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A Truncated SVD-Based ARIMA Model for Multiple QoS Prediction
in Mobile Edge Computing

Chao Yan, Yankun Zhang, Weiyi Zhong, Can Zhang, and Baogui Xin�

Abstract: In the mobile edge computing environments, Quality of Service (QoS) prediction plays a crucial role in

web service recommendation. Because of distinct features of mobile edge computing, i.e., the mobility of users

and incomplete historical QoS data, traditional QoS prediction approaches may obtain less accurate results in the

mobile edge computing environments. In this paper, we treat the historical QoS values at different time slots as

a temporal sequence of QoS matrices. By incorporating the compressed matrices extracted from QoS matrices

through truncated Singular Value Decomposition (SVD) with the classical ARIMA model, we extend the ARIMA

model to predict multiple QoS values simultaneously and efficiently. Experimental results show that our proposed

approach outperforms the other state-of-the-art approaches in accuracy and efficiency.

Key words: edge computing; QoS prediction; AutoRegressive Integrated Moving Average (ARIMA); truncated

Singular Value Decomposition (SVD)

1 Introduction

Because of its benefits in cost reduction, rapid
elasticity, on-demand self-service, and optimal resource
utilization, cloud computing has become a multi-billion
dollar industry that is still increasing worldwide[1].
However, because of the increasing real-time computing
demands of cloud users and a massive amount of data
generated through the IoT, traditional centralized cloud
infrastructure has suffered from problems, such as long
latency, jitter, and bandwidth limitation. Mobile Edge

�Chao Yan and Baogui Xin are with the College of Economic and
Management, Shandong University of Science and Technology,
Qingdao 266590, China. E-mail: firebird.yan@foxmail.com;
xin@sdust.edu.cn.
�Yankun Zhang is with Weifang Key Laboratory of

Blockchain on Agricultural Vegetables, Weifang University
of Science and Technology, Weifang 262700, China. E-mail:
zhangyankunsg@126.com.
�Weiyi Zhong and Can Zhang are with the School of Computer

Science, Qufu Normal University, Rizhao 276826, China. E-
mail: weiyi zhong@outlook.com; sdzc1719@126.com.
�To whom correspondence should be addressed.

Manuscript received: 2021-01-29; revised: 2021-05-17;
accepted: 2021-05-30

Computing (MEC) is a prominent network architecture
for solving the aforementioned problems. By shifting a
load of cloud computing to the edge of a cellular network,
i.e., base stations, MEC helps reduce congestion on
mobile networks, decrease latency, and enhance the
quality of experience for end-users.

As a multitude of services has been deployed at
mobile edge nodes, it is difficult for users to choose
optimal services, i.e., services with the highest quality.
Personalized service recommendation approaches can
provide users with better services. Concretely, a
recommendation method, e.g., the Collaborative
Filtering (CF) techniques, first predicts the quality value
of candidate services, then recommends services with
better quality to users. Therefore, the accuracy of Quality
of Service (QoS) prediction plays a crucial role in service
recommendation.

However, in a MEC environment, QoS prediction
faces more challenges than those in the traditional
cloud computing environment. First, because MEC
uses a wireless transmission medium, its service
quality is readily interfered with different factors in the
environment. Second, because of the mobility of users,
a user may invoke a web service repeatedly through
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different edge servers. Thus, historical QoS data are
stored on different edge nodes. Although some of these
historical QoS data are sent to the centralized data center,
it is not sufficient to make an accurate QoS prediction.

In practice, a user often invokes a web service
repeatedly, which means that a user may have a
series of QoS data for the same web service. Thus
by exploiting the historical QoS data at different time
slots, the problem of QoS prediction can be considered
a Temporal Sequence Forecasting (TSF) problem.
AutoRegressive Integrated Moving Average (ARIMA)[2]

is one of the most popular models in temporal sequence
prediction[3]. By merging the autoregressive model
and the moving average model with differencing
temporal sequence, ARIMA can provide a more accurate
prediction for a nonstationary sequence. However,
most existing ARIMA models cannot predict multiple
sequences simultaneously, they must forecast sequence
by sequence, which leads to high-computational costs[4].

In this paper, we apply the ARIMA model to the QoS
prediction problem and propose a novel QoS prediction
approach based on an extended ARIMA model to
improve the accuracy of QoS prediction in an MEC
environment. In general, the main contributions of our
paper are threefold:

(1) To reduce the effect of noise and accelerate the
training of the ARIMA model, we use Singular Value
Decomposition (SVD) to obtain a compressed matrix,
which still preserves the intrinsic nature of QoS data.

(2) To perform QoS prediction simultaneously, we
extend the classical ARIMA model to matrix form
and apply it to the learned compressed matrix, which
can obtain better efficiency in predicting multiple QoS
values.

(3) To validate the feasibility of our approach,
we conduct a series of experiments on a real-world
QoS dataset. The results show that our proposed
approach outperforms other state-of-the-art approaches
in accuracy and efficiency.

The remainder of this paper is organized as follows.
Section 2 summarizes recent research on QoS prediction
in an edge computing environment. In Section 3, we
present preliminaries of our approaches, and explain the
motivation of our research through an intuitive example.
Section 4 introduces the details of our proposed
approach. Experimental evaluation is demonstrated in
Section 5. Finally, Section 6 concludes our research
work.

2 Related Work

Many studies on QoS prediction in an edge computing
environment have been conducted in recent years.
Wang et al.[5] proposed a QoS prediction approach that
considers user mobility and QoS data volatility to adapt
to an MEC environment. White et al.[6] introduced the
stacked autoencoder model into QoS prediction, which
can improve the training efficiency compared to classical
matrix factorization, while maintaining the accuracy of
QoS prediction. Yin et.al.[7] integrated a convolutional
neural network with a matrix factorization model and
obtained more stable and accurate results. However,
these approaches neglect the historical QoS values at
different time slots, which may lead to less accurate
results.

To obtain more accurate prediction results, several
research works have considered the time factor[8–11].
These research works can be roughly classified into
two categories: data-driven approaches and temporal
model-based approaches[12]. Data-driven methods view
QoS prediction as a missing item problem and typically
solve the problem with CF and matrix factorization
techniques[13–15]. Yu and Huang[16] treated the temporal
quality data as a three-dimensional matrix and made
QoS predictions through CF techniques. Qi et al.[17]

integrated locality sensitive hashing techniques with CF,
which can preserve the privacy of QoS data distributing
across different platforms while maintaining prediction
accuracy. However, these methods heavily depend on
the data sparsity at current time slots.

Temporal model-based approaches typically view
QoS values as a time sequence, in which many time
series forecasting methods can be used to predict the
QoS values. Godse et al.[18] used the ARIMA model
to forecast QoS values, then made service selection
based on the newly predicted QoS values. Amin et
al.[19] incorporated ARIMA with the GARCH model
to capture the volatility of QoS data and make more
accurate forecasts. However, these methods predict QoS
values sequence by sequence, which may lead to high
computational costs when predicting a large amount of
sequences. Jing et al.[20] represented a multiple temporal
sequence as a matrix and generalized the AutoRegressive
(AR) model by applying it to the temporal sequence
matrix. Shi et al.[4] proposed a temporal sequence
prediction method for short temporal sequences. This
approach first transforms a multiple temporal sequence
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matrix into a high-dimensional tensor, then trains the
ARIMA model with learned core tensors. However,
these approaches focus on the temporal sequence
forecasting, and cannot be applied to QoS prediction
directly.

In this paper, we make QoS predictions based on
historical QoS data at recent time slots. Furthermore,
by incorporating the prominent temporal sequence
prediction techniques with QoS prediction methods, we
propose a novel QoS prediction approach to improve the
QoS prediction accuracy in an MEC environment.

3 Preliminary and Motivation

3.1 Preliminaries

3.1.1 ARIMA
The ARIMA model was originally proposed by Box
and Jenkins[21], which is a generalized form of the
AutoRegressive Moving Average (ARMA). Both models
are designed to predict future values in a time series.
Letting yt denote a series of values at different time
points t , the AR part of ARIMA can be formulated as

yt D

pX
iD1

iyt�i (1)

which indicates that the value at t is regressed on its prior
p values, where i .i D 1; : : : ; p/ is the coefficient of
AR. Meanwhile, letting �t denote the white noise error
term at t , the Moving Average (MA) part of ARIMA is
given by

yt D �C �t C

qX
jD1

�j �t�j (2)

which indicates that the value at t depends linearly on
the current and the past q white noise error terms, where
� is the expectation value of yt , and �j .j D 1; : : : ; q/

is the model parameter.
The ARMA model integrates the AR and MA models.

Then, it can be written as

yt D

pX
iD1

iyt�i C

qX
jD1

�j �t�j C �t (3)

In practice, values in a time series are usually not
stationary. To capture the stationary properties of a
time sequence, the differencing method is incorporated
into the ARMA model, which is then named ARIMA.
Letting �dyt represent the order-d differencing of yt ,
the ARIMA.p; d; q/ can be formulated as

�dyt D

pX
iD1

i�
dyt�i C

qX
jD1

�i�t�j C �t (4)

3.1.2 Truncated SVD
The SVD of a given matrix A 2 Rm�n is a factorization
of A into three matrices. It can be written as

A D U̇ V T;

s:t: UUT
D I;VVT

D I (5)

where U is an m �m unitary matrix, and V is an n � n
unitary matrix. ˙ is an m � n rectangular diagonal
matrix, and the diagonal entriy ıi D ˙i i is called the
singular value of A. In practice, the diagonal entries of
˙ are in descending order, to ensure that ˙ is uniquely
determined by A.

In some applications, truncated SVD is adopted to
reduce the dimensionality of the matrix. The truncated
SVD of a matrix A is given by

A D Ur˙rV
T
r (6)

where r � min.m; n/, ˙r is a diagonal matrix
composed of the first r singular values from ˙ . Ur
is an m � r matrix, and Vr is an n � r matrix. Ur
and Vr correspond to the first r columns of U and
V , respectively. If we set A0 D Ur˙r , then A0 is a
compressed matrix of A. A0 has many fewer elements
than A, while retaining the important features of A.

3.2 Motivation

To demonstrate the motivation of this paper, we present
an intuitive example, as shown in Fig. 1. In this example,
three edge servers are built-in near the base stations.
Numerous services are deployed on the edge servers. For
a user named Jim, when he locates near Edge Server 1,
he can invoke web services, e.g., Gaode Map and Baidu
Map, directly from Edge Server 1, or other services in
the cloud center via the edge server. Suppose Jim uses
Gaode, Baidu, and Apple Map services on his mobile
phone many times through Edge Server 1 and Edge
Server 2. If Jim now travels into an area near Edge Server
3, and needs to use a map service, which service should
be recommended to him?

Before making a recommendation, we should predict
the QoS value of all the map services first. Traditional
approaches, e.g., CF and matrix factorization, usually
make a prediction based on the latest QoS history
data. However, because of the mobility of end-users,
users may invoke the same services through different
edge servers. Furthermore, as services cached in edge
servers often update dynamically, when an end-user
invokes the same service in the same location at different
time slots, the QoS values may fluctuate sharply. Given
these challenges, we present a novel QoS prediction
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Fig. 1 QoS prediction in an edge computing environment: An intuitive example.

method in this paper, which will be discussed in detail
in the next section.

4 An Improved ARIMA Model for QoS
Prediction

4.1 Problem formulation

To facilitate the understanding of readers, we first
introduce the symbols in this paper.

(1) U D fu1; u2; : : : ; uM g: The set of users in a
mobile edge environment. Here a user may be a mobile
user or a user using smart devices, e.g., Apple Watch.

(2) WS D fws1; ws2; : : : ; wsN g: The set of web
services deployed on the edge server. These web services
do not belong to the same service provider.

(3) qi;j;t : The corresponding QoS value when user
ui invoked service sj at time slot t . Note that if ui did
not invoke sj at time slot t , qi;j;t is set to 0 (invalid).

(4) � 2 RM�N�T : Representing all the QoS values
at recent T time slots. Because the QoS value of all the
web services invoked by the entire user set at time slot
t can be represented by a matrix, � can be considered
a three dimensional matrix, also known as a tensor, as
shown in Fig. 2.

4.2 Matricized ARIMA with truncated SVD

We aim to predict all the QoS values at time slots T C 1
simultaneously. Here, we formulate the problem as a TSF
problem. � can be considered as a sequence of matrices
�1; �2; : : : ; �T , where �t represents the historical QoS
matrix at time slot t . Letting �d� denote the d -order

Fig. 2 QoS data representation as a sequence of QoS
matrices.

differencing of �, then

�d� D f�d�d ; �
d�dC1; : : : ; �

d�T g (7)
As a user only invokes a tiny proportion of services,

the QoS data of a user are very sparse. To reduce
the computational and storage cost, we compress the
columns of �d�t through the truncated SVD method,
which can be represented as

�d�t D �
d�tV;

s:t: VVT
D I (8)

where V 2 RN�R is an orthogonal factor matrix, and
R � N . �d�t 2 RM�R is the compressed matrix of
�d�t , which represents the most important feature of
�d�t , but has many fewer elements than �d�t . �d�t
can be recovered by �d�t and V ,

1
�d�t D �

d�tV
T (9)

The first goal of our optimization is to minimize the
difference between �d�t and 1

�d�t .
To reduce the computational cost, we incorporate the
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compressed matrix instead of the original QoS matrix
into the ARIMA model. Therefore, the generalized
ARIMA model is defined as follows:

�d�t D

pX
iD1

i�
d�t�i �

qX
jD1

�j �t�j C �t (10)

where i and �j are the parameters of AR and MA
respectively, and �t�j is the random error terms of
the past q observations, which are assumed to be
independent, identically distributed variables with zero
mean. �t is the prediction error at the current time slot.
Therefore, our second goal is to minimize �t to zero.

On the basis of the two goals of our optimization, the
objective function can be defined as follows:

min
f�d�t ;V;�t�j ;i ;�j g

TX
tDsC1

 
1

2

�d�t ��d�tV 2
F
C

1

2

�d�t �
pX
iD1

i�
d�t�i C

qX
jD1

�j �t�j


2

F

!
(11)

where s D p C d C q, which is the minimum number
of time slots.

We adopt the augmented Lagrangian method, which
is widely used in mathematical optimization problems,
to minimize the above objective function. We first fix
V; �t�j ; i ; and �j , compute the partial derivation of the
objective function (11) with respect to �d�t , and equate
it to zero. Then, we can obtain the updated formulation
of �d�t as follows:

�d�t D
1

2

 
�d�tV C

pX
iD1

i�
d�t�i �

qX
jD1

�j �t�j

!
(12)

Formula (11) with respect to V is

min
fV g

TX
tDsC1

 
1

2

�d�t ��d�tV 2
F

!
;

s:t: VVT
D I (13)

which is equivalent to the orthogonal Procrustes
problem[22]. Then the global optimal solution of
Formula (13) is BAT. A and B are the left and right
singular vectors of the singular value decomposition of
TX

tDsC1

.�d�T
t �

d�t /, respectively, which is calculated as

TX
tDsC1

.�d�T
t �

d�t / D A˙B
T (14)

The parameters of AR and MA are typically

minimized using Yule-Walker method in classical
ARIMA. Calculate the partial derivation of Formula (11)
with respect to �t�j , and equate it to zero. Then, �t�j
can be updated by
�t�j D

TX
tDsC1

�
�d�t �

pX
iD1

i�
d�t�i C

qX
k¤j

�k�t�k

�
.s C 1 � T /�j

(15)

Formally, we summarize the pseudo-code of the model
learning process in Algorithm 1.

4.3 Predicting ���TCCC1

We calculate the new �d�TC1 by

�d�TC1 D

pX
iD1

i�
d�TC1�i �

qX
jD1

�j �TC1�j (16)

Then, we reconstruct the new �d�TC1 according to
Eq. (9). Finally, we perform inverse d-order differencing
for �d�TC1 and obtain �TC1. The pseudo-code of the
prediction process can be described in Algorithm 2.

Algorithm 1 Learning SerPredSVD ARIMA model
Input: � 2 RM�N�T ; p; d; q; and R
Output: V; 1; 2; : : : ; p; and �1; �2; : : : ; �q

1: Calculate d -order differencing for �1; �2; : : : ; �T , and
obtain �d�dC1; : : : ; �

d�T

2: Initialize random errors �t�q ; �t�qC1; : : : ; �t�1

3: Initialize factor matrix V 2 RN�R

4: for t D p C d C q; : : : ; T
5: Compute the core tensor �d�t of �d�t by Formula (8)
6: Estimate parameters 1; 2; : : : ; p of AR and

parameters �1; �2; : : : ; �q of MA by Yule-Walker equations
7: Update �d�t by Eq. (12)
8: Calculate A and B by Eq. (14)
9: Update V D BAT

10: for j D 1; 2; : : : ; q
11: Update �t�j by Eq. (15)
12: Repeat Steps 4 to 11 until convergence
13: Output projection matrix V , and AR and MA parameters

1; : : : ; p , and �1; : : : ; �q , respectively

Algorithm 2 Predicting QoS value
Output: �d�T ; : : : ; �

d�TC1�p; �T ; : : : ; �TC1�q ;

1; : : : ; p; �1; : : : ; �q ; V; and �d�

Input: �TC1

1: Calculate �d�TC1 by Eq. (16)
2: Compute �d�TC1 D �

d�TC1V
T

3: Carry out inverse d -order differencing for�d�TC1 to obtain
�TC1

4: Output �TC1
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5 Experiment

In this section, we conduct a series of experiments
to evaluate the proposed SerPredSVD ARIMA approach.
We investigate our approach on a real-world service
quality dataset WS-DREAM[23]. The WS-DREAM
dataset contains QoS property values (i.e., response
time and throughput) collected from 3889 web services
invoked by 142 users over 64 different time slots. As
web services and users locate in different countries, we
use them to simulate an MEC environment. Experiments
are conducted on temporal response time sequences and
temporal throughput sequences. Both sequences are split
into two parts: QoS values in the last slot are treated as
the testing set, and the other QoS values are considered
as the training set.

To validate the advantages of our approach,
we compare SerPredSVD ARIMA with three classical
approaches: UPCC[24], IPCC[25], and SerRectime LSH

[17].
Additionally, we adopt the Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) to evaluate the
prediction accuracy of the four methods. The MAE and
RMSE are widely used to measure the error between
predicted values(crij ) and real values(rij ).

The MAE is defined as

MAE D
P
.crij � ri;j /
N

(17)

The RMSE is defined as

RMSE D

rP
.crij � ri;j /2

N
(18)

The experiments are conducted on an HP workstation
with an Intel Xeon Silver 4210 CPU and 64 GB of RAM.
The machine runs Windows 10 and Python 3.6.

5.1 Parameters setting and convergence

First, we study the parameters of our proposed
SerPredSVD ARIMA. By conducting a grid search over the

ARIMA model, we determine the best parameter settings
(p D 2; d D 0; and q D 3) for temporal response time
sequences, and (p D 3; d D 0; and q D 3) temporal
throughput sequences. Moreover, the dimension of the
compressed matrix is set to (142, 800), which means the
compression ratio of the columns is approximately 20%.

We investigate the convergence of our approach with
respect to the relative error of projection matrices. As
shown in Fig. 3, our approach converges quickly, within
20 iterations both on the response time and throughput
datasets. Therefore, setting the maximum number of
iterations above 20 obtains a sufficient prediction
accuracy. Here, we set the maximum number of
iterations of our approach to 20 for all the experiments.

5.2 Accuracy comparison with respect to data
sparsity

To analyze the effect of the data sparsity of the testing
set, we compare the prediction accuracy of four methods
on testing sets with different sparsity. The experimental
results are shown in Fig. 4.

As our approach makes predictions based on historical
QoS data of the last T � 1 time slots, it shows little
variation when data sparsity varies from 30% to 90%.
Meanwhile, the MAE and RMSE values of UPCC, IPCC,
and SerRectime LSH increase as the testing set becomes
sparser. The MAE and RMSE values of our approach
are always smaller than those of the other three methods
when data sparsity varies.

We also compare the time costs of the four QoS
prediction approaches, as shown in Fig. 5. This
comparison demonstrates that our approach outperforms
UPCC, IPCC, and SerRectime LSH in efficiency.

5.3 Accuracy comparison with respect to the
length of temporal sequence

The length of the temporal sequence (T ) has a substantial

Fig. 3 Convergence curves of SerPredSVD ARIMA on (a) response time and (b) throughput datasets.
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Fig. 4 Prediction accuracy comparison with respect to data sparsity on different datasets.

Fig. 5 Time cost comparison with respect to data sparsity.
The time cost of IPCC method is too large, so we truncate its
bar.

influence on the performance of SerPredSVD ARIMA and
SerRectime LSH. To study the relationship between the
value of T and the prediction accuracy, we compare the
MAE and RMSE values of the four approaches when
T varies from 20 to 64. The experimental results are
shown in Fig. 6.

For temporal response time sequences, the MAE
values of our approach vary slightly with T , while the

RMSE values decrease slowly as the number of
recent time slots (T ) increases. The MAE and RMSE
values of our approach are the lowest among the four
approaches when T varies from 20 to 64. For temporal
throughput sequences, the MAE and RMSE values are
approximately stable when T changes. Moreover, our
method still obtains more accurate results for different
lengths of the temporal throughput sequence. This
result is noteworthy because some throughput values
change sharply at different time slots, and the MAE
and RMSE values of SerRectime LSH increase slightly
when T > 50. In summary, in terms of prediction
accuracy, our proposed method remains approximately
stable, and outperforms the other three approaches
for different lengths of temporal response time and
throughput sequences.

Regarding the time cost of the four approaches when
T varies from 20 to 64, Fig. 7 shows that the time
cost of SerPredSVD ARIMA increases with the number
of time slots. This is because the computational cost
of our proposed approach depends on the value of T .
Nonetheless, our method has the lowest time cost among
the four approaches.
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Fig. 6 Prediction accuracy comparison with respect to the number of time slots on different datasets.

Fig. 7 Time cost comparison with respect to the number of
time slots. The time cost of the IPCC method is too high, so
we truncate its bar.

6 Conclusion

The quality of web services in an edge computing
environment is mainly affected by three factors: (1) the
network traffic of the service provider; (2) caching in
edge servers; and (3) the mobility of users. Therefore,
traditional quality prediction techniques are not suitable
in an edge computing environment. In this paper,
aiming at predicting multiple temporal QoS sequences

simultaneously, we generalize the traditional ARIMA
model into matrix mode. Furthermore, to reduce the
computation and storage cost of QoS matrices, we
use the truncated SVD technique to compress the QoS
matrix along the columns and integrate the compressed
matrices with the ARIMA model. Finally, by conducting
several experiments on a real-world dataset, we find that
our proposed approach dramatically improves the QoS
prediction accuracy compared to three other classical
QoS prediction techniques, and shows approximately
stable accuracy with different lengths of temporal
sequences.

In future work, we will further refine our algorithm
by introducing more optimization goals and context
factors, such as those in Refs. [26–33]. In addition,
how to improve the recommendation performances by
optimizing the network load balance[34–36] is another
research topic that requires intensive study.
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