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Artificial Intelligence for Edge Service Optimization
in Internet of Vehicles: A Survey
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Abstract: The Internet of Vehicles (IoV) plays a crucial role in providing diversified services because of its powerful

capability of collecting real-time information. Generally, collected information is transmitted to a centralized resource-

intensive cloud platform for service implementation. Edge Computing (EC) that deploys physical resources near

road-side units is involved in IoV to support real-time services for vehicular users. Additionally, many measures are

adopted to optimize the performance of EC-enabled IoV, but they hardly help make dynamic decisions according

to real-time requests. Artificial Intelligence (AI) is capable of enhancing the learning capacity of edge devices and

thus assists in allocating resources dynamically. Although extensive research has employed AI to optimize EC

performance, summaries with relative concepts or prospects are quite few. To address this gap, we conduct an

exhaustive survey about utilizing AI in edge service optimization in IoV. Firstly, we establish the general condition and

relative concepts about IoV, EC, and AI. Secondly, we review the edge service frameworks for IoV and explore the

use of AI in edge server placement and service offloading. Finally, we discuss a number of open issues in optimizing

edge services with AI.
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1 Introduction

In 2017, the cumulative production and sales of
Chinese cars were 25.721 million and 25.769 million,
respectively[1]. The increasing number of vehicles
has caused a number of problems, including traffic
accidents, traffic congestion, and so on. Hence, great
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attention has recently been paid to improve vehicle
safety and efficiency. An emerging paradigm called
the Internet of Vehicles (IoV) has been proposed.
IoV has played a crucial role in helping avoid traffic
accidents, easing traffic congestion, and providing
diversified services because of its powerful capability of
collecting real-time vehicle information[2–5]. However,
the latency of transferring big traffic data collected by
IoV to a centralized resource-intensive cloud platform
hardly meets the requirement of providing real-time
IoV services to vehicular users[6, 7]. Therefore, Edge
Computing (EC) that deploys physical resources near
Road-Side Units (RSUs) is involved in IoV. However,
EC is interfered by several factors, including changes
in device positions, users’ variable requirements, and so
on. Traditional optimization methods (e.g., game theory
and convex optimization) do not meet the requirements
that change dynamically in IoV. The three main factors
explaining this gap are as follows:

(1) Continuous changes in the position of
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connected vehicles. The position of Base Stations
(BSes) and RSUs is stationary, but the connected
vehicles are continuously moving. Traditional methods
are unable to forecast users’ positions, and thus fail to
plot suitable resource allocation strategies.

(2) Variable application requests. Various requests
in different application scenarios are sent to meet
users’ requirements (e.g., weather forecast, destination
navigation, and entertainment). However, with
traditional methods, only one type of service for service
is generally considered.

(3) Changing network and time-varying channels.
In IoV, information is transmitted via a wireless network,
which is not always stable. Additionally, the channels
that transmit mobile information vary with time. In
general, traditional methods consider optimization
problems in an ideal network environment.

These factors hinder traditional methods from
addressing the problems caused by the complexity and
dynamic feature of information transmission. Hence,
the emerging Artificial Intelligence (AI) technology has
been widely considered in addressing these problems in
three aspects:

(1) Edge server placement. Connected vehicles keep
moving and changing their positions; thus, dynamically
predicting the placement of edge servers according
to service demands will improve the efficiency of
information transmission[8, 9]. AI technology is capable
of learning from massive data generated by IoV to
establish the relationship between edge server placement
and information transmission delay. Therefore, AI has
been used to predict optimal deployment. The prediction
of coarse-grained service demands is conducted to form
a network topology with a low-latency information
transmission. In summary, the overall latency of the
whole IoV is reduced by edge computing with the
assistance of AI.

(2) Computation Offloading (CO). The computation
latency of EC is high due to insufficient computing and
radio resources that are shared by multiple vehicles[10].
Therefore, CO is utilized to meet various requirements
with limited resources. The key step in CO is plotting
the offloading strategy because the offloading process is
affected by several factors, such as user habits, quality
of backhaul connections, and vehicle performance[11].
AI technology is utilized to ease computation pressure
and reduce feedback latency because it is capable
of performing adaptive, efficient, self-organizing, and
model-free learning to plot an efficient CO strategy[12].

(3) Service offloading. When offloading complex
services to EC nodes, their destinations should be
determined according to various factors, such as
transmission latency, energy consumption, etc.[13].
However, traditional measures (e.g., game theory[14]

and convex optimization) are not capable of dealing
with dynamic problems affected by numerous factors
because they do not consider the simultaneous influence
of multiple factors on service offloading[15, 16]. AI
technology compensates for this deficiency because it
can work out the optimal service offloading strategy
directly from a complex environment[17].

Despite the extensive researches and numerous
experiments on the utilization of AI in optimizing
IoV[18–22], the systematic summaries that identify the
basic concepts and development strategies in AI for edge
service optimization in IoV remain limited. The existing
surveys on IoV mainly tackle the aspects of architectures
and applications[23–25], scalability perspectives and
quality of services[26], privacy and security[27], and
the challenges and opportunities[28]. In this work, we
address such gap, by presenting a detailed and complete
survey about relative achievements in this area.

In this paper, Section 2 introduces the related concepts
and definitions. Section 3 presents a survey on edge
service frameworks for IoV, and Section 4 discusses a
survey on AI for edge server placement. Then, Section
5 expounds AI for CO in EC-enabled IoV. Section 6
describes AI for service offloading across edge servers
in IoV. Section 7 discusses several open issues. Finally,
Section 8 concludes the paper.

2 Preliminary

In this section, we review the definitions of IoV, AI, EC,
and edge server.

2.1 Internet of vehicles

IoV is a kind of mobile network consisting of vehicles
which support the internet of things. It helps maintain
traffic flow through the use of modern electronic
equipment, such as sensors, global positioning systems,
brakes, and throttles, along with information integration.
It also performs effective fleet management and aids
accident avoidance. IoV can be seen as a new paradigm
that stresses the interaction of information with vehicles
and humans; in such an environment, vehicles are linked
to devices, such as intelligent cameras and actuators[29].
IoV is also the integration of the internet of things and
mobile internet. It consists of vehicles that come into
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contact with one another, RSUs, handheld devices of
pedestrians, and public networks. It is a rising field
in the automotive industry and a vital part of smart
cities[30]. IoV is an integrated and open network system
which has high controllability, operationalization, and
reliability, and consists of multiple users, multiple
vehicles, and multiple networks[31]. Its existence is
based on the architecture comprising the network layer,
application layer, and perception layer[32]. IoV is also
perceived to have storage, intelligence, and the ability to
communicate along with learning capabilities that meet
the customers’ expectations[33].

In Ref. [34], IoV was viewed as a superset of
VANETs[35], which extends the scale, applications, and
structure of VANETs. It emphasizes the interaction of
information from vehicles, RSUs, and human users. It
also aims to provide people with road traffic information
without latency to ensure their travel comfort. In contrast
to VANETs, IoV involves vehicles as smart objects
that possess multiple sensors that are connected to the
internet and feature computational abilities[36].

2.2 Artificial intelligence

AI is a new branch of computer science that primarily
involves computers that can simulate the thinking
processes and intelligent behaviors of human beings[37].
AI mainly includes the theory of realizing intelligence
by computers and manufacturing computers which
are as intelligent as a human brain and thus makes
computers realize high-level applications. AI manages
to understand the essence of human intelligence
and responds like human beings[38]. As the concept
concluded, AI involves the study of the imitation and
understanding of human intelligence along with the law
of human behavior. In the field of AI, its research
involves many other fields, such as robots, language
recognition, image recognition, and expert systems. AI
has greatly developed since it was proposed.

2.3 Edge computing

EC is recognized as an open platform that integrates
computation, network, storage, and the key capabilities
of applications. Edge devices are located on the side
close to the data source and thus EC is able to produce
a fast response to network service, and perform timely
computation at the network edge[39].

As defined in Ref. [40], EC refers to a kind
of computing paradigm in which the capabilities of

processing, communication, and intelligence are pushed
to the edge of network systems from which data
originate. EC is also a kind of distributed computing
mode[41] which can solve some of the main issues by
transferring storage resources and computation from
centralized points, which is, in other words, pushing
data, all kinds of services and applications closer to the
requests geographically[42]. In theory, EC is an extension
of the content delivery network architecture. EC is also
being promoted as a kind of strategy which realizes
highly available and scalable network services, such as
the example in Ref. [43]. It pushes the processing of
data and business logic to proxy servers in the network
edge[44].

In Ref. [45], “edge” was defined as any computation
and network resources located between cloud data
centers and all kinds of data sources. EC is viewed as
a technology which allows computation to be executed
at the network “edge” of networks. As a fundamental
method of the IoT network, EC is a platform which
is able to eliminate the burden of processing data at
a centralized infrastructure and the issues related to
personal privacy[46]; in this way, it differs from cloud
computing, which is restricted in terms of system
efficiency and data transfer[47].

2.4 Edge server

An edge server is a kind of edge device placed in
internet exchange points to allow different networks
to link and share transmission[48] and thus provides
entry points into networks. Generally, edge servers are
arranged at the network edge so as to ensure that the
computation is performed near data sources. Hence,
numerous edge servers ought to be deployed to reduce
transmission latency[49]. Deploying a number of edge
servers optimally at the basic physical base stations, such
as network edges, where data are generated, can help
avoid the redundant utilization of bandwidth[11]. With
the deployment of edge servers, end users can enjoy edge
service with low-latency anytime and anywhere. Such
level of access can increase the influence of the abundant
data on central data centers and backbone networks.

3 Edge Service Framework for IoV

In this section, we sort out several proposed edge service
frameworks for IoV and then put forward ours. The
relative architectures and their features are listed in
Table 1.
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Table 1 Edge service frameworks and their features.

Architecture Feature Related work

Edge computing-enabled software-
defined IoV

Edge computing with entirety which consists of vehicles and road infrastructures. Ref. [50]

RSUs helped by edge servers
Some edge servers arranged to be collocated with a number of specific RSUs to
deal with massive data.

Ref. [51]

Edge servers, vehicles, and user
devices with vehicle-to-everything
(V2X) communication

Two scenarios based on the effects of vehicles. Ref. [52]

A structure with one centralized
cloud server along with multiple
single RSUs

Can be equipped with mobile edge computing servers and act as an edge node. Ref. [53]

A multi-access vehicular network Consisting of one macro-base station and multiple RSUs. Ref. [54]
A kind of centralized structure which
makes use of a Software-Defined
Network (SDN) controller

Guarantee not only efficiency but also flexibility to manage edge infrastructures
such as RSUs.

Ref. [55]

Introducing an information-centered
network architecture into IoV

Has two kinds of nodes with computation resources to deal with computing tasks
and can analyze big data.

Ref. [56]

Three-layer architecture

(1) Physical-world layer; (2) edge computing layer; and (3) social network layer. Ref. [57]
(1) Mobile user layer; (2) mobile edge computing layer; and (3) cloud layer. Ref. [58]
(1) Infrastructure layer; (2) edge computing layer; and (3) core computing layer. Ref. [59]
(1) Data collection layer; (2) network layer; and (3) data processing and
knowledge discovery layer.

Ref. [60]

3.1 Survey on proposed framework

As stated in Ref. [50], the authors proposed a kind of
EC with entirety which consists of vehicles and road
infrastructure to realize services which are sensitive
to latency and thereby ensure that advanced IoV
applications could be supported well. They introduced
an SDN as an orchestrator which facilitates EC nodes
and later developed an EC-enabled software-sefined IoV
as a result.

In Ref. [51], RSUs’ lack of data processing ability
prompted the collocation of edge servers with a number
of specific RSUs to deal with massive social media data
collected by RSUs, and facilitate communication with
cloud access points along with other RSUs and edge
servers. The framework proposed in Ref. [52] comprises
edge servers, vehicles, and user devices, along with V2X
communication. In Ref. [53], the authors considered a
kind of structure with one centralized cloud server along
with multiple single RSUs equipped with mobile EC
servers; this structure can be seen as an edge node with a
mobile EC server that has finite resources of data, cache,
and storage. In Ref. [54], the authors considered a multi-
access vehicular network consisting of one macro-base
station and multiple RSUs.

In Ref. [55], the authors proposed a kind of centralized
structure which makes use of an SDN controller to

program, deploy, and operate the networks in a logic-
centralized way. This structure consists of mobile
EC servers and Wide Area Network (WAN). This
centralized structure guarantees not only efficiency but
also flexibility to manage edge infrastructure such as
RSUs. In Ref. [56], the authors aimed to analyze big data
at the network layer and thus introduced an information-
centered networking architecture called Information-
Centered Network (ICN) to IoV and proposed an
architecture called edge-MapReduce, which has Mapper
nodes and Reducer nodes with computation resources to
deal with computing tasks.

The model proposed in Ref. [57] comprises three
layers, namely, the physical-world layer, EC layer, and
social network layer. Physical objects, such as vehicles,
drivers, and intelligent devices, constitute vehicular
networks in the physical-world layer. Unmanned Aerial
Vehicles (UAVs) act as flying RSUs to support mobile
EC services by executing computation tasks offloaded
from vehicles in the EC layer. In the social network layer,
a social relation structure is constructed by the social ties
of vehicles. Ji et al.[58] proposed a framework for vehicle
EC with three layers, namely, mobile user layer, mobile
EC layer, and cloud layer. By offloading mobile data to
nodes with computing and storage capabilities such as
RSUs, computational tasks are offloaded to mobile EC
servers or even remote cloud servers. In Ref. [59], the
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authors proposed collaborative Vehicular Edge
Computing (VEC), which also comprises an
infrastructure layer, an edge computing layer, and
a core computing layer. Each layer connects with a
form of computation, including local computing, edge
computing, and remote cloud computing; collaborating
is possible between any two layers. Similarly, in Ref.
[60], a thress-layer architecture was proposed. The three
layers are the data collection layer; network layer with
infrastructure devices, vehicles, and mobile devices;
and the data processing and knowledge discovery layer,
which presents various aspects of knowledge discovery
which can be applied to the data collected from physical
domains and cyberspaces[61].

3.2 Edge server in IoV

As illustrated in Fig. 1, we give the introduction of the
integration of RSUs, edge servers, vehicles, and cloud
data center. In the IoV structure, all the raw data and
requests of vehicles are collected by RSUs, which lack
data processing capabilities. To deal with this deficiency,
we arrange edge servers close to RSUs to help carry
out the processing of data. This arrangement enables
the edge servers to connect directly to RSUs, access
the data collected by them, and provide service and
processing with low latency relative to RSUs. We also
place one macro-base station as a kind of auxiliary,
which can reduce RSUs’ burden to a certain extent. Edge
servers and RSUs can also link to cloud data centers,
which have strong data processing and real-time analysis
capabilities.

4 AI for Edge Server Placement

Recently, the utilization of AI technology in edge

Fig. 1 Introduction of integration of RSUs, edge servers,
vehicles, and cloud data center.

server placement has attracted considerable attention
from numerous researchers due to its importance in
formulating reasonable edge server placement strategies.
Therefore, many improved methods based on deep
learning algorithms have been proposed. The typical
optimization algorithms are as follows.

Saputra et al.[62] proposed two new methods for
designing the placement of edge servers. These
two methods include deep learning algorithms and
distributed deep learning algorithms for edge server
placement. For the deep learning algorithms, the authors
designed a centralized node-set to collect information
from mobile edge nodes. Then, the collected information
was used in deep learning algorithms to predict the
needs of users in the entire network. The placement
model of the edge server was derived on the basis
of the predicted user requirements. Considering the
information privacy and communication overhead in
deep learning algorithms, the authors designed a
framework based on distributed deep learning. In the
new framework, the task of centralized nodes is to collect
trained models from mobile edge nodes and update the
global edge server model on the basis of the trained
models. After completing this task, the global edge
server model is sent to the mobile edge nodes again
for the next update. In such a cyclical way, the global
edge server model is continuously updated to ensure that
the strategy edge server placement is optimal.

Bensalem et al.[63] laid out an edge server based on
a deep neural network and proposed the best layout
model. Different kinds of deep neural networks have
the ability to extract various features from data because
they have their own distinct structures, which can help
with model optimization[64]. In the process of designing
the optimal layout model, the authors[63] put forward
the formula of deep neural network parameter selection
after comprehensively considering the communication
delay between nodes and the cost of EC nodes. They
then determined the most suitable parameters of the
deep neural network model through this formula.
After the training process, the deep neural network
model automatically provides recommendations for the
placement of edge servers based on the current network
conditions. After experimental verification, the authors
confirmed that the edge service placement scheme given
by the model under low and high network loads exerts
a considerable effect on reducing the average delay of
each request.

As the widely used group convolution is not suitable
for devices with low memory efficiency, Yang et
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al.[65] proposed the Edge Convolution Neural Network
(EdgeCNN) model to deal with resource scarcity and
enhance memory access efficiency. The authors also
improved the EdgeCNN model to obtain the Edge
Convolution Neural Network-G (EdgeCNN-G) model.
The similarity of the two models lies in the direct
execution of the Convolutional Neural Network (CNN)
algorithm on the EC server, resulting in the placement
scheme of the edge server. EdgeCNN-G consists of
packet computers, whereas EdgeCNN does not. As
many EC servers, such as the famous Raspberry[66],
have relatively few computer resources, their memory
access speed is only one-tenth of that of mobile phones.
Therefore, one needs to choose whether to use the
EdgeCNN-G model or the EdgeCNN model to place the
edge server according to the actual network environment.

Tian et al.[67] proposed the Lightweight Edge device
assisted Private CNN (LEP-CNN) model. The LEP-CNN
was uniquely designed with a lightweight encryption
scheme to enable resource-constrained IoT devices to
execute CNN requests with privacy protection to derive
an edge server placement scheme. The design idea of
LEP-CNN is to improve network latency and service
availability by integrating local edge devices. LEP-
CNN has two advantages in addition to the placement
strategy of the edge server. Firstly, it can make the
privacy protection on the edge device as effective
as the privacy protection on the unencrypted data.
Secondly, it can ensure that the privacy protection does
not cause accuracy loss on the CNN. The experiment
results showed that LEP-CNN has higher accuracy and
better efficiency than the traditional CNN edge server
placement scheme. The summary of the strategies related
to AI for edge server placement is shown in Table 2.

5 AI for Computation Offloading in EC-
Enabled IoV

CO is regarded as an essential technology in EC.

Through the offloading of computing tasks to edge
servers, the consumption of time and energy in data
computations and transmissions are reduced. In IoV,
RSUs deployed along roads act as edge servers.
Therefore, with the assistance of RSUs, Vehicle-to-
Vehicle (V2V) communication is performed efficiently.

5.1 Offloading requirement

In this sub-section, we introduce certain requirements for
CO strategies for users and service providers according
to the research results. These requirements mainly
include energy consumption and intentions for users
as well as the delay and reliability for service providers.

(1) Energy consumption for users. The emergence
of equipment, such as smart phones, has enriched
the lives of users. With such equipment, we can
communicate expediently with others and alleviate the
pressure involved in working or learning. As these
convenient features entail extensive computation, the
energy consumption of user equipment in computing is
huge. Therefore, the battery life of equipment is not
always sufficient for user calculation. In Ref. [68],
the concept of Mobile Edge Computing (MEC), which
involves offloading some appropriate computing tasks
from the user equipment to the network edge, was
introduced to decrease energy consumption.

(2) Intentions for users. In the process of offloading,
the feasibility of one strategy is determined by the
intentions of users.

(3) Delay for service providers. Pursuing low energy
consumption excessively while ignoring acceptable
limited delays is not feasible. In other words, low
energy consumption should not be compromised high
delay. Therefore, in Ref. [69], the authors paid attention
to certain delay limitations and designed a resource
allocation strategy for computing and network resources
to satisfy predefined delay constraints.

(4) Reliability for service providers. The high

Table 2 Summary of strategies about AI for edge server placement.
Reference Strategy Actual utility

[62] Distributed deep learning In the distributed deep learning algorithm, the edge server placement model is
continuously updated through the model transmission of centralized and edge nodes.

[63] Deep neural network According to the communication delay between nodes and the calculation cost, the
edge server placement model of the deep neural network is obtained and the model
is trained in the actual network environment to improve its performance.

[66] Edge convolutional neural network-G The EdgeCNN-G model is different from the EdgeCNN model as it uses a group
computer to place the edge server.

[67] Lightweight edge device assisted
privacy-preserving convolutional
neural network

The LEP-CNN model reduces network latency and provides privacy protection for
the edge server by integrating the local edge device while placing the edge server.
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reliability in data transmission is also a major challenge
in CO. In Ref. [70], the authors proposed the concept of
reliability factor, which determines the reliability of each
edge node by periodically transferring the computing
tasks and returning computing results. With the usage
of the reliability factor, the offloading process achieves
superior performance in terms of reliability.

5.2 Offloading strategy

In this sub-section, we introduce several studies about
offloading strategies from four aspects.

(1) Strategies related to delay. A summary of these
strategies is shown in Table 3.

In Ref. [71], the authors proposed a computation
task offloading framework in IoV. For this framework,
the authors considered the limitations of resources in
vehicles and delays in CO and designed a valid resource
allocation strategy-based contract theory to accomplish
every service. A large amount of experimental data show
that this strategy obviously reduces delay.

The development of cellular network has greatly
enriched the daily lives of users. With the increasing
demands of users for real-time information, IoV with
cellular network is facing huge challenges brought about
by delays in data transmissions. In Ref. [72], the vehicles
were allowed to build wireless connections to RSUs
directly so as to decrease the delay in V2V information
interactions.

The high mobility of vehicles has increased the
requirement for low delay in data transmission in IoV. In
Ref. [73], the authors investigated a publish/subscribe
message scheme starting with reducing the delay

of information interaction in IoV. The edge service
center deployed in the edge server provides real-time
information forwarding service. Therefore, the data
center in the cloud guarantees that information is spread
in a larger scope. The feasibility of the scheme is verified
by simulation experiments.

In motorways, numerous requirements have been
established to limit delay in CO. The fast speed of
vehicles leads to their high mobility, hence the need for
highly accurate computations for the road conduction
information. In Ref. [74], the authors established the
vulnerable road user scenario of a motorway and
evaluated the experiment data, which then revealed
that supplementing MEC into cellular V2X reduces the
delays in data transmissions.

The conventional EC cannot be easily applied to
IoV directly due to vehicle mobility. In Ref. [75], a
collaborative task offloading strategy was designed with
the capability of guaranteeing low delay in the processes
of offloading. Then, the 3D construction of the scenario
was carried out to analyze the strategy scientifically.
Experimental data demonstrated that the strategy not
only ensures a comfortable driving experience, but also
reduces the perception response time of drivers under
special circumstances.

In Ref. [76], a strategy involving short packet delays in
CO with ultra-reliable and low-latency communication
service was designed. In the edge of the network,
a processor-sharing server was set up to assist in
computing, analyzing message latency, and optimizing
task offloading. The computing capacity of this server
was divided into all the packets. Considering the impact

Table 3 Summary of strategies about delay.
Reference Core method Actual utility

[71] A valid resource allocation strategy-
based contract theory

Reduce delays, augment the utilization rate of edge servers, and improve the utility
of vehicles.

[72] Vehicles building connections to RSUs Accomplish V2V information interactions conveniently and reduce delay.
[73] Low delay of information interaction Provide real-time information forwarding service and guarantee the spread of

information in a larger scope.
[74] A strategy based on a motorway scenario Reduce delay in offloading processes.
[75] A collaborative task offloading strategy Ensure a comfortable driving experience and reduce the perception response time of

drivers under special circumstances.
[76] Message latency and task offloading

optimization
Propose a latency balance algorithm to minimize end-to-end delay.

[77] Fight RSUs, a flight algorithm based
on swarm intelligence

Flexibly implement information interaction in IoV and meet the high response
requirements of applications.

[78] An adaptive learning-based task
offloading algorithm

Reduce the delay in offloading processes.

[79] Integrating load balancing with
offloading, a low-complexity algorithm

Reduce delays and maximize system utility.
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of packet loss rate, the authors designed a latency balance
algorithm to minimize end-to-end delay.

The emergence of RSUs has simplified vehicle
communications. However, if we would like to decrease
the inevitable delays in data transmissions, the number
of RSUs with fixed characteristics that should be
deployed along roads needs to be increased. In Ref. [77],
the authors studied fight RSUs carried by UAVs and
designed a flight algorithm on the basis of swarm
intelligence. Through intelligence calculation for road
conduction information, the authors were able to
dynamically formulate the processes of task offloading
and resource allocation.

In Ref. [78], the authors studied task offloading in IoV
and designed a method that could make vehicles realize
the offloading delay performance of adjacent vehicles
while offloading computation tasks. The Adaptive
Learning based on Task Offloading (ALTO) algorithm
was proposed to minimize the average offloading delay.
The essential characteristic of the algorithm is that the
states in computing are not exchanged frequently during
ALTO. Extensive simulation experiments demonstrated
that the algorithm decreases delays in offloading
processes.

The emergence of delay-sensitive in-vehicle
applications is a new challenge for IoV. In Ref. [79], the
concept of VEC was proposed. In VEC, the computing
tasks are offloaded from the resource-constrained
vehicles to the VEC servers. The performance of VEC
becomes limited if all vehicular tasks are offloaded
into only one server. Therefore, the authors proposed
integrating load balancing with offloading to optimize
the offloading ratio and the usage of computing
resources. Then, a low-complexity algorithm was
designed. Numerical experiment data demonstrated the
superior performance of the algorithm in terms of the

low delay in offloading.
(2) Strategies about energy consumption. A

summary of these strategies is shown in Table 4.
MEC has the potential to enhance vehicular services

by CO. In Ref. [80], the computation constraints of MEC
servers possibly decreasing the quality of offloading in
traffic-dense roads were considered, and an offloading
framework based on VEC was proposed to tackle this
problem. An optimization offloading scheme with game
theory was designed to maximize the utility of vehicles
and edge servers.

In Ref. [81], the authors studied the energy
consumption in offloading processes and built a model
for visual analysis based on queue theory. Then, an
energy efficiency optimization problem was formulated
based on the theoretical analysis. Finally, a distributed
algorithm was designed to minimize the energy cost
under certain delay constraints.

In Ref. [82], the authors studied the CO strategies in
IoV under the 5G environment. In the study, a small-
cell network architecture was designed. The authors
also formulated an energy optimization problem, which
was discussed in two aspects of task computation and
communication. To solve this optimal problem, the
authors designed an artificial fish swarm algorithm. The
numerical experimental data demonstrated the superior
performance of the architecture.

In Ref. [83], a collaborative offloading method
based on MEC and cloud computing was proposed,
in which services are offloaded into the vehicles
in IoV. By optimizing the offloading decision and
effectively allocating resources, the authors formulated
a collaborative offloading problem based on cloud-MEC.
To solve this problem, a distributed CO and resource
allocation algorithm was designed. The simulation
results demonstrated that the algorithm improves system

Table 4 Summary of strategies about energy consumption.
Reference Core method Actual utility

[80] An offloading framework based on VEC Maximize the utility of vehicles and edge servers.
[81] A distributed algorithm to solve the

energy efficiency optimization problem
Minimize the energy cost under the certain delay constraints.

[82] Artificial fish swarm algorithm to solve
the energy optimization problem

Improve energy efficiency and solve the problem of energy minimization.

[83] A distributed resource allocation
algorithm

Improve the system utility.

[84] An algorithm to solve the problem of
energy efficiency maximization

Proved efficient by numerical experimental results.

[85] Partial offloading strategy, an iterative
algorithm

Minimize the system energy consumption.
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utility.
In Ref. [84], the authors studied an energy transfer-

based MEC system. In this system, the mobile devices
are charged with the radio frequency signals. The authors
then formulated the energy efficiency maximization
problem by computing the time distribution, energy
consumption and ability of local computing in
computing offloading. This optimization problem was
tackled with the design of a specific algorithm. Finally,
the feasibility of the algorithm was evaluated via
simulation experiments.

In Ref. [85], the authors considered the partial
offloading strategy based on multi-access EC network,
that the data are calculated in cloud or user devices.
Then an iterative algorithm was designed. With the
algorithm, users could select the partial data to offload.
The simulation results demonstrated that the algorithm
minimizes system energy consumption and achieves
superior performance.

(3) Strategies about comprehensive aspects. A
summary of these strategies is shown in Table 5.

In Ref. [5], the authors firstly considered the high
mobility of vehicles and the energy cost in data
computation. A predictive task-file transfer strategy for
V2V communication was then designed. The authors
also proposed an offloading scheme with predictive
combination mode. The extensive experimental data
showed that, the scheme can minimize the cost of
offloading and satisfy the delay constraint of users.

In Ref. [86], the power delay balance in the CO
environment was studied in the scenario of multiple
servers. The authors set a probability constraint for the
length of the offloading tasks queue and analyzed this
queue with extreme value theory. Then, a strategy for
dynamic resources allocation under complicated task
calculations was designed. The energy consumption of
the data computations and transmissions was minimized
under the constraints of delay and reliability. The

simulation results demonstrated that the strategy breaks
the conflict between power and delay.

In Ref. [87], the authors described a novel scenario
based on MEC architecture, in which the local servers
need to accomplish the real-time services of mobile
vehicles in their own service range. The problem of
distributed real-time service scheduling was proposed by
considering the balance of service workloads and real-
time services in IoV. To tackle this problem, the authors
designed a utility-based learning algorithm. With the
assistance of a simulation model, the authors extensively
evaluated the performance of the algorithm and verified
its superiority.

Smart vehicles are becoming widespread. In Ref. [88],
the authors formulated the problem that the mobility of
Vehicles Terminals (VTs) increases the consumption of
time and energy in offloading. To tackle this problem, the
authors designed a heuristic offloading decision method.
Furthermore, the problem was divided into two sub-
problems which were then solved accordingly. The
excellent performance of the method was verified by
the simulation data.

(4) Strategies about intentions of users. A
summary of these strategies is shown in Table 6.

In Ref. [90], the authors aimed to reduce the
communication delays in IoV and enhance the
experience of users, and thus proposed a network
architecture assisted by MEC based on SDN, and then
studied its rapid response and scalability. The reliability
of the architecture was verified by the simulation
results, which met the high response and real-time
requirements as well as the requirements of different
applications. Software management and update were
simply performed with the architecture.

In Ref. [89], the authors took into account of the
limited resources in MEC servers and formulated the
problem of optimally utilizing the resources while
enhancing the Quality of Equipment (QoE) in VTs.

Table 5 Summary of strategies about comprehensive aspects.
Reference Core method Actual utility

[5] A predictive task file transfer
strategy for V2V communication

Minimize the cost of offloading processes and satisfy the users to accept limited
delays.

[86] Power delay balance in CO in the
scenario involving multiple servers;
analysis with extreme value theory

Optimize the energy consumption of computations and data transmissions under
the limits of delay and reliability.

[87] A utility-based learning algorithm
to solve the problem of distributed
real-time service scheduling

Balance the service workloads and real-time services in IoV and achieve superior
performance.

[88] A heuristic offloading decision
method

Reduce the consumption of time and energy in vehicle terminals.
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Table 6 Summary of strategies about intentions of users.
Reference Core method Actual utility

[74] A network architecture assisted by
MEC based on SDN

Meet the high response and real-time requirements as well as the requirements of
different applications; easily perform software management and update.

[89] A scheme to tackle the problem
of optimally utilizing the resources
while enhancing QoE in VTs

Maximize the QoE in VTs and have higher utility than conventional schemes.

[76] An offloading scheme using TVWS Reduce the cost in VTs and edge servers.
[77] A Deep Reinforcement Learning

(DRL) method
Maximize the utility of the vehicle edge computing network and achieve high
performance.

To tackle this problem, the authors designed a novel
offloading scheme, in which the QoE of VTs is
maximized. The simulation data demonstrated the higher
utility of the proposed scheme in comparison with those
of conventional schemes.

In-vehicle applications entailed higher requirements
in terms of the delay and bandwidth of information
interaction. In Ref. [76], the authors regarded the TV
White Space (TVWS), which compensates for the
shortage of bandwidth in CO. Therefore, a cognitive
vehicular network using the TVWS band was considered.
A dual-side optimization cost problem was also
formulated. To tackle this optimization problem, the
authors designed a specific algorithm, which showed
superior performance in minimizing the costs on the
basis of the simulation data.

In Ref. [77], the authors designed a vehicle EC
network architecture, in which the vehicles could act
as the EC servers to provide adjacent vehicles with
services. Then, considering the delay in computations,
the authors proposed a vehicle-assisted offloading
scheme. To maximize the utility of the vehicle EC
network, they then designed a DRL method. The
numerical results revealed the superior performance
of the scheme.

IoV based on CO technology has made people’s lives
especially convenient. Therefore, the aforementioned
CO strategies will be further optimized, and other novel
strategies will be designed. In the near future, the IoV
technology is expected to mature further and thus add
intelligence to our lives.

6 AI for Service Offloading Across Edge
Servers in IoV

In this section, we review the research on service
offloading. A summary of the literatures related to the
methods of service offloading across edge servers in IoV
is shown in Table 7, which include each article’s key

points. We review the studies on the common methods
of service offloading across edge servers in Section 6.1,
identify the service offloading methods assisted by AI
in Section 6.2, and propose an AI structure for service
offloading across edge servers in IoV in Section 6.3.

6.1 Method of service offloading

As a method to minimize the service latency and
maximize the optimal revenue, a kind of adaptive service
offloading program, which offers service utilization
and revenue to the maximum extent to the mobile
EC platform, was proposed by Samanta and Chang[17].
In their program, services are offloaded to multiple
edge servers according to the rate of flow of the
computational services, which are organized by their
priorities. Similarly, in Ref. [91], the authors proposed
an adaptable offloading mechanism, which took into
consideration the quality of service requirements of
the executing application, especially the real-time
requirements. The authors put forward an approach to
code offloading, which allows applications and devices
to offload some of the services to other nodes, with the
aim of supporting adaptable applications.

As some mobile security suites require extensive
resources, an ad-hoc (cooperative access of a set of
mobile nodes, that do not require any centralized points
or interaction of existing infrastructure) mobile edge
cloud was presented in Ref. [79], the proposed cloud
uses Wi-Fi Direct to achieve connectivity, integrate
security services, and share resources with surrounding
mobile devices. This scheme embeds a multi-objective
resource-aware optimization model along with genetic-
based algorithms to supply smart offloading decisions,
which are on the basis of dynamic processing of
statistical and contextual data from ad-hoc mobile
devices. With the similar idea, Deng et al.[93] took
advantage of multi-hop vehicular ad-hoc networks to
help with the computational tasks offloading of vehicles.
They also built a liability model of a multihop routing
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Table 7 A summary of the literature about methods of service offloading across edge servers in IoV.
Method Feature Related work

Adaptive service offloading program (1) Offload services by the rate of flow of the computational services; (2) take into
consideration the quality of service requirements of the executing application.

[78]

An approach to code offloading Allow applications and devices to offload some services to other nodes adaptably. [91]

Ad-hoc networks (1) An ad-hoc mobile edge cloud that makes use of Wi-Fi Direct; (2) multi-hop
vehicular ad-hoc networks.

[80]

Architecture with features of multi-X (1) A high-level edge computing orchestrator with multiple access; (2) an auction
mechanism featured as multi-round-sealed sequential and combinatorial; and (3)
a vehicular edge network with multiple access.

[81]

A heuristic algorithm Focus on migrating user-generated data to the edge servers. [82]

An SDN-based cross-layer network
slicing architecture

Comprise two parts: transport layer and control layer. [83]

Cooperative method for parallel
computing and transmission in Virtual
Reality (VR)

Dividing one VR task into two small tasks, both of which can be dealt with at
mobile edge servers in IoV simultaneously and separately.

[84]

An offloading scheme of distributed
game theory

Work in a wireless environment with multiple channels. [85]

Visual odometry with intensive
offloading

Combine visual odometry with the intensive offloading to near infrastructure
and utilize a method consisting of 3 dimension to 2 dimension correspondences.

[92]

Framework with deep reinforcement
learning algorithm

(1) A framework of knowledge-driven service offloading decision for IoV; (2)
a system of intelligent offloading with the DRL, the finite-state Markov chain
along with vehicle edges; (3) a framework based on reinforcement learning for a
service migration system of single-user EC; and (4) an offloading scheme with
the DRL, the knowledge of vehicular network and the mobile edge computing.

[86]

An adaptive task offloading algorithm (1) Give vehicles the ability to learn an adjacent vehicle’s offloading delay
performance; (2) increase the occurrence awareness for adaptation in dynamic
environment.

[87]

Active offload balancing with the deep
convolutional neural networks

Have the ability to solve the optimization problem of Natural Language
Processing (NLP) and implement efficient collaborative scheduling of data.

[88]

A moving edge algorithm with non-
orthogonal multiple access

Consider task offloading and the selection of user between edge devices and
macro units.

[90]

path on the basis of the theory of link correlation in
VANETs in real-time traffic environments.

Samanta and Li[13] presented a novel latency-oblivious
incentive service offloading design to maximize
offloading performance and users’ profit along with the
estimation of the latency requirements of different user-
specific applications. As the actual latency requirements
of those mobile devices are hard to determine and change
dynamically, regardless of EC platform, this scheme
estimates the total service latency run up against by
mobile devices and then takes different services’ unique
priorities into account.

Gilly et al.[82] presented a high-level EC orchestrator
with multiple access which arranges vehicular edge
services that are on the basis of location in the
way of the management of hierarchical dynamic
resource. With the help of this orchestrator, low latency
responses are guaranteed owing to the geo-aware service

dynamic migration and allocation. Tran and Pompili[83]

considered a multi-cell wireless network enabled by
mobile EC; in this network, each BS is equipped
with an MEC server that helps mobile users execute
various tasks by task offloading. In Ref. [84], an
auction mechanism characterized as multi-round-sealed
sequential and combinatorial was proposed to connect
mobile terminals along with the mobile EC servers in
order to offload tasks to the best mobile EC server.
In Ref. [85], a vehicular edge network with multiple
access was introduced; in this network, the vehicles are
treated as edge computation resources and a mechanism
of collaborative task offloading along with the output
transmission guarantees low latency and the performance
of applications.

By focusing on the migration of user-generated data
to the edge servers and with consideration of these tasks’
characteristics and the connection between nodes, the
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authors in Ref. [5] designed a heuristic algorithm for
reducing the transmission costs by using the real-time
information.

In Ref. [86], an SDN-based cross-layer network
slicing architecture was proposed for the service
migration in mobile EC infrastructure. This kind
of structure is divided into two parts, namely, the
transport layer and the control layer. The transport layer,
comprises three kinds of domain controllers based on the
SDN, that are built for the access layer, the convergence
layer, and core layer so that service migration among
mobile EC servers in each layer can be achieved. The
control layer is composed of orchestrator layer along
with the management layer and involves three kinds of
mobile EC server placement scenarios.

To deal with the long completion time of the VR
applications used in IoV, the authors in Ref. [87]
proposed a kind of cooperative method for parallel
computing and transmission in VR that divides one
VR task into two small tasks. One of the two sub-tasks
is offloaded to vehicles through wireless transmission,
and the two sub-tasks are dealt with at the mobile
EC servers and vehicles in IoV simultaneously and
separately. Therefore, the offloading proportion and
communication resource allocation are optimized jointly
in vehicular networks with mobile EC and the latency is
minimized greatly. In Ref. [88], an offloading scheme
of distributed game theory was designed on the basis of
the study of a service offloading problem, which related
to multi-user mobile EC in a wireless environment with
multiple channels.

6.2 Method with AI

Given the difficulty of the offloading multiple data
dependency tasks in a complex service, which depends
on data, researchers are inspired to use AI and have
thus proposed several novel methods for the service
offloading across edge servers in IoV.

In Ref. [90], the authors proposed a framework
of knowledge-driven service offloading decision for
IoV, which supplies the optimal strategy from the
environment directly. This framework includes a
decision model with the DRL algorithm to help acquire
knowledge about offloading decisions along with the
observation function. The model is responsible for
obtaining data from EC nodes and vehicular mobility.
The DRL algorithm proposed by the team DeepMind is a
learning method which combines the neural networks for
the storage of state with the decision-making methods

of reinforcement learning. The algorithm can solve
problems which are hard for traditional reinforcement
learning to deal with, such as the representation of
an endless number of states for the image input[94].
The combination of the two parts provides a unique
platform, which can offload various vehicular services
to three types of EC nodes. In Ref. [89], the authors
made use of the DRL, the finite-state Markov chain
along with the integration of vehicle EC to construct
an intelligent offloading system. They also raised the
problem of resource allocation and the joint optimization
of task scheduling. They solved the problem with a DRL
method integrated with a bilateral matching algorithm.
In Ref. [95], the authors proposed an offloading scheme
involving the knowledge of vehicular networks, mobile
EC along with the DRL; the scheme improves mobile
edge offloading. Similarly, the authors in Ref. [92]
designed a framework based on the reinforcement
learning for a service migration system of single-user EC.
This kind of model can take long-term goal into account
and thus facilitate communication decision making and
service migration.

On the basis of the theory of multi-armed bandit, the
authors in Ref. [96] proposed an adaptive task offloading
algorithm with distributed characteristics. This method
gives vehicles the ability to learn an adjacent vehicle’s
offloading delay performance while the calculation tasks
are being offloaded. It also increases the occurrence
awareness for adaptation in a dynamic environment and
reduces the request on frequent exchanges of states.

In Ref. [97], the authors proposed a method of active
offloading balancing, which makes use of the deep CNN
in order to learn the spatiotemporal correlations and
predict road traffic conditions. CNN is a kind of artificial
neural network that utilizes shared weights to extend
across space, and is thus suitable for tasks related to
computer vision[98]. This method has the ability to deal
with the optimization problem of NLP and implements
the efficient collaborative scheduling of data which are
cached between mobile edge servers.

In Ref. [69], the authors considered task offloading
along with the selection of users between edge devices
and macro units; on the basis of non-orthogonal multiple
access, the authors proposed a moving edge algorithm
along with a heuristic algorithm designed from three
aspects, namely, offloading decision, channel allocation,
and power control, with the aim of improving the rate
gain of transmission and the efficiency of discharge
offloading.
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6.3 AI for service offloading across edge servers in
IoV

As shown in the Fig. 2, we present an architecture of
service offloading across edge servers with the help of
AI in IoV. The architecture includes a decision model
with DRL algorithm. As introduced in Section 3.2, edge
servers are arranged close to RSUs to help transmit data
because of their powerful computational capacity. We
maximize such powerful capacity and train the decision
model at RSUs with EC nodes. The result of training,
which is distributed across service offloading decisions
in the real world, is cached in edge servers or uploaded
to the cloud server. Vehicles then receive the model
from RSUs or download it from the cloud. As the DRL
model puts forward rewards for each decision, the model
is trained as long as the services are running and its
parameters are sent to EC nodes to update the previous
model. In this way, the model makes intelligent decisions
for service offloading.

7 Open Issue

The existing research and experiments highlight a few
crucial open issues on AI for edge service optimization
in IoV.

(1) Optimize EC with joint measures
AI plays a crucial role in optimizing edge

service, but the optimization effect of a single
AI method is restricted[99]. Moreover, solving the
problem of overfitting or underfitting in the model is
problematic[100]. Therefore, a framework for integrating
the DRL techniques with federated learning is required
to promote the joint optimization of edge service in IoV.

(2) Accelerate AI tasks through EC
The task of AI model training is also computationally

Fig. 2 An architecture of service offloading across edge
servers with the help of AI in IoV.

intensive because of the long time needed to construct
an efficient model[101]. At present, the dynamic and
adaptive splitting of AI tasks has become an open
issue involving the use of edge service to complete AI
tasks efficiently[102]. EC could provide a high-quality
computing architecture for AI or a practical and feasible
operation solution for some AI applications that are
computationally complex.

(3) Improve security and privacy protection
Vehicles collect information mainly from

communications between vehicles and vehicles
and between vehicles and road-side infrastructure.
These communications are often interrupted due
to vehicles’ high mobility. The interference causes
communication links to fail frequently. Moreover,
hackers’ attacks on sensors and communication
channels lead to severe problems in privacy. Potential
solutions include the access control of servers and
communication authentication[103].

(4) Deal with high mobility
With the rapidly increasing density of road traffic, the

main factors that affect the network topology dynamics
are frequent and high speed vehicle movements. As
an important feature of vehicular networks, intelligent
vehicles’ high mobility not only blocks the supply
of stable wireless communication, but also increases
the complexity of the collaborative optimization of
the computing and cache resources’ allocation[104].
Studying the distribution protocols of data routing along
with predicting vehicles’ movement could improve this
situation.

8 Conclusion

The emerging communication technology accelerates
digital transformation and provides benefits for many
industries, including education, energy, smart cities,
and smart transportation. Given the vast development
prospects of smart transportation, IoV attracts increasing
attention from numerous researchers. Edge service is
considered in addressing problems that involve intensive
computation and high latency. AI is utilized to optimize
edge service in IoV in various aspects including edge
server placement, CO, and service offloading.

In this work, a comprehensive and detailed survey on
AI for edge service optimization in IoV is presented.
Firstly, the basic driving forces of this survey are
reviewed. Secondly, the related concepts and definitions
are introduced. Thirdly, an overview of frameworks
and crucial techniques are provided. Finally, several



Xiaolong Xu et al.: Artificial Intelligence for Edge Service Optimization in Internet of Vehicles: A Survey 283

open issues are enumerated to guide our future research
directions. In sum, this survey is presented to promote
the further progress of AI in optimizing edge service.
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