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GGC: Gray-Granger Causality Method for Sensor Correlation
Network Structure Mining on High-Speed Train

Jie Man, Honghui Dong�, Limin Jia, and Yong Qin

Abstract: Vehicle information on high-speed trains can not only determine whether the various parts of the train are

working normally, but also predict the train’s future operating status. How to obtain valuable information from massive

vehicle data is a difficult point. First, we divide the vehicle data of a high-speed train into 13 subsystem datasets,

according to the functions of the collection components. Then, according to the gray theory and the Granger causality

test, we propose the Gray-Granger Causality (GGC) model, which can construct a vehicle information network on

the basis of the correlation between the collection components. By using the complex network theory to mine vehicle

information and its subsystem networks, we find that the vehicle information network and its subsystem networks

have the characteristics of a scale-free network. In addition, the vehicle information network is weak against attacks,

but the subsystem network is closely connected and strong against attacks.
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high-speed train

1 Introduction

In recent years, China’s railway development has
become faster and safer. In addition, China has formed
the fastest and largest high-speed railway network in
the world[1]. As of December 2018, China’s high-
speed railway operation mileage reached 29 000 km,
accounting for two-thirds of the world’s high-speed
railway operating mileage. China Railway High-speed
(CRH) series Electric Multiple Units (EMU) trains are
the primary carrier vehicles independently developed
by China. The average driving speed of these trains
can exceed 350 km/h. However, under the trend of
high-speed and large-scale development, high-speed
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train accidents occasionally occur. For example, on
July 23, 2011, lightning strikes caused detection sensor
failure, the train numbered D301 collided with the train
numbered D3115, resulting in 40 deaths and 172 injuries.
On August 12, 2018, the air conditioner of the train
numbered G40 failed and the passengers fainted due to
the high temperature.

To improve the safety and comfort of railway
transportation, China Railway installs thousands of
sensors on the train to detect the operation of each part
and establishes a vehicle Wireless Transmission Data
System (WTDS) on EMU. WTDS is composed of a
vehicle-mounted host, a vehicle-mounted antenna, a
multiband combiner, and an antenna extension cable.
It collects and processes train operation status and alarm
information, stores data, and transmits wirelessly. As
shown in Fig. 1, the signal acquisition unit collects train
operation status data and then sends these data to the
Data Control Center (DCC) through the WTDS. After
the data are obtained, the DCC uses the data to predict
train operation status.

An eight-section high-speed train is equipped with
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Fig. 1 WTDS architecture of bearing failure prediction in high-speed trains.

1673 sensors with a sampling frequency of 1 s, meaning
six million pieces of data are processed in the DCC
per hour. Furthermore, substantial vehicle information
data are invalid for the running status of the train. In
addition, data loss is serious during train operations.
Given problems, such as weak transmission network
signals and individual sensor failures, further research
has become difficult. To solve the problem of a large
amount of data and poor data quality, we choose complex
network theory to mine vehicle data in advance.

A complex network is a serviceable model
for data repair and mining[2]; it can abstract
individuals into network nodes and abstract the
associations between individuals into network edges.
Complex network models include regular networks[3, 4],
small-world networks[5, 6], and random networks[7].
Transportation networks[8–10], scientific cooperation
networks[11, 12], software communication networks[13, 14],
protein networks[15–17], social networks[18, 19], and
gene regulatory networks[20–22] can all be abstracted
into complex networks. In general, if the network
structure of a system is given, then the characteristics
of the system can be easily analyzed. However,
numerous networks cannot fully understand their
topology, even unknown networks, such as brain
neural networks[23]. These networks have important
implications for human understanding of the nature of
a system in reality. How to obtain the network structure
in accordance with each individual’s behavior data
is one critical issue worth studying. Garlaschelli and
Loffredo[24] focused on the reciprocity of networks and
proposed a new reciprocity measurement method, which
uses interconnection to calculate the correlation and
reorder the network structure. Tsonis and Swanson[25]

constructed a meteorological network based on linear
correlation coefficients. Donges et al.[26, 27] used

nonlinear mutual information to establish a climate
network and compared the linear correlation coefficient
with the nonlinear mutual information method; both
methods can obtain roughly the same result in many
cases. Elzen et al.[28] considered structural and timing
factors on the network and provided an extended
massive sequence view, which can intuitively analyze
the hierarchical structure, node attributes, community
structure, network trends, and others. Sun et al.[29]

proposed a new method of constructing a three-
dimensional network structure and verified that the
method is scientific in using the internal dataset of the
system. Zhang and Ma[30] used space L and space P to
build a high-speed rail train service network, which uses
high-speed railway stations as nodes and the connection
between stations as edges by applying train service data.
The service network can quantitatively evaluate railway
stations. Wang[31] calculated the income of each future in
the target time interval based on the future income data,
and then calculated the correlation coefficient of income
between different futures. They constructed a network
by using futures as nodes and the income correlation
coefficient between futures as edges. The future income
network reflects the correlation between future earnings.

Complex networks play a crucial role in data mining.
However, research on the mining of vehicle information
is scarce. First, we divide the onboard data of high-speed
trains into subsystems in accordance with the functions
of the collection components. Then, we propose the
Gray-Granger Causality (GGC) model based on gray
theory and Granger causality theory; this model can
construct a vehicle information network based on the
correlation between the collection components. We use
vehicle information data from April 10 to April 16,
2019, to construct the network and its corresponding
13 subsystem networks. Lastly, we use the complex



Jie Man et al.: GGC: Gray-Granger Causality Method for Sensor Correlation Network Structure Mining on : : : 209

network theory to mine the vehicle information network
and its 13 subsystem networks and find that the vehicle
information network and its subsystem networks have
the characteristics of a scale-free network. In addition,
the vehicle information network is weak against attacks,
but the subsystem network is closely connected and is
strong against attacks.

The innovations of this study are listed in the
following three aspects:

(1) Research object innovation. China Railway
established WTDS for EMU in January 2019; thus,
not many scholars have conducted research on vehicle
information. Therefore, our research is innovative in
the industry. In addition, we use vehicle information to
ensure that the safety of train operation is of practical
importance.

(2) Research perspective innovation. Regarding
research on train operation safety, most scholars focus
on data prediction, and a few people excavate the
relationships between data. We use complex network
theory to mine the vehicle data network and find that the
network has the characteristics of a scale-free network.
At the same time, we can infer the operating status of the
entire train on the basis of the data of a few important
nodes on the network, thus greatly reducing the amount
of calculation.

(3) Research method innovation. We propose the
GGC model, which can construct a vehicle information
network based on the correlation between data. This
method is universal for similar data research.

The rest of the paper is organized as follows: The
proposed GGC model for a vehicle information network
is presented in Section 2. Section 3 provides the statistic
and preprocessing of vehicle information data. Section 4
reports the results, and Section 5 presents the discussions.
The conclusions are provided in Section 6.

2 Method

2.1 Vehicle information network structure

We stipulate that vehicle data detection points are
represented as nodes of the vehicle information network,
the relationship between the detection points is the edge
of the network, and the correlation coefficient between
the detection points is the weight of the network edge.
In addition, the causal relationship between detection
points is the direction of the edge of the network. The
vehicle information network is defined as follows:

The vehicle information network is composed of a
finite set of nonempty vertices and a set of edges between
the vertices, usually expressed as8̂̂̂<̂
ˆ̂:
D D .V;E;W /I

V D fv1; v2; v3; : : : ; vngI

EDfe11; e12; : : : ; eij ; : : : ; enng; i; j D1; 2; : : : ; nI

WDfw11; w12; : : : ; wij ; : : : ; wnng; i; j D1; 2; : : : ; n

(1)
where D represents a network, V is a set of vertices in
network D, E is a set of edges in network D, and eij

represents the direction from node vi to vj . Furthermore,
W is a set of weight in network D, and wij represents
the weight from node vi to vj .

2.2 GGC model

(1) Determining the network framework based on
gray theory

The basic idea of the gray theory is to compare the
similarity of the system data sequence to show the size,
strength, and order of the correlation between various
analysis factors by calculating the gray correlation
degree. In general, if the changing trends of the two
factors are consistent, then the correlation between the
two factors is relatively high. We use the gray correlation
analysis method to calculate the correlation degree of the
nodes and then give a threshold. If the correlation degree
of two nodes exceeds this threshold, then the two nodes
are considered connected. Lastly, we add two physical
factors as auxiliary conditions for whether two nodes
are connected, that is, whether they belong to the same
subsystem and whether they belong to the same car.

The steps to determine the network framework are as
follows:

Step 1: Construct a vehicle information sequence
matrix X with the number of detection points n and the
time length t ,

XD.X1; : : : ; Xn/D

0BBBB@
x1.1/ x2.1/ � � � xn.1/

x1.2/ x2.2/ � � � xn.2/
:::

:::
: : :

:::

x1.t/ x2.t/ � � � xn.t/

1CCCCA (2)

Step 2: Calculate the correlation coefficient �ij .k/ of
the element between each comparison measuring point
xj and reference measuring point xi at time k,
�ij .k/ D

minj minkjxi .k/�xj .k/jC� �maxj maxkjxi.k/�xj.k/j

jxi .k/ � xj .k/j C � �maxj maxk jxi .k/ � xj .k/j
;

i ¤ j (3)
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where � is the resolution coefficient. The smaller �, the
stronger the resolution ability. In this study, � D 0:5.

Step 3: Calculate a weighted average of the
correlation coefficients of all the corresponding elements
between each comparison measuring point and the
reference measuring point, which is also called r 0ij ,

r 0ij D
1

t

tX
kD1

Wk � �ij .k/; i ¤ j (4)

Step 4: Construct a sensor data relationship matrix
R1 D .r

1
ij /n�n, i; j D 1; 2; : : : ; n, where R1 meets the

following conditions:

r1
ij D

(
r 0ij ; i ¤ j I

0; i D j
(5)

Step 5: Define the constraints of the vehicle
information network. The relationship between nodes
is related to the subsystem and carriage. Therefore,
the factors affecting network connection must be
comprehensively considered when describing the
network edge. We choose three constraints, namely,
data relationship R1, system ownership R2, and carriage
ownership R3, and obtain the correlation matrix R of the
vehicle information network by the weighted average
method. R2 D .r2

ij /n�n, R3 D .r3
ij /n�n, and R D

.rij /n�n meet the following conditions:

r2
ij D

8̂<̂
:
1; If sensor i and sensor j belong to the

same system;
0; Others

(6)

r3
ij D

8̂<̂
:
1; If sensor i and sensor j belong to

the same carriage;
0; Others

(7)

R D.rij /n�n D w1 �R1 C w2 �R2 C w3 �R3 (8)

where w1 C w2 C w3 D 1.
Step 6: Construct a weight matrix W D .wij /n�n,

which specifies that the weight of the network is
represented by the correlation coefficient between
sensors,

W D .wij /n�n D .rij /n�n (9)

Step 7: Determine the relationship threshold T , and
change the sensor correlation network matrix R D

.r*
ij /n�n to meet the following conditions:

r*
ij D

(
1; rij > T I

0; Others
(10)

(2) Determining the network direction based on
the Granger causality test

After discussing the correlation between nodes, we
can obtain a directionless weighted network. The
direction of the edge is determined in accordance with
the causal relationship between the two measuring
points connected by each edge. We stipulate that from
the time series, the value of the vehicle information
measuring point Xi affects the value of the measuring
point Xj within l seconds, that is, the information
changes observed on Xj can explain the information
changes appearing on Xj after l seconds, and a causality
relationship exists between Xi and Xj , and Xi ! Xj .
Given that the vehicle information time series is a stable
series, we use the Granger causality test to establish the
model of measuring points Xi and Xj to determine the
direction. The model is shown in the following:

Xj .t/ D

lX
kD1

akXi .t�k/C

lX
kD1

bkXj .t�k/C"t (11)

Xi .t/ D

lX
kD1

ckXj .t�k/C

lX
kD1

dkXi .t�k/C�t (12)

where Xi .t/ and Xj .t/ are the current vehicle values;
Xi .t � k/ and Xj .t � k/ are the vehicle values of
the previous period; ak and ck are Granger causality
coefficients; bk and dk are autoregression coefficients;
"t and �t are prediction errors, which are independent
of time point and are white noise by default.

The Granger causality test is completed by the
constrained F-statistic. If Xi .t/ is not the Granger cause
of Xj .t/, then a1 D a2 D � � � D al D 0 in Eq. (11).
The residual sum of squares of Xi .t/ is RSSU , and the
residual sum of squares of Xj .t/ is RSSR; the F-statistic
is

F D
.RSSR � RSSU / =m

RSSU =.n � k/
(13)

where m is the maximum lag order of Xi .t/.
For Eq. (11), if the conclusion of the F test rejects

hypothesisH0 W a1 D a2 D � � � D al D 0, then Xi .t/ is
the Granger cause of Xj .t/; otherwise, it is not. For Eq.
(12), if the conclusion of the F test rejects hypothesis
H0 W c1 D c2 D � � � D cl D 0, thenXj .t/ is the Granger
cause of Xi .t/. Moreover, the lower the probability
of the F-statistic, the stronger the Granger causality. A
vehicle information network adjacency matrix E D
.eij /n�n is constructed, where E meets the following
conditions:

eij D

(
1; If r�ij D1 and vx!vy I

0; Others
(14)

The process of GGC model is shown in Fig. 2.
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Fig. 2 Process of GGC model.

3 Data Statistic

3.1 Subsystem division

In accordance with the function of the detected
component, WTDS can be divided into traction system,
braking system, axle temperature system, enabling
system, network system, passenger service system,
charging system, fire alarm system, auxiliary system,
ventilation system, door system, facility system, and
linked system. The detection area is divided, as shown
in Fig. 3.

In Fig. 3, the functions of the 13 subsystems are as

follows:
(1) The traction system provides traction power for the

train and detects traction converter and traction motor.
(2) The braking system mainly obtains the brake

cylinder, air brake, and emergency brake.
(3) The axle temperature system obtains the

temperature of the bogie, gearbox, and traction motor.
(4) The enabling system enables the train to obtain

electrical energy and mainly detects the rise and fall of
the pantograph.

(5) The network system ensures that the train
communication network transmits normally and mainly

Fig. 3 Subsystem distribution.
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detects a line transmission link.
(6) The passenger service system tests whether the

electronic display and water heater are abnormal.
(7) The charging system records whether the charger

and battery of the train are abnormal.
(8) The fire alarm system consists of a series of smoke

detectors, which primarily sense tiny smoke particles.
(9) The auxiliary system obtains the variation values

of an auxiliary inverter, auxiliary converter, and auxiliary
transformer.

(10) The ventilation system determines whether the
air conditioner is turned on and obtains the temperature
inside the carriage.

(11) The door system guarantees that the door can be
opened and closed automatically.

(12) The facility system detects lighting facilities,
sewage disposal facilities, and other common facilities
on the train.

(13) The linked system tests the status of the electric
and mechanical hooks, as well as the power supply
condition during the operation of the electric hook.

3.2 Vehicle data statistic

Vehicle data have two types, namely, continuous and
discrete data. We count the number of vehicle data
from four aspects: total number, number of different
subsystems, number of different carriages, and number
of different types, as shown in Fig. 4.

From Fig. 4, we analyze from different subsystems
that the number of vehicle data in the ventilation

system is the highest, followed by the traction system,
the facility system, the braking system, and the axle
temperature system. In addition, the types of equipment
detected by these five systems are essential factors that
affect train operation. We count from different carriages
that the number of vehicle data in each carriage is nearly
equal, indicating that vehicle data are evenly distributed
in carriages. Lastly, we discover from different types that
the number of discrete data is far more than the amount
of continuous data, thus explaining that continuous data
need to be discrete during data processing.

3.3 Vehicle data processing

We intend to use the vehicle data from April 10 to
April 16, 2019. The sampling frequency is 1 second.
With additional data, such as weather, GPS, and faults,
a train of eight carriages can receive approximately
2000 data each second, a total of 172 million data per
day. The processing power and I/O performance of a
single machine cannot support the operation of such
vast amounts of data. To improve the efficiency of data
processing, we decide to use the Spark big data platform
to process vehicle data. During data transmission,
vehicle data are encrypted in accordance with a set of
protocol specifications for data security. Therefore, the
sensor interpretation table must be decrypted before
data mining is performed. Table 1 shows an example
of encrypted information and an example of interpreted
reference information.

Figure 5 shows the flow of vehicle data preprocessing.

Fig. 4 Vehicle data statistic.
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Table 1 Vehicle information example.

(a) Encrypted information
Train no Sensor time Sensor code Sensor value

A001 2019/4/10 00:00:00 ktlocalautovol 0
A001 2019/4/10 00:00:01 ktfault8814tx 0
A001 2019/4/10 00:00:01 ktfault881C 0
A001 2019/4/10 00:00:01 ktfaultearth22t 0.35
A001 2019/4/10 00:00:01 ktfault8818t 0
A001 2019/4/10 00:00:02 zdwspspd 1
:::

:::
:::

:::

(b) Interpreted reference information
Sensor code Vehicle system Sensor description Sensor type
sncompanto Enabling system Whether the pantograph gets electricity Discrete
fzinputvol Auxiliary system Auxiliary converter input voltage Continuous
qyinclude Traction system Whether the traction converter is working Discrete
zdwspspd Braking system WSP speed value Continuous

cdubat Charging system Battery voltage Continuous
tfcool Ventilation system Whether the air conditioning cooling mode is on Discrete
:::

:::
:::

:::

Fig. 5 Vehicle data preprocessing process.

First, we preprocess the encrypted vehicle data to remove
noise and duplicate values. Then, we use Sensor code in
Table 1a to match Sensor code in Table 1b, and establish
the processed vehicle information table, as shown in
Table 2.

The first column in Table 2 is a time series, and the
remaining columns are divided in accordance with the
subsystem, and each subsystem can be divided into
multiple columns of vehicle information. Lastly, we
normalize the extracted vehicle information in Table 2.

4 Experiment and Result

4.1 Parametric setting

Based on the analysis in Section 2.2, we discover that
the GGC model has five pivotal parameters, namely, the
weight of data relationship w1, the weight of system
ownership w2, the weight of carriage ownership w3,
the relationship threshold T , and the length of lag time
l . They are divided into two sections to explain the
selection of parameters.



214 Tsinghua Science and Technology, February 2022, 27(1): 207–222

Table 2 Processed vehicle information example.

Time
Traction system Axle temperature system � � �

Continuous value 01 Discrete value 01 � � � Continuous value 01 Discrete value 01 � � � � � �

2019/4/10 7:00:00 0 0 � � � 0 0 � � � � � �

2019/4/10 7:00:01 0 0 � � � 0 0 � � � � � �

2019/4/10 7:00:02 0 0 � � � 0 0 � � � � � �

2019/4/10 7:00:03 0 0 � � � 0 0 � � � � � �

2019/4/10 7:00:04 0.070 0 � � � 0.1 0 � � � � � �

2019/4/10 7:00:05 0.140 0 � � � 0 0 � � � � � �

2019/4/10 7:00:06 0.149 0 � � � 0.053 0 � � � � � �

2019/4/10 7:00:07 0.134 0 � � � 0 0 � � � � � �

:::
:::

:::
:::

:::
:::

:::
:::

4.1.1 Edge connection parameters

For the connection of edges, we first introduce a concept,
namely, the degree of a network. The degree of a
node is the number of other nodes it connects and
is a fundamental concept in single-node attributes. In
the vehicle information network, the degree of a node
reflects the number of nodes that have an association
with it. If a node Xi in the network has k edges, then the
degree of Xi is k.

When we use the GGC model to build a vehicle
information network, we need to refer to two principles:

(1) Connect as many points as possible. Given
that we are mining the association relationship between
various detection points on the train, we need to try our
best to ensure that each detection point has a detection
point connected to it and reduce isolated points in the
network. In other words, the number of points that have
a degree greater than 0 needs to be as many as possible.
We use C to describe this attribute,

C D

nX
iD1

ci ;

ci D

(
1; ki > 0I

0; ki D 0
(15)

where the larger the value of C , the better the vehicle
information network.

(2) Degree of a single point is as small as possible.
We must control the degree of a single point when
constructing the network. If many points in the network
have a degree n � 1, which means that this point is
connected to all the remaining points, then research on
the network is meaningless. We use the statistic S for
description,

S D

nX
iD1

si ;

si D

(
1; ki < 0:1nI

0; ki > 0:1n
(16)

For W D fw1; w2; w3g, we must provide a range
of values on the basis of the actual content. The
data relationship obtained by calculation is the main
reference basis; thus, we set w1 2 Œ0:50; 0:80�. The
same subsystem has a certain effect on the vehicle
data network. For example, the bearing temperature
in the axle temperature system rises as the temperature
of the generator rises; thus, we set w2 2 Œ0:15; 0:45�.
Furthermore, the same carriage has minimal effect
on the vehicle data network; thus, we set w3 2

Œ0:05; 0:25�. Therefore, the constraint condition of W
can be obtained,8̂̂̂̂

<̂̂
ˆ̂̂̂:

w1 C w2 C w3 D 1I

w1 2 Œ0:50; 0:80�I

w2 2 Œ0:15; 0:45�I

w3 2 Œ0:05; 0:25�I

w1 > w2 > w3

(17)

We set the minimum change in weight to 0.01; thus,
w1, w2, and w3 have 375 combinations. We provide
the threshold T D 0:85 and then use the values of C
and S as evaluations to determine the values of w1, w2,
and w3, as shown in Figs. 6a and 6b. From Fig. 6, we
can obtain the best weight w1 D 0:67, w2 D 0:21, and
w3 D 0:12.

After setting the weight W , we must determine the
threshold T . Similar to the method of determining
weights, we use the values of C and S as evaluation
indexes to determine the threshold T , as shown in Fig. 7.
From Fig. 7, we can obtain the best weight T D 0:88.
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(a) Influence of weight on C

(b) Influence of weight on S

Fig. 6 Influence of weight on C and S.

Fig. 7 Influence of the threshold on C and S.

4.1.2 Edge direction parameters
In accordance with the above analysis, the undirected
vehicle information network can be obtained. From
Section 2.2, we can know whether a causal relationship
exists between nodeXi and nodeXj on the basis of the F
statistical value. Meanwhile, in Eq. (13), the parameter
to be determined is the length of lag time l . We choose
the motor temperature X1 and the bearing temperature
X2 as the research objects to conduct a two-way causal
analysis to determine the value of l . The data of X1 and
X2 are shown in Fig. 8.

We use EViews to operate X1 and X2 , where l is 30,

60, 90, 120, and 150 s. The test results are shown in
Table 3 according to the null hypothesis.

From Table 3, we can know that when l > 120 s,
X1and X2 are mutually causal. To save calculation
time, we set l D 120 s. In addition, we use ten
sets of measuring points with known causal relations
for verification and prove that l D 120 s meets the
requirements.

4.2 Vehicle information network

We use the GGC model to build the vehicle information
network and use Gephi to draw the network structure, as
shown in Fig. 9. In Fig. 9, the connection structure
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Fig. 8 Temperature values of X1 and X2.

Table 3 Granger causality test result.
Lag time (s) Null hypothesis F-statistic Probability Test result

30
X1 is not Granger causality of X2 0.9272 0.5363 Accept
X2 is not Granger causality of X1 0.2260 0.8031 Accept

60
X1 is not Granger causality of X2 2.2509 0.2744 Accept
X2 is not Granger causality of X1 0.8836 0.4582 Accept

90
X1 is not Granger causality of X2 4.0071 0.0796 Reject
X2 is not Granger causality of X1 2.2686 0.1927 Accept

120
X1 is not Granger causality of X2 36.9368 0.0002 Reject
X2 is not Granger causality of X1 10.1845 0.0015 Reject

150
X1 is not Granger causality of X2 133.2419 0 Reject
X2 is not Granger causality of X1 13.0561 0.0004 Reject

Fig. 9 Connection structure of vehicle information network.

of the 13 subsystems is presented. For example, the
auxiliary system is the subsystem with the most vehicle
detection points. It is connected to the network system,
passenger service system, and enabling system. The
auxiliary system is a large subsystem that escorts the safe
operation of other subsystems on the train. Almost every
subsystem needs an auxiliary system to complete its
work, but the enabling system has the closest connection
with the auxiliary system.

To verify the rationality of the vehicle information

network established by the data, we count the number of
system failures occurring every 120 s; the statistical
results are shown in Table 4, which shows only the
statistical results of the relationship between system
pairs. If three or multisystem pairs fail at the same time,
then the vehicle information network is divided into three
groups or more related systems for statistical purposes.
In Table 4, the fourth column indicates the ratio of the
number of simultaneous failures of Subsystem 1 and
Subsystem 2 to the number of all train failures in a cycle.

From Fig. 9 and Table 4, we can conclude that the
failure of each subsystem in Table 4 is causal. For
example, if the traction system fails and the train loses
traction, then the train brakes urgently, and the axle
temperature of the train rises rapidly. Therefore, the
braking system and the axle temperature system return
the fault information to the data center. Similarly, if the
enabling system fails and the train cannot obtain power,
the charging system also sends the fault information.
This relationship is reflected in Fig. 9. For example,
the traction system is closely connected with the axle
temperature system and the braking system. We reverse
the actual fault situation to prove that the connection
structure in Fig. 9 is correct, thus verifying that the
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Table 4 Subsystem fault data statistics.

Subsystem 1 Subsystem 2 Number of
system failures Ratio

Traction system Braking system 83 0.5533
Enabling system Charging system 82 0.5467
Traction system Enabling system 81 0.5400
Door system Braking system 78 0.5200
Axle temperature

system
Braking system 77 0.5133

Axle temperature
system

Traction system 76 0.5067

Linked system Traction system 76 0.5067
Charging system Facilitysystem 75 0.5000

Network system Passenger service
system

75 0.5000

Auxiliary system Charging system 75 0.5000
Charging system Network system 74 0.4933
Auxiliary system Facility system 73 0.4867
Facility system Fire alarm system 73 0.4867

Charging system Passenger service
system

72 0.4800

Charging system Ventilation system 72 0.4800
Door system Traction system 70 0.4667
Traction system Facility system 67 0.4467
Enabling system Auxiliary system 65 0.4333
Linked system Braking system 63 0.4200
Enabling system Ventilation system 58 0.3867
Network system Facility system 60 0.4000

vehicle information network is in line with the actual
engineering.

5 Discussion

Given that the vehicle information network is a large
network with 1763 points, we decompose the network
into 13 subsystem information networks to explore
the relationship between the nodes. There are two
decomposition principles. First, the edges within the
same subsystem are retained. Second, the edges between
nodes of different subsystems are deleted. The subsystem
information network after processing is shown in Fig. 10.

Next, we use the relevant knowledge in the complex
network to mine the vehicle information network
from the aspects of the degree distribution, average
node strength, average aggregation coefficient, and
community prediction.

5.1 Distribution of degrees

The definition of degree has been introduced in
Section 4.1. We analyze the degree distribution of
subsystem networks, as shown in Fig. 11. After
calculation, a statistical graph of the degrees of the

vehicle network nodes of each subsystem and vehicle
system is obtained, as shown in Fig. 11a. From Fig. 11a,
in the vehicle information network, 87.89% of the nodes
have a degree below 40. The degree of most of the
nodes is relatively smaller than the total number of nodes,
indicating that only a few nodes in the network play an
important role in network failure.

If there are a total of n nodes in the network, among
which nk nodes have degree k, the calculation formula
for degree distribution p.k/ can be obtained,

p.k/ D
nk

n
(18)

The scale-free nature of each network is analyzed,
and the degree distribution of each network is drawn in
logarithmic coordinates, as shown in Fig. 11b, where the
degree distribution of all systems obeys the power-law
distribution; thus, the vehicle information network has
scale-free characteristics. The scale-free characteristics
reflects that the network has strong fault tolerance, but
its anti-attack ability is poor. If one or more nodes with
a large degree fail, then the vehicle information network
may be paralyzed directly. Therefore, we must monitor
the vehicle with numerous degrees in each system.

5.2 Average node strength

The node strength of the vehicle information network si
is the sum of the weights on all the edges of node i . The
average node strength S is the average of the strengths
of all nodes in the network,

S D
1

n

nX
iD1

si D
1

n

nX
iD1

0@ nX
jD1

wij eij

1A (19)

Average node strength can reflect network
connectivity; the higher the strength, the better
the network connectivity. We calculate the average node
strength of 14 networks, and the results are shown in
Fig. 12.

As shown in Fig. 12, the average node strength
of the overall vehicle information network is 13.216,
indicating that a node can be evenly associated with
13 nodes. As for the subsystem network, the average
node strength of the door system, linked system,
charging system, and fire alarm system is all less than
5, indicating that each node is relatively independent.
The average node strength of the ventilation system,
traction system, and facility system is more than 13,
indicating that the interconnectivity performance of the
vehicle information network in these systems is excellent,
and the correlations are relatively significant. If one
measuring point fails, then other measuring points in
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Fig. 10 Connection structure of subsystem networks.

(a) (b)

Fig. 11 Degree analysis of subsystems and vehicle information system. (a) Degree statistics and (b) degree distribution
(logarithmic coordinates).

the network are more likely to fail. Therefore, we
should focus more on measuring point failures with high
average node strength.

5.3 Average clustering coefficient

Under the assumption that node i in the network has k
edges connected to a total of k nodes, the k nodes can
be connected to k.k � 1/=2 edges at most. We use the
number of real edges

Pk
iD1 ki to divide k.k � 1/=2, so

that we can obtain clustering coefficient ci . The average

clustering coefficient C is the average of the clustering
coefficient of all nodes in the network,

C D
1

n

nX
iD1

ci D
1

n

nX
iD1

0B@2 � kP
iD1

ki

k.k � 1/

1CA (20)

The clustering coefficient can reflect the coincidence
degree of the connection edge between any two nodes,
that is, the degree to which the connection edge of
the vehicle measuring points also connects with other
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Fig. 12 Statistics on average node strength.

measuring points. Therefore, the average clustering
coefficient can reflect the clustering degree of the
network. The higher the average clustering coefficient,
the higher the clustering degree of the network. We
calculate the average clustering coefficients of 14
networks, and the results are shown in Fig. 13.

As shown in Fig. 13, the average clustering coefficient
of the overall vehicle information network is 0.116,
which is lower than the average clustering coefficient of
all subsystems, indicating that the aggregation degree
of the overall vehicle information network is weak, and
we can cluster the network. The method of clustering is
described in Section 5.4. As for the subsystem network,
the average aggregation coefficient of the network
system, passenger service system, and fire alarm system
is higher than 0.25, indicating that the three networks are
more aggregated than other networks. The value of the
node can be directly derived from its neighboring node.
Moreover, the higher the average clustering coefficient
value, the higher the accuracy.

Fig. 13 Statistics on average clustering coefficient.

5.4 Community prediction

Community prediction is a method used to reveal
network aggregation behavior. We use the method
proposed by Lambiotte et al.[32], i.e., computing module
degree Q, to calculate the sensor correlation network
and obtain networks under different module degrees.
When Q D 1, the sensor correlation network can be
divided into seven modules, as shown in Fig. 14a. When
Q D 0:6, it can be divided into 13 modules, as shown
in Fig. 14b. When Q D 0:4, it can be divided into 17
modules, as shown in Fig. 14c. In Fig. 14, each type

(a) Network clustering Q D 1

(b) Network clustering Q D 0:6

(c) Network clustering Q D 0:4

Fig. 14 Analysis of different network clustering.
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represents a classified community.
In the sensor correlation network, we compare the

modules divided by community discovery with the
modules divided by the system, and the following
findings are obtained:

WhenQ D 1, the community discovery method treats
some closely related systems as one class, for example,
the network system and the passenger service system are
not distinguished.

When Q D 0:6, the community discovery method
divides the entire system into 13 communities, which is
consistent with the actual number of systems. However,
in two cases, they cannot be distinguished and overly
distinguished in the 13 modules. For example, the
braking system and door system cannot be divided into
two modules, and the ventilation system is incorrectly
divided into two modules.

When Q D 0:4, the method divides the system into
17 communities, but the ventilation system is divided
into five communities. In conjunction with the discussion
of the average aggregation coefficient, we find that the
ventilation system can be easily segmented because of
its low average aggregation coefficient.

6 Conclusion

We study the connection between the measuring
points of the train from a new perspective. We first
propose the GGC model, which can integrate the
time series of different characteristics into a network
structure. Then, we classify the 1673 measuring
points on the train according to their functions and
divide them into 13 subsystems. Next, we discuss the
parameters in the GGC model and build a vehicle
information network based on actual data. Lastly, we use
complex network theory to mine the vehicle information
network. Through this research, we find that each
node in the vehicle information network is affected
by approximately 24 nodes, and each of them affects
these nodes simultaneously. In addition, the vehicle
information network of each subsystem conforms to the
characteristics of a scale-free network. Furthermore, the
vehicle information network is weak against attacks, but
the subsystem network is closely connected and is strong
against attacks.

In the future, we hope to use the vehicle information
network to predict the value of nodes. In practical
applications, substantial vehicle information is returned
to the data center and displays null values due to

signal loss and sensor failure issues. To understand
the operating status of the train fully, vehicle data
must be supplemented. Given that link prediction can
compensate for missing vehicle information, we will
focus more on this direction.
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