2;h

j h 2 � g^�^
�Z:.:1 ^ � � � ^ :j ^ g/

�
D

:

�^
fhjhjiD On2;h

j h 2 � g ^ g0
�

(12)

where g0 D �Z:.:1^� � �^:i^� � �^:j ^g/. Recall
that from Theorem 7 (4), we have

g0 $ :1 ^ � � � ^ :i ^ � � � ^ :j ^ gŒg
0=Z� (13)

We can thus conclude that :
V
f hjhjiD On2;g

j h 2

LT . On2/ g must be a tautology from Formulas (11) – (13).
Therefore, we obtain a contradiction with the

assumption that :f is unprovable. �
Finally, we have the following complete theorem for

aconjunctive formulas.
Theorem 11 (Completeness) For a P�TL formula

such that :f is aconjunctive, we have thatˆ f implies
` f .

Proof Let Z1; : : : ; Zn be all free variables
occurring in f , let a1; : : : ; an be n new atomic
propostions not belonging to L.f / and let f 0 D
f Œa1=Z1� : : : Œan=Zn�.

As f is valid, so is f 0, thus the closed formula :f 0

is not satisfiable. According to Theorem 3, we can build
a thin refutation of it because :f 0 is also aconjunctive.
Therefore, ::f 0 is provable according to Theorem 10.
Note that we also have ` ::f 0 ! f 0 by (TAUT), and
it implies that ` f 0. Finally, we have ` f according to
Theorem 8 (6). �

6 Further Discussion

We extend Kozen’s and Walukiewicz’s axiomatization
to that of P�TL. We also show that the presented axiom
system is complete for aconjunctive formulas.

In Ref. [2], Walukiewicz showed that Kozen’s axiom
system is complete for the whole logic of �TL. Let us
briefly recall the key idea of his last step.
� Having shown the completeness for aconjunctive

formulas, the negation of a valid formula can be rewritten
into the aconjunctive form.
� Instead, Walukiewicz[2] managed to show a stronger

proposition: for every formula f , some so-called
“disjunctive formula” g exists, such that f ! g is
provable. Disjunctive formulas enjoy several advantages,
in particular that they have very simple tableaux.
� One may perform a proof by induction on the

formula’s structure. However, we encounter difficulties
in the case of f D �Z:g. Because, even if we can show
that ` g! Og by induction, the formula �Z: Og might not
be disjunctive.
� To circumvent this issue, Walukiewicz[2] introduced

the notion “tableau consequence”, which is weaker than
tableau equivalence. The key observation is that when
g1 is an aconjunctive formula and g2 is a disjunctive one,
g1 ! g2 is provable if some tableau of g2 is a tableau
consequence of that of g1.

However, adapting this technique to show the
completeness of P�TL looks infeasible. As one may
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have noticed, for our tableaux, we do not have a concrete
distribution from a [MOD]-node to its children. This
feature serves to avoid infinitary branching in tableau
construction — with our approach, we are assured to
have finitely many possible choices to continue the
construction from [MOD]-nodes. However, this leads to
difficulties in defining tableau equivalence and/or tableau
consequence for P�TL. The reason is, in both notions,
only literals can be exhibited. Thus, we cannot acquire
sufficient information for the probabilistic extension.

Therefore, for P�TL, to present a complete
axiom system for the whole logic might require
the development of new tools instead of tableau
consequence. We leave this challenging task as our future
work.
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[30] C. Löding, Methods for the transformation of !-automata:
complexity and connection to second order logic, Master
dissertation, Christian-Albrechts-University of Kiel, Kiel,
Germany, 1998.

Wanwei Liu received the bachelor and
PhD degrees from National University of
Defense Technology (NUDT) in 2002 and
2009, respectively. He is now an associate
professor at National University of Defense
Technology. His research interests include
automata theory, temporal logic, game
theory, model checking, and probabilistic

systems. He also works on other topics on formal methods and
software engineering.

Junnan Xu received the bachelor degree
from Peking University in 2016, and
received the MSc degree from the State
Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of
Science in 2020. His main research interests
include temporal logic, axiomatisation, and
reasoning.

David N. Jansen received the master in
mathematics from the University of Bern,
Switzerland in 1997, and the PhD degree
in computer science from the University of
Twente, The Netherlands in 2003. After his
postdoctoral research in Saarbrücken and
Aachen, Germany, he became an assistant
professor at the Radboud University

Nijmegen, The Netherlands. Since 2016, he has been at the State
Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China. He is interested in
research on formal methods for probabilistic systems.

Andrea Turrini received the MSc and
PhD degrees in computer science from
the University of Verona, Italy in 2005
and 2009, respectively. He was first a
postdoctoral researcher in Verona and
then at Saarland University, Saarbrücken,
Germany. He then moved to the Institute
of Software, Chinese Academy of Sciences,

Beijing, China as an associate research professor in the group of
Lijun Zhang. His research interests include the formal analysis
of probabilistic and quantum systems, with a particular focus on
system minimization and verification of omega regular properties.
He is also interested in omega regular automata, including
learning-based algorithms for automata operations.

Lijun Zhang is a research professor
at State Key Laboratory of Computer
Science, Institute of Software, Chinese
Academy of Sciences (ISCAS). He is
also the director of the Sino-Europe
Joint Institute of Dependable and Smart
Software at the Institute of Intelligent
Software in Guangzhou. Before this he

was a postdoctoral researcher at University of Oxford, and then
an associate professor at Language-Based Technology section,
DTU Compute, Technical University of Denmark. He gained the
diploma and PhD (Dr. Ing.) degrees from Saarland University
in 2003 and 2008, respectively. His research interests include
probabilistic model checking, simulation reduction and decision
algorithms, abstraction and model checking, learning algorithms,
and verification of deep neural networks. He is leading the
development of several tools including PRODeep for verifying
neural networks, ROLL for learning automata, and the model
checker ePMC, previously known as IscasMC.


