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Improved Heuristic Job Scheduling Method to Enhance Throughput

for Big Data Analytics

Zhiyao Hu and Dongsheng Li*

Abstract: Data-parallel computing platforms, such as Hadoop and Spark, are deployed in computing clusters for big
data analytics. There is a general tendency that multiple users share the same computing cluster. The schedule of
multiple jobs becomes a serious challenge. Over a long period in the past, the Shortest-Job-First (SJF) method has
been considered as the optimal solution to minimize the average job completion time. However, the SJF method
leads to a low system throughput in the case where a small number of short jobs consume a large amount of
resources. This factor prolongs the average job completion time. We propose an improved heuristic job scheduling
method, called the Densest-Job-Set-First (DJSF) method. The DJSF method schedules jobs by maximizing the
number of completed jobs per unit time, aiming to decrease the average Job Completion Time (JCT) and improve
the system throughput. We perform extensive simulations based on Google cluster data. Compared with the SJF
method, the DJSF method decreases the average JCT by 23.19% and enhances the system throughput by 42.19%.

Compared with Tetris, the job packing method improves the job completion efficiency by 55.4%, so that the computing

platforms complete more jobs in a short time span.

Key words: big data; job scheduling; job throughput; job completion time; job completion efficiency

1 Introduction

Big data analytics, such as cloud monitoring!!, is
challenging for a single computer because large input
data may result in an out-of-memory problem. The
well-known MapReduce framework!?! aims to partition
large input data, which are concurrently processed by
multiple computers. Apache Spark!®! is a well-known in-
memory MapReduce computing system, and is widely
deployed on computing clusters. In a computing cluster,
computers are interconnected via the cluster network.
Users submit their big data analytics as Spark jobs. The
Spark cluster has a built-in job scheduling algorithm
which is used to allocate resources and determine the
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executing order of jobs.

Over a long period in the past, the Shortest-Job-First
(SJF) method has effectively decreased the average
Job Completion Time (JCT) in comparison to other
scheduling techniques!*!. To decrease the JCT, the
SJF method always gives high priorities to short jobs.
According to experiments in recent research!®, the
performance of the SJF method is the best in terms of
the average JCT. However, the SJF method may lead
to a suboptimal throughput of the big data computing
system. The SJF method schedules jobs according to
only the length of the JCT but lacks consideration of
the amount of resources requested by jobs. As a result,
a small number of short jobs may consume resources,
incurring low job-level parallelism. This factor decreases
the efficiency that jobs are completed and becomes a
serious disadvantage, finally leading to a low average
JCT.

Figure 1 shows an illustrative example where the SJF
method is ineffective. A batch of jobs consist of five jobs:
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(a) Illustration of the SJF method. The SJF method prefers to schedule the shortest
job, i.e., Job 1. However, Job 1 occupies all resources, and other jobs are delayed. The
average JCT is 7.36s.
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(b) Illustration of a heuristic job scheduling method. Because Jobs 2-5 occupy less
resources, they are packed together and executed concurrently. The average JCT is 5 s.

Fig. 1 Comparison of the SJF method and a heuristic job
scheduling method. The heuristic job scheduling method
decreases the average JCT by 32.07%.

Jobs 1-5. The JCT of Job 1, which is the shortest among

all jobs, is 4 s. However, Job 1 consumes all resources.

The other four jobs have longer JCT but request a small

amount of resources. The JCT of the other jobs is 4.2 s.

We adopt two heuristic methods, the SJF method and a
heuristic job scheduling method, to schedule the batch of
jobs. The job scheduling examples of the two methods
are illustrated in Figs. 1a and 1b, respectively. Although
the SJF method schedules the shortest job with the

highest priority, the average JCT in Fig. 1a is still high.

By contrast, the heuristic job scheduling method prefers
to schedule other jobs. Because Jobs 2—5 request less
resources, these jobs are packed together. This condition
provides a desirable opportunity to increase the number
of parallel jobs and decrease the average JCT. Compared
with the SJF method, the heuristic job scheduling method
decreases the average JCT by 32.07%.

The heuristic method performs better because of the
high job completion efficiency, which we define as the
number of completed jobs per unit time. The value of
job completion efficiency is the rate of the number of
completed jobs to the time span. In Fig. 1b, we regard
Jobs 2-5 as the set of jobs. The time span of the job
set is 4.2 s. The job completion efficiency of the job set
is 4/4.2, which is higher than that of Job 1. From the
perspective of the throughput, the high job completion
efficiency indicates that the heuristic scheduler takes a

short amount of time to complete a large number of jobs.

Inspired by this observation, we propose an improved
heuristic job scheduling method, which schedules jobs
by prioritizing the job set that has the highest job
completion efficiency. Intuitively, the job completion
efficiency is regarded as an analogy of a physics term

density. If the set of jobs has a short time span and a large
number of jobs, then the job set is dense; otherwise, the
job set is sparse. Thus, the heuristic method is called the
Densest-Job-Set-First (DJSF) method. Our experiments
demonstrate that the DJSF method can decrease the
average JCT and increase the system throughput by
improving the job completion efficiency.

Before the DJSF method schedules jobs, we need
to pack jobs into the set of jobs. Existing packing
schedulers, such as Tetris!®, use vectors to sketch the
amount of resources requested by jobs and the available
amount of resources on machines. Tetris matches a job to
a machine if the dot product between the resources vector
of the job and that of the machine is high. However,
traditional packing methods aim to maximize resources
usage but do not take the completion efficiency of the job
set into consideration. As a result, long and resources-
expensive jobs may be packed together with short and
resources-cheap jobs. This condition leads to low job
completion efficiency.

In addition, the job completion efficiency of the
job set determines the performance of the DIJSF
method. To improve the completion efficiency of
the job set, we formalize the job packing problem,
which involves the minimization of resources fragments
and the optimization of the job completion efficiency.
Nevertheless, the optimization model is computationally
expensive to solve. To solve the problem, we propose a
new job packing method to pack jobs in a dense manner.
The job packing method enhances the job completion
efficiency of packed jobs in two ways. Firstly, we employ
a JCT alignment technique to align the JCT of the job
set. The JCT alignment method adopts the k-means
clustering algorithm to group jobs by the length of JCT.
With the JCT alignment, jobs that have roughly the same
JCT are placed in the same group. We analyze the JCT
distribution in the Google trace!”), which shows that the
majority of jobs are very close in terms of the JCT. This
factor provides a desirable opportunity to align the length
of the JCT. After the JCT alignment, grouped jobs are
packed by the job packing method, aiming to improve
the job completion efficiency. The job packing method
prefers to pack jobs that request a small amount of
resources into the job set. With the job packing method,
the number of parallel jobs in the same job set increases.
The workflow of our scheduler is shown in Fig. 2.

We design the improved heuristic job scheduling
method in Fig. 2 as a pluggable module, which
can be used in current resources managers, such as
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Fig. 2 Workflow of the improved heuristic job scheduling
method.

Mesos!®! and YARN!, The heuristic module collects
job information from resources managers, packs jobs in
a dense manner, calculates the job completion efficiency,
and determines the scheduling priority. We performed
large-scale simulations based on Google cluster data.
Compared with the SJF method, the DJSF method
decreases the average JCT by 23.19% and enhances the
system throughput by 42.19%. Compared with Tetris,
the job packing method improves the job completion
efficiency by 55.4%. The main contributions of this
study are as follows:

e We propose an improved heuristic job scheduling
method, called the DJSF method, aiming to enhance the
system throughput and decrease the average JCT.

e We formalize the job packing problem, which
involves the optimization of the completion efficiency of
the job sets.

e We leverage the k-means clustering algorithm to
make the JCT alignment and propose the job packing
method to enhance the job completion efficiency.

The rest of this paper is organized as follows. In
Section 2, we introduce related work about resources
allocation and job scheduling methods for the Spark
cluster. In Section 3, we define the concept of the
job completion efficiency and propose an improved
heuristic DJSF method. In Section 4, we introduce the
challenge of packing jobs, formulate a job packing
problem, and design the JCT clustering algorithm to
make JCT alignments. In Section 5, we evaluate the
DIJSF method and analyze the evaluation results in
Google trace-based simulations. In Sections 6 and 7,
we discuss and conclude this paper, respectively.

2 Background and Related Work

Resource allocation is a fundamental function in
distributed systems. The JCT is heavily impacted by
the amount of allocated resources. Resource managers,
such as Mesos!®! and YARN"!, allocate computation

Tsinghua Science and Technology, April 2022, 27(2): 344-357

resourcess. Although current scheduling policies, which
are employed in Mesos and YARN, also take into
account the resources usage in addition to the JCT, these
scheduling policies do not achieve the optimal JCT.
Mesos employs the Dominant Resources Fairness
(DRF) method by default to schedule jobs. The DRF

sHO- 111 However,

method is used to improve the fairnes
the above scheduling methods are not designed to
decrease the average JCT. The Fair Scheduler (FS) and
Capacity Scheduler (CS) are considered as classical
scheduling methods in YARN. The FS achieves fairness
between tasks by allocating averagely equal share of
resourcess to jobs. The CS creates queues for users and
the cluster capacity is shared between users. However,
multiple resources demands of various jobs may incur
the resources fragment problem, which degrades the
performance of the FS and CS. As a result, the average
JCT is prolonged.

Tetris!® effectively addresses multiple resources
packing problems and decreases the average JCT. The
authors!®) compared Tetris with the FS, CS, and DRF
methods, which were tested in production clusters at
Facebook and Yahoo!, respectively. The results showed
that Tetris performed better than the FS and CS as
shown in Fig. 3. To sum up, Tetris is more effective
than the scheduling methods in Mesos and YARN. For
simplicity, we compare Tetris with our heuristic method
in Section 5.

Tetris matches jobs to suitable machines, aiming

a» Tetris == CS e e DRF

Time (s)
(a) Experiments in Yahoo! cluster

++ Tetris vs. DRF =Tetris vs. FS

Function (CDF)_
»r O ®

N

Cumulative Distribution

Reduction in job duration (%)

(b) Experiments in the Facebook cluster

Fig. 3 Performance of Tetris, CS, FS, and DRF methods in
YARNI®!,
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to decrease the resources fragment. This feature is
advantageous in terms of maximizing the number of
simultaneously running jobs. Tetris calculates the dot
product between the resources vector of jobs and the
available resources vector of machines. Then Tetris
prefers to schedule the job on the most suitable machine
that has the highest value of the dot product.

Although Tetris decreases the JCT using a resources
packing method, the average JCT is still not optimal.
In a state-of-the-art research’!, the performance of the
SJF method is the best in terms of the average JCT.
Nevertheless, the SJIF method is not optimal. The SJF
method always gives high priorities to short jobs. Such
a greedy scheduling policy lacks consideration of the
amount of resources requested by jobs. Although jobs
prioritized by the SJF method are completed in a short
time, they may consume a large amount of resources
and decrease the parallelism of the big data system. To
address this problem, we design an improved heuristic
method, called the DJSF method. The DJSF method
evaluates the completion efficiency of a job set and
maximizes the number of completed jobs per unit time,
aiming to decrease the average JCT.

3 Improved Heuristic Job Scheduling
Method Based on Job Completion
Efficiency

Inspired by the observation in Fig. 1, we define the
concept of the job completion efficiency and propose
an improved heuristic job scheduling method, aiming to
decrease the average JCT. The heuristic job scheduling
method is a pluggable allocation module, which can be
used in current resources managers, such as Mesos and
YARN.

3.1 Concept of job completion efficiency

To decrease the average JCT, we further explore the
cause why the SJF method performs worse than the
heuristic method, as shown in Fig. 1. If jobs with short
JCT may consume a large amount of resources, the SJF
method prolongs the completion of the majority of jobs,
which have a request for a small amount of resources. To
sum up, the SJF method does not consider the resources
capacity of the cluster. As a result, the number of parallel
jobs may decrease. To address this problem, we propose
an improved heuristic job scheduling method to pack as
many jobs as possible into the job set and then determine
the scheduling priority of the job set according to the job
completion efficiency. The job completion efficiency is

defined as follows.

Definition 1 (job completion efficiency). Given that a
batch of jobs ji, j2, ..., jn are executed in parallel and
packed into the set of jobs J. Let 7' denote the time span
that all jobs in J are completed. The job completion

efficiency is as follows:
N

JCE = T (1)
where N is the number of jobs.

In Fig. 1, the heuristic method packs Jobs 2-5 together.
We regard such packed jobs as the set of jobs. Although
the heuristic method takes 4.2s to complete jobs in
the job set, the number of completed jobs is four.
This achieves a high job completion efficiency (up
to approximately 0.95). By contrast, the SJF method
prefers to execute Job 1. This condition leads to a low
job completion efficiency (i.e., 0.25). To sum up, we
leverage the job completion efficiency as a priority to
schedule the set of jobs. Definition 1 indicates that the
value of the job completion efficiency is equivalent to the
system throughput, i.e., how many jobs are completed
in a given amount of time. Next, we prove that such a
scheduling order, which is determined according to the
job completion efficiency, achieves the smallest average
JCT.

Theorem 1 Given a batch of jobs, we pack them
into two sets of jobs J; and J,. Note that J; and J,
are executed in a successive order. If the job set with
a higher job completion efficiency for scheduling, then
the average JCT is smaller. Let JCE; and JCE, denote
the job completion efficiency of J; and J;, respectively.
If JCE; > JCE,, then the scheduling order J; — J»
achieves a smaller average JCT than another scheduling
order J, — Ji.

Proof We list the information about the set of jobs
in Table 1. N7 and N, denote the number of jobs in J;
and J,, respectively. 77 and T, denote the time span of
J1 and J3, respectively.

Case 1 If a scheduler prefers to schedule the job
set with a higher job completion efficiency, then the
scheduling preference is J; — J,. The completion
time of J; is T7. The sum of JCT of all jobs in J; is
approximately Ny x Tp. Similarly, the completion time
of J, is T1 + T>. The sum of JCT in J; is approximately

Table 1 Example for the scheduling of two job sets.

Job set Number of jobs Time span
J1 Ny T,
J2 Nz T2
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Ny x (Ty + T3). In this case, the sum of JCT in J; and
J2 is
Ny x Ty + Na x (Ty + T7) (2

Case 2 If a scheduler prefers to schedule the job
set with a smaller job completion efficiency, then the
scheduling preference is J, — J1. The completion time
of Jy is T,. The sum of JCT of all jobs in J, is
approximately N, x T5,. Similarly, the completion time
of J1 is Ty + T>. The sum of JCT in J; is approximately
N1 X (T7 + T3). In this case, the sum of JCT in J; and
Jz is

Ny x Ty + Ny x (T1 + T7) (3)

Because J; has a larger job completion efficiency
than J,, we have N1/T; > N,/T,. Hence, we have
Ny x T, > Ny x T;. We compare Formula (2) with
Formula (3). The sum of JCT in Case 1 is smaller than
that in Case 2. We make a conclusion that for any two job
sets J; and J,, the job set with a larger job completion
efficiency should be preferred for scheduling to achieve
a smaller average JCT. |

We extend the above conclusion to a new case where
three job sets are scheduled. To extend the conclusion,
we introduce the following lemma.

Lemma 1 Given that any two job sets J, and J, can
be executed serially, the two job sets are scheduled in
a successive order. We regard J, and J,, as a new job
set, denoted by J.. Let JCE, and JCEy denote the job
completion efficiency of J, and Jy, respectively. We
have

min{JCE,, JCE,} < JCE. < max{JCE,, JCE}.

Proof Let N, and N, denote the number of jobs
in J, and J,, respectively. Let T, and T, denote the
time span of J, and Jy, respectively. We have JCE, =
N,/ T, and JCE, = N,/Ty,. For the job set J., the
number of jobs in J. is N, + Np. The time span of
Je is Ty + Tp. Thus, the job completion efficiency of
Jeis JCE. = (N, + Ny)/(T, + Tp,). Assume that the

job completion efficiency of J, is larger than that of J,.

Owing to JCE, > JCEy, i.e., N,/ T, > Ny/ Ty, we have
N, x Ty, > Ny, x T,. Hence, we have (N, + Ny) x Ty, >
Ny X (T, + Tp). The following formula holds:
(Na+ No)/(Ta + Ty) > No/ Ty, 4)
Hence, JCE. > JCE, is proven.
Similarly, because N, x Ty, > N, x T,, we have N, x
(Ta + Tv) > (Na+ Np) X T,
Na/Ta > (Na + Nb)/(Ta + Tb) (5)
Hence, JCE, > JCE, is proven. |
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Next, we expand Theorem 1 to the case where over
three job sets, i.e., J1, J2, and J3, are scheduled. We
sort them by the value of the job completion efficiency.
Assume that JCE; > JCE, > JCE3. According to
Lemma 1, we regard J, and J3 as a new set of jobs.
Let J,' denote the new job set. JCE, denotes the job
completion efficiency of J,'. According to Lemma 1,
we have JCE, > JCE}, > JCE3. Then the scheduling
problem becomes the case in Theorem 1, where two job
sets, J1 and J,', are scheduled. According to Theorem
1, we prefer to schedule J; because the job completion
efficiency of J; is larger than those of the other job sets.
Similarly, after scheduling J;, we prefer to schedule
J> rather than J3. The final scheduling preference is
J1 — J, — J3, which achieves the smallest average
JCT.

To sum up, Theorem 1 can be recursively applied in
multiple-job-set cases. We make the following general
theorem.

Theorem 2 Given multiple job sets, the job set with
the largest job completion efficiency should be scheduled
with the highest priority to decrease the average JCT.

3.2 DJSF method

According to Theorem 2, we design an improved
heuristic job scheduling method called the DJSF method.
As the job completion efficiency is the rate of the number
of jobs to the length of the time span, we intuitively
regard the job completion efficiency as a physics term
density. If the set of jobs has a short time span and
a large number of jobs, then the set of jobs is dense.
Otherwise, the set of jobs is sparse if it has a few jobs
and a long time span. Algorithm 1 shows the core idea
of the DJSF method. The input of the DJSF method
is a batch of job sets. The DJSF method calculates the
job completion efficiency of each job set. The DJSF
method prefers to allocate resources to the job set with

Algorithm 1  DJSF method
Input: The set of jobs ji, j2,..., jN.
Input: The available resources capacity C.
1: for the m-thjobset,m =1,..., M do
2: Calculate the job completion efficiency JCE,,.

3: Sort all job sets in decreasing order of their job completion
efficiency.

4: for the m-thjobset,m =1,..., M do

5: if remaining resources capacity C is sufficient then

6: Allocate resources to J,,.

7: Update the amount of remaining resources.
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the highest job completion efficiency. The complexity
of the DJSF method is approximately O (M), where M
is the number of job sets. Such a complexity is smaller
than that of the SJF method, which is approximately
O(N), where N is the number of jobs.

4 Job Packing Method

We clarify that the DJISF method schedules a batch of job
sets. Jobs should be packed into the job sets first before
the DJSF method works. The completion efficiency of
the job set is determined by how jobs are packed into the
job set. Thus, the job packing method finally impacts
the average JCT. However, existing job packing schemes
focus on decreasing resources fragments but incur a low
job completion efficiency. In this section, we design a
job packing method to pack jobs into the set of jobs in a
way that the job completion efficiency is maximized.

4.1 Challenge

Tetris is the state-of-the-art packing method®!, aiming to
decrease resources fragments by evaluating the packing
score. For scheduled jobs, Tetris profiles the resources
request for the Central Processing Unit (CPU), Random
Access Memory (RAM), and disk. A resources vector v;
is used to represent the resources request of the i-th
job. To assign the job to the best suitable machine,
Tetris measures the remaining amount of resources on all
machines. A vector /; is used to represent the remaining
resources on the j-th machine. The dot product between
v; and h; is the packing score, indicating whether the
i-th job matches the j-th machine. Tetris calculates all
packing scores, and the job with the highest score is
preferred to schedule. However, Tetris does not take the
JCT into consideration, and as a result, the set of jobs
that are packed into the same machine may suffer from
a low job completion efficiency.

In Fig. 4, there are five jobs that are scheduled on
a machine. The available resources of the machine is
(0.2,0.2,0.2). The scores of Tetris packing five jobs to
one machine are listed in Table 2. Tetris calculates the
packing score using the dot product. We can see that Job
3 has the highest score. Therefore, Tetris packs the job
to the machine. However, the packing scheme incurs a
low job completion efficiency, which is as low as 0.2. As

a comparison, we design a heuristic job packing method.

The heuristic method prefers to pack as many jobs as
possible. Jobs 1, 2, 4, and 5 are packed together. In
addition, the time span of jobs that are packed together
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Fig. 4 Illustrative example of low job completion efficiency
that is incurred by Tetris. In the example, the heuristic job
packing method can achieve a high job completion efficiency.

Table 2 Scores of Tetris packing five jobs to one machine.

Job number (CPU, RAM, disk) JCT (s) Packing score
1 (0.2,0.1,0.1) 4 0.08
2 (0.2,0.3,0.1) 4 0.12
3 (0.8, 0.7, 0.6) 5 0.42
4 (0.2,0.2,0.1) 4 0.10
5 (0.2,0.1,0.1) 4 0.08

is as short as 4 s. Thus, the heuristic method achieves
a high job completion efficiency. To sum up, current
packing methods, such as Tetris, do not take the job
completion efficiency into consideration. This incurs a
low job completion efficiency and further impacts the
effectiveness of the DJSF method.

4.2 Problem formulation

We further formalize the job packing problem, which
involves the optimization of the job completion
efficiency of the job sets. Given a batch of jobs
{j1,..., N}, there are N jobs in total. M denotes the
number of the job sets. Let N, denote the number of
jobs in the m-th job set. Let B denote a binary variable,
indicating whether the n-th job is packed in the m-th set
of jobs. Let JCT,, and R, denote the JCT of the n-th job
and the amount of resources requested by the n-th job,
respectively. The objective function is as follows:

M
max Z JCE,, (6)

where JCE,,, denotes the job completion efficiency of
the m-th job set. The optimization goal is subject to the
following constraints:

JCE,, = N/ Ty @)
N

Msz ®)

T,n = max_,JCT, x 7 &)

R = Z Ry, x B (10)
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Ry, <C.Vm (11)

Constraint (7) defines the calculation of the job
completion efficiency of the m-th job set. Constraint
(8) calculates the number of jobs in the m-th job set. If
the n-th job belongs to the m-th job set, then the binary
variable B is 1. Otherwise, B is 0. Constraint (9)
calculates the time span of the m-th job set, i.e., the
longest JCT of jobs in the m-th job set. Constraint (10)
calculates the sum of the amount of resources requested
by all jobs in the m-th job set. Constraint (11) requires
the sum of the amount of resources in the cluster. To sum
up, the optimization model is computationally expensive
to solve because it is an integer nonlinear programming
problem.

4.3 Increasing job completion efficiency through
JCT alignment

To increase the job completion efficiency of a job set,
we pack jobs in a dense manner. We propose the JCT
alignment, aiming to pack jobs that have roughly the
same JCT into the job set. This method effectively
decreases the average time span.

For example, there are six jobs, i.e., Jobs 1-6, that
need to be packed. Assume that the amount of resources
requested by each job is 0.5. That is, only two jobs can
be packed together. Nevertheless, their JCT are different.
Assume that the JCT of Jobs 1-6 are 1, 2, 5, 6, 9, and
105, respectively.

In the example, the JCT alignment method packs
Jobs 1 and 2 together, Jobs 3 and 4 together, and Jobs
5 and 6 together. This generates three job sets. The
corresponding time span of the job set is 2, 6, and
10s, respectively. The total job completion efficiency
is approximately 1.53. By contrast, the average job
completion efficiency is low if the JCT in different
job sets is not aligned. If we pack Jobs 1 and 6, Jobs
2 and 5, and Jobs 3 and 4 together, the total job
completion efficiency is approximately 0.75. To sum up,
the JCT alignment enhances the average job completion
efficiency.

We leverage the cumulative distribution curve of JCT
to make a JCT alignment. Figure 5 shows the illustrative
example of the cumulative distribution curve of JCT. All
jobs are sorted by the length of JCT. Jobs that have the
same JCT are represented as a dot on the curve. To make
a JCT alignment, the jobs that are at the same point on
the curve should be packed together.

Owing to Constraint (11), the sum of resources
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Fig. 5 Illustrative example: Cumulative distribution curve
of JCT.

requested by jobs in the job set should be smaller than
the capacity of resources in the cluster. In most cases, the
number of jobs that are at the same point on the curve
is small. Thus, we may pack jobs that have multiple
successive points on the curve. Concretely, we employ
machine learning techniques, such as the clustering
algorithm, to group jobs according to the length of the
JCT. In a group, the JCT is approximately aligned.

We analyze the distribution of JCT in the Google
trace. In the production environment, the real JCT of the
majority of jobs ranges from 25 s to 625's, as shown in
Fig. 6. Figure 6 shows that the number of jobs that have
roughly the same JCT is large. This feature provides a
desirable opportunity to make the JCT alignment.

4.4 k-means clustering-based job packing method

The job packing method adopts the k-means clustering
algorithm to group a batch of JCT according to the
length of JCT. The k-means clustering algorithm is
a well-known data mining and machine learning tool,
which is used to assign data points (i.e., the JCT of
multiple jobs) into groups without any prior knowledge
of those relationships. The k-means clustering algorithm
attempts to learn the difference between data points and

60
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Real JCT-log5 scale (s)

1 5 25

Fig. 6 Number of jobs changes with real JCT.
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finds which group, a data point belongs to. The k-means
clustering algorithm is one of the simplest clustering
techniques, which is widely used in biometrics, medical
imaging, and related fields. The k-means clustering
algorithm determines the group where data points should
be assigned into rather than the user instructing to build
the group of data points based on heuristic rules.

We are motivated to leverage the k-means
clustering algorithm!'?! to group jobs with different JCT.
Algorithm 2 shows the main steps of the JCT clustering
algorithm. The k-means clustering based job packing
method places a job to the group of jobs if the sum of
the difference between the centroid of the group and the
JCT of the jobs is at a minimum. A less variation in the
group results in the jobs within the group to have similar
JCT. The k-means based JCT clustering algorithm is
known to have a time complexity of O(N?)!31,

In addition to the JCT alignment, the job packing
method should increase the number of jobs packed in
the job set. Given a group of jobs, the job packing
method prefers to pack jobs that request a small amount
of resources. This method aims to enhance the number
of parallel jobs in the job set. In Fig. 5, n; is the number
of jobs, of which the JCT is smaller than X;. Similarly,
n, is the number of jobs, of which the JCT is smaller

Algorithm 2 k-means-based JCT clustering method

Input: A batch of jobs J = {1, j2,...,jn}, the resources

{R1,R2,...,RN}, the JCT {JCT{,JCT>,...,JCTN}, and
the available resources capacity C.
N
1. Estimate the number of groups G = Z R,/C.
n=1

Initialize the centroid for each group.
Clustering(J, G).
for the i-th group,i = 1,...,G do
Take all jobs in the i -th group.
Compute the average value of their JCT JCT.
if W; # ICT then
Update the centroid, W/ = ICT.
Clustering(J, G).
10: else if Centroids of all groups are not updated then
11: Stop the algorithm.
12: return The group of jobs.

D AN L

function Clustering(J, G)
13: for the n-th job,n = 1,..., N do
14: for the i-th group,i = 1,...,G do

15: Get W;, the centroid of the i-th group.
16: Calculate the difference D; = |W; — ICT,,|.
17: Calculate i” = argmin&_, D;.

/*Find the group with a minimal difference */
18: Assign the n-th job to the i’-th group.

than X5. Assume that we pack the jobs, of which the
JCT is larger than X; but smaller than X5, into a new
job set. The number of jobs in the job setis ny —n;. The
time span of the job set is X5. Thus, the job completion
efficiency of the job set is (1, —n1)/X>. To enhance the
value of the job completion efficiency, the job packing
method maximizes the value of n, — nj.

Algorithm 3 shows the main steps of the job packing
method. After the JCT clustering method outputs the
group of jobs, the job packing method packs jobs into the
job set. The job packing method calculates the average
JCT of each group. Then the job group that has smaller
average JCT is preferred to be used in Algorithm 3.
Within each group, the job packing method sorts jobs
by the amount of resources. Jobs that request a small
amount of resources are packed into the job set with high
priorities. If the remaining resources is not enough for
packing a job into the job set, then the job is packed into
the next job set. When the last job is packed, the job
packing method stops. Algorithm 3 has two For loops.
The complexity of the job packing method is O(GN),
where G is the number of groups.

5 Evaluation

We evaluate the performance of our method, Tetris, and

Algorithm 3  Job packing method

Input: A batch of jobs {ji1,/2,...,jN}s the
{R1,R2,...,RN}, the JCT
.,JCTn}, and the available resources

amount of resources
{JCT1,ICT,,..
capacity C.

. Record remaining amount of resources, Cremain = C.

1
2: Record the number of job sets k = 1.

3: Calculate the job group G.

4: Call k-means based JCT clustering method.

5: Calculate the average JCT of jobs in each group.

6: Sort G in increasing order of their average JCT.

7. for the i-th group,i = 1,...,G do

8: Get G, i.e., the number of jobs in the i-th group.

9: Get {jli, . jéi }, i.e., all jobs in the i-th group.

10: Sort jobs in increasing order of their resources.

1 for the n-th job,n = 1,...,G; do

12: Get RZ, 1.e., resources that are requested by J,i.
13: if R < Cremain then

14: Get k, the number of job sets.

15: Pack J,’; into the k-th job set.

16: Update Cremain = Cremain — Ri,,

17: else

18: Pack J;! into the (k + 1)-th job set.

19: k=k+1.

20: Update Cremain = C — Rfl.
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the SJF method. We perform simulations in a computer
equipped with an Intel(R) Core(TM) 17-4700MQ CPU
2.40 GHz and 8 GB RAM. Our workloads are taken from
the Google trace that is widely accepted as a data-parallel
benchmark!!4-161,

5.1 Simulation settings

Workload: Google cluster data provide a detailed
task duration, resources requirements, and machine
constraints. We extract 1000 jobs from the Google trace.
The 1000 jobs are submitted in one batch. Note that
it is very slow to simulate the execution of 1000 jobs
because the real durations in the Google trace are long.
We set the simulated program to run 10 times faster than
the trace. The JCT distribution of 1000 jobs is shown in
Fig. 7. The average JCT is 685.39s.

Methods comparison: We compare our methods
with two scheduling methods, Tetris and the SJF method.
Tetris is a multi-resources packing method to enhance
resources utilization. Then we evaluate the SJF method.
The SJF method prefers to schedule the job with the
least JCT. According to past research!®, Tetris performed
better than default scheduling algorithms in YARN and
Mesos, including the FS, CS, and DRF methods, as
shown in Fig. 3. The result shows that Tetris performs

60
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o
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w
o
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better than the FS, CS, and DRF methods, and thus, we
compare Tetris with our heuristic method for simplicity.

5.2 Simulation result

We measure the completion time of 1000 jobs and show
the JCT distribution of Tetris, SJF method, and DJSF
method. In addition, we record the changing cluster
state, including the system throughput, CPU utilization,
memory, and disk space. We evaluate the job completion
efficiency of Tetris and our job packing method. Then
we evaluate the algorithm overhead incurred by Tetris,
SJF method, and DJSF method.

JCT distribution of completed jobs: We record the
JCT of 1000 jobs, which are completed by Tetris, SJF
method, and DJSF method. The JCT distribution of
Tetris is shown in Fig. 8a. Tetris completes a different
number of jobs when the time increases from 0 to over
3000 s. In the beginning, Tetris completes jobs at a high
speed, which lasts for a short time and then slows down
halfway. As a comparison, the SJF method completes
jobs at a stable but low speed, as shown in Fig. 8b. The
average JCT of Tetris and SJF method is 1696.3 and
1695.4 s, respectively. The DJSF method achieves the
highest job completion efficiency.

In Fig. 8c, large considerable jobs are completed at
the first 1000 s. We infer that the DJSF method prefers to
schedule jobs in the job set that has a high job completion
efficiency. After the first 1000 s, the DJSF method
completes jobs at a low speed. We infer that the DJSF
method schedules the job sets, which consist of long and
resources-expensive jobs. These job sets have low job
completion efficiency. Nevertheless, the average JCT of

200 the DISF method is 1302.2 s, which is smaller than that
10! of Tetris and SJF method.
HJHW{ JCT reduction: We define the JCT reduction of
600 : 650 7(‘)0 750 the DJSF method against other compared methods as
JCT (s) follows:
Fig. 7 JCT distribution of 1000 jobs that are used in IR = JCT compared methoas — JCTpisr (12)
simulation. J CTCOmpared methods
., 80 ., 80 . 80
= < e}
'S,60 .60 S,60
S S b
& 40 & 40 = 40
a0 i B0} oo j E 20
=] =] =
2 = 1t =11 e
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(a) JCT Distribution of the completed jobs by Tetris

(b) JCT distribution of the completed jobs by SJF method

(c) JCT distribution of the completed jobs by DJSF method

Fig. 8 JCT distribution of 1000 jobs that are completed by Tetris, SJF method, and DJSF method. The majority of jobs that

are completed by the DJSF method have shorter JCT.
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where JCTpjsg and JCT compared methods denote the JCT of
a test job that is scheduled by the DJSF method and
other compared methods, respectively. Figure 9 shows
the JCT reduction of the DJSF method against Tetris
and the SJF method, respectively. The minority of 1000

jobs suffer from the negative value of the JCT reduction.

This finding indicates that the DJSF method takes a
longer time to complete these jobs than Tetris and the SJF
method. Nevertheless, the DJISF method achieves a good
job reduction for the majority of jobs. The highest JCT
reduction of the DJSF method against other compared
methods is up to 80%.

System throughput: We evaluate the system
throughput of the simulated Spark cluster. The system

throughput P is calculated as follows:
N *
P=—
T*
where T* denotes the cumulative working time in the
simulated Spark cluster and N * denotes the cumulative

13)

number of jobs that are completed in a simulated Spark
cluster. Of note, Eq. (13) is similar to the job completion
efficiency in Eq. (1).

Figure 10 shows the system throughput when 1000
jobs are scheduled by Tetris, SJF method, and DJSF
method, respectively. The system throughput of the
SJF method is the least and hardly changes from the
beginning to the end. Tetris achieves a higher system
throughput than the SJF method at the first 1000 s. This
finding indicates that Tetris can complete more jobs than
the SJF method at the first 1000s. The DJSF method
achieves the highest system throughput at the first 3000 s.

Job completion efficiency of the job set: We
compare the k-means job packing method with Tetris
in terms of the job completion efficiency. To make the

8
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Fig. 9 JCT reduction of DJSF method against SJF method
and Tetris.
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Fig. 10 System throughput when the scheduling time
increases.

DJSF method more effective, we propose the k-means
job packing method to pack jobs in a dense manner
so that the job completion efficiency of the job set is
improved. Figure 11 shows the job completion efficiency
of all job sets.

Tetris packs all jobs into 125 job sets, whereas our
packing method packs all jobs into 127 job sets. The job
completion efficiency of Tetris changes from 0.023 to
0.058. This is because Tetris does not consider the job
completion efficiency of job sets. In the job set packed
by Tetris, although the resources packing score is high,
the job completion efficiency is low. As a comparison,
the k-means job packing method maximizes the number
of jobs that are packed together. Thus, the highest
job completion efficiency is up to approximately 0.12.
Nevertheless, the job completion efficiency of individual
job set is low and approximately 0.04. Thus, long and
resources-expensive jobs are packed in these job sets.

Resource utilization: We measure the resources
usage when the jobs are scheduled by Tetris, SJF method,
and DJSF method. The bottleneck resource is memory.

0.12 o Tetris
x k-means job packing
0.10
2 o
20.08
2 "
E %
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E, ° M o ® .. ¢ o 5500 %
L] o ) ‘s ° L]
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(1)
0.02
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Number of job sets

Fig. 11 Job completion efficiency of different job sets. The
average job completion efficiency of Tetris and k-means job
packing method is 0.0426 and 0.0662, respectively.
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Owing to the limited amount of memory, no more jobs
can be executed concurrently. The amount of remaining
CPU and disk space resources is sufficient in Figs. 12a
and 12c. However, the memory resources are fully used
in Fig. 12b.

Compared with Tetris and the SJF method, the DJSF
method leads to a higher CPU and disk space resource
consumption at the first 1000 s. Then the CPU and disk
space resource consumption decreases at the remaining
time. The DJSF method completes more jobs at the first
1000 s and thus, its resource consumption is higher.

To sum up, the DJSF method makes full use of
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Fig. 12 Normalized resources usage of the CPU, memory,
and disk space when 1000 jobs are scheduled by Tetris, SJF
method, and DJSF method, respectively.
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available resources to increase the number of completed
jobs at an early scheduling time. We regard this as an
important cause that the DJISF method achieves the least
average JCT.

Algorithm overhead: We evaluate the algorithm
overhead incurred by Tetris, SJF method, and our
method. Our scheduling method incurs two main
algorithm overheads that are incurred by the job packing
method and the DJSF method. Table 3 shows the
algorithm overhead incurred by Tetris, SJF method, and
our method. The algorithm overhead incurred by the
heuristic job scheduling method is far smaller than that
by the other methods.

The SJF method incurs the least algorithm overhead
because the SJF method sorts the JCT only once. When
free resources are available, the SJF method does not
sort the JCT anymore. As a comparison, Tetris sorts
the jobs by the amount of remaining resources many
times because when a job is scheduled, the amount of
remaining resources changes. Tetris has to recalculate
packing scores and resort jobs each time a job is
scheduled. In our method, the job packing method is
performed only once. However, the k-means clustering
algorithm is executed recursively and thus, incurs large
algorithm overheads. Moreover, the algorithm overhead
incurred by the DJSF method is close to that incurred by
the SJF method.

6 Discussion

6.1 Impact of prediction error

The SJF method is a non-preemptive method in which
a waiting job with the smallest estimated run-time-to-
completion is prioritized. The SJF method is dependent
on the precise knowledge of how long a job will run, and
this information is not usually available. Our job packing
method also relies on a priori knowledge of JCT and the
amount of resources requested by jobs. To address the
problem, several researchers have focused on the study
of performance prediction for data-parallel jobs in big
data systems, such as Spark and Hadoop!!"..

Ernest ran the entire job on small datasets and tried
to capture how the JCT of a job changed with the
increasing size of the input dataset'®!. The model of

Table 3 Algorithm overhead.

Scheduler Algorithm overhead (s)
Tetris 0.555357
SJF 0.198 722
Our method 0.968 528
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Ernest was tightly bound to the application type, which
limited the cross-application use of Ernest models.
Bei et al.l'”! proposed to construct two ensembles of
performance models using a random-forest approach
for the map and reduce stages, respectively. However,
it is difficult to model the duration of each operation.
Yu et al.?% proposed a Hierarchical Model (HM),
aiming to combine a number of individual sub-models
in a hierarchical manner. The HM was agnostic to the
execution of various operations. Hu et al.!>!! designed a
deep learning based prediction model, which employed
a graph convolutional network to learn the execution of
Spark jobs. To sum up, the above prediction models can
be seamlessly applied to predict the JCT and combined
with our job scheduling method. In the context of the
paper, we regard job information, such as JCT, as a priori
knowledge.

We added new simulations to evaluate the
performance of the DJSF method. In the experiment
setting, each job has the real JCT (JCT;) and the
predicted JCT (JCT,). The real JCT is extracted from
the dataset. Given the prediction error &, the predicted
JCT is calculated as follows:

JCT, = ICT; x (1 —¢) (14)
The prediction accuracy of the state-of-the-art prediction
model is above 0.8. Thus, we set the value of ¢ in a
range from 0.0001 to 0.2. We evaluate the average JCT
of different methods. The results are listed in Table 4.

When the prediction error increases, the performance
improvement of the DJSF method over the SIJF
method increases. We infer that the JCT alignment
method alleviates the negative influence incurred by
the prediction error. Before the DJSF method schedules
jobs, the JCT alignment method groups jobs by the
length of JCT. If the prediction error is small, then the
jobs that have roughly the same JCT are still grouped
together. When the DJSF method schedules these jobs,
the prediction error slightly changes the scheduling order
of jobs.

As a comparison, the SJF method is more sensitive to
the prediction error because the SJF method determines
the job scheduling order according to only the length of

the JCT. The prediction error changes the job scheduling
order in a straightforward way. The results show that
the prediction error degrades the performance of the SJF
method. The Tetris method is a job packing method, and
thus, Tetris is not impacted by the prediction error of
JCTs.

Besides, several works involve the scheduling
problem. Reducing the energy consumption of the
storage systems disk read/write requests plays an
important role in improving the overall energy efficiency
of high-performance computing systems!??. Static
placement and dynamic management are two types of
Virtual Machine (VM) management methods?*!. VirtCo
is proposed to achieve joint coflow scheduling and
virtual machine placement in cloud data centers?*l.
The authors investigated the scalability of the request
scheduling process in cloud computing and provided
a theoretical definition of the scalability of this
process!?!, Virtual machine fault-tolerant placement
for data centers of cloud systems also involves the
scheduling problem.

6.2 Impact of number of job groups

One of the main challenges in the k-means clustering
algorithm is to specify the number of groups as an input
parameter. Algorithm 2 is not capable of determining
the appropriate number of groups. For the job packing
case, we should make the set of jobs compact so that jobs
are completed rapidly and resources are fully utilized.
Based on this idea, we roughly estimate the number of

groups as follows. We calculate the sum of resources
N

requested by all jobs. Let Z R,, denote the sum of

n=1
resources. Assume that the number of groups, denoted

by G, is equal to the sum of resources divided by the
capacity of resources in the cluster. We have

N
G=>) Ry/C (15)
n=1
We conduct an experiment on the varying values of
the number of job groups in Algorithm 2. The results
are listed in Table 5. When the number of job groups
increases from 1 to 10, the performance improvement of

Table 4 Impact of prediction errors.

Improvement rate of Improvement rate of

Prediction error JCT of Tetris (s) JCT of SJF (s) JCT of DISF (s) DISF over SIF DISF over Tetris
0 1696.3 1695.3 1302.2 0.232 0.232
0.0001-0.001 1696.3 1698.0 1302.2 0.233 0.232
0.001-0.01 1696.3 1793.4 1301.6 0.274 0.233
0.01-0.2 1696.3 1787.2 1299.3 0.273 0.234
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Table 5 Impact of number of job groups on improvement rate.

Improvement rate of Improvement rate of
Number of groups p P

Number of groups

Improvement rate of Improvement rate of

DIJSF over SJF DIJSF over Tetris DIJSF over SJF DISF over Tetris
1 0.2530 0.232 6 0.232 0.209
2 0.2560 0.235 7 0.231 0.210
3 0.2590 0.239 8 0.238 0.217
4 0.2490 0.229 9 0.228 0.207
5 0.2390 0.218 10 0.221 0.199

the DJSF method over other methods increases at first
and then decreases. We infer that the large number of
job groups decreases the performance of the job packing
method. In previous experiments, we set the number
of job groups to 6 according to the characteristic of the
test workload. Nevertheless, the optimal setting of the
number of job groups is 3. We infer that if the k-means
clustering method generates too many groups, then the
number of jobs in each job group would decrease. This
may be disadvantageous for the job packing method to
pick up and pack suitable jobs from a job group. To sum
up, determining the optimal number of job groups is still
an open problem. We suggest to set a smaller number of
job groups than that in the heuristic setting in Eq. (15).

7 Conclusion

In this paper, we propose three algorithms, the DJSF
method, job packing method, and JCT clustering method,
which are jointly used to schedule multiple jobs. The
DIJSF method aims to decrease the average JCT and
overcome the disadvantage of the SJF method. We define
the concept of the job completion efficiency. The job
packing method aims to pack jobs into a set of jobs,
which has a small amount of resources fragment and
a large job completion efficiency. The JCT clustering
method adopts a machine learning technique, k-means
clustering algorithm, to make a JCT alignment. To sum
up, the DJSF method achieves small average JCT and
enhances the system throughput.
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