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CAN: Effective Cross Features by Global Attention Mechanism
and Neural Network for Ad Click Prediction

Wenijie Cai, Yufeng Wang*, Jianhua Ma, and Qun Jin

Abstract: Online advertising click-through rate (CTR) prediction is aimed at predicting the probability of a user
clicking an ad, and it has undergone considerable development in recent years. One of the hot topics in this
area is the construction of feature interactions to facilitate accurate prediction. Factorization machine provides
second-order feature interactions by linearly multiplying hidden feature factors. However, real-world data present a
complex and nonlinear structure. Hence, second-order feature interactions are unable to represent cross information
adequately. This drawback has been addressed using deep neural networks (DNNs), which enable high-order
nonlinear feature interactions. However, DNN-based feature interactions cannot easily optimize deep structures
because of the absence of cross information in the original features. In this study, we propose an effective CTR
prediction algorithm called CAN, which explicitly exploits the benefits of attention mechanisms and DNN models.
The attention mechanism is used to provide rich and expressive low-order feature interactions and facilitate the
optimization of DNN-based predictors that implicitly incorporate high-order nonlinear feature interactions. The

experiments using two real datasets demonstrate that our proposed CAN model performs better than other cross

feature- and DNN-based predictors.
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1 Introduction

In the online advertising industry, advertisers pay
publishers/advertisement platforms to display their ads
on the publishers’ websites. One common mode of
payment is based on cost per click in which each
click brings direct benefits to advertisers!!!. Hence,
the performance of the click-through rate (CTR)
prediction scheme significantly affects the final revenue
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of platforms and has already become a hot topic in the
area of recommendation systems.

The real-world datasets used in online advertising
have distinct characteristics. Different from numerical
variables that are naturally found in images and audios,
the raw features of web-scale recommender systems
are mostly categorical, thus leading to a large and
sparse feature space that presents a challenge in feature
exploration® 3!, For instance, the characteristics of
a clothing advertisement may have the following
categorical features: color {red, yellow, ... }, style {retro,
trend, ...}, brand {Nike, Adidas, ...}, etc. Ads are
generally composed of hundreds of features, and each
feature contains hundreds of categories. One of the
effective directions for processing highly sparse and
categorical data is to construct a feature interaction,
which is also called a cross feature. For instance,
publishing food ads at lunch time is reasonable. In
this case, the second-order cross feature (advertisement
category = Food, timestamp = Lunch Time) is highly
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informative for prediction. This second-order feature
interaction formed by the type of ad and timestamp
exerts an important influence on the accuracy of ad click
prediction. In another example, a third-order feature
interaction applicable to male college students who are
fond of science fiction movies may comprise {gender,
age, movie genre, etc.}. The appropriate modeling
of feature interactions has been shown to greatly
improve prediction effects!*”’!. However, effectively and
automatically modeling meaningful feature interactions
on the basis of the experience of human experts is
difficult, because web-scale advertising is typically
discrete and categorical’®®’. Human experts might
only design easily understandable but superficial feature
interactions, such as those described in the case of the
clothing advertisement. In addition, real advertising
data contain numerous different features, and relying on
manual selection will likely incur huge costs!'%!.

Instead of augmenting feature vectors manually,
feature interactions may be learned automatically
through machine learning (ML) models!'!l. The most
popular ML algorithm is the factorization machine
(FM)[12 131 'wwhich constructs the hidden factor vector of
each feature and obtains the cross feature on the basis of
the inner product of the hidden factor vectors. However,
the FM algorithm can only construct second-order linear
feature interactions. These feature interactions alone are
not expressive enough for real-world data, which present
a complex and nonlinear structure!'#!.

Recently, the application of deep neural networks
(DNNG5) has achieved great progress in natural language
processing!!'> and recommender systems. DNNs have
already been applied to CTR prediction tasks!'® 17!
as DNNs could automatically and implicitly learn
expressive feature representations and capture high-
order and nonlinear cross features!!®!. For example,
deep crossing!*! was used to concatenate feature vectors,
and a residual network structure was designed to
mine the relationship between features. However,
simply concatenating feature vectors as inputs to neural
networks makes neural networks difficult to optimize
because of problems such as vanishing/exploding
gradients, overfitting, and degradation!'”!. As verified in
Ref. [14], neural models, including deep crossing and
wide deep!'®!, are extremely prone to overfitting after
certain epoch training when original data are used as the
input to the neural layer. Original feature data (referred
to as a single raw feature) only carry relevant information
and thus lack corresponding feature cross information.

A natural idea is to add a low-order feature
interaction layer before the neural network layer so
as to facilitate the learning process of the succeeding
“deep” layers. Inspired by the above consideration,
this study proposes a CTR prediction algorithm called
CAN, which exploits the attention mechanism to obtain
second-order feature interactions and combines DNNs to
perform high-order nonlinear feature interactions. The
attention mechanism has demonstrated effectiveness
in a variety of tasks, such as question answering,
text summarization, recommendations, etc. The global
attention mechanism!?”! is a type of attention mechanism
that plays an important role in neural machine translation
(NMT) by eliminating the constraint of embedding
context information only into a fixed-length vector.
Considering that the global attention mechanism can
efficiently calculate attention weights for all hidden
factors, we apply it to the acquisition of weights between
all pairs of features. The approach can provide more
abundant interaction information than the process of
simply concatenating original feature vectors. The
results of the interaction layer are then entered into the
DNN layer for high-order nonlinear feature interaction.
On the basis of the output of the DNN layer, the
probability of a user clicking on advertisements is
ultimately predicted.

The main contributions of this work are as follows:

e Prior to DNN-based implicit feature interaction,
we explicitly exploit the second-order cross features
on the basis of the global attention mechanism. This
approach not only improves the prediction accuracy but
also facilitates neural network optimization.

e We conduct extensive experiments on two real-world
atasets. The results demonstrate that the proposed CAN
signifantly outperforms several state-of-the-art cross
feature prediction schemes based on DNNS.

The rest of the paper is organized as follows. Section
2 summarizes the related work. Section 3 presents
the proposed approach called CAN for learning feature
interactions. Section 4 details the experimental results
and analysis. Section 5 provides the conclusion and
future work.

2 Related Work

An important direction of current CTR estimation is to
build an efficient feature interaction model.

Traditional ML, such as logistic regression, can be
considered as a first-order feature interaction. FM!
embeds each feature into a low dimension latent vector



188 Tsinghua Science and Technology, February 2022,27(1): 186-195

and makes recommendations via the product of two
latent vectors!®!. The field-aware FM!®! algorithm divides
features with similar attributes into the same fields;
the second-order feature interaction is then obtained
by FM in each field. However, FM-based algorithms
have limited ability to express low-order interactions,
i.e., their expression is not enough to represent feature
interactions.

As a powerful approach to learning feature
representation, DNNs have the potential to learn
sophisticated feature interactions>!!. For example, in
Ref. [5], deep crossing was used to design a stacking
layer, which simply contacts all feature vectors together
as the input to a special residual network structure.
Deep crossing can automatically learn cross features and
reduce the cost of feature interactions that are manually
extracted by human users. However, original values
lack the cross information of features; thus, the direct
input of original values to the DNN layer results in
optimization problems, such as vanishing/exploding
gradients, overfitting, and degradation!'* 11,

Low-order feature interactions have been modeled on
the basis of the original feature data before the DNN
layer so as to enrich the inputs of the DNN layer with
cross information and thereby alleviate the optimization
problem of DNNs. For instance, the product-based
neural network (PNN)??! proposes two methods for
performing second-order feature interaction based on
inner products (called IPNN) and outer products (called
OPNN). Neural factorization machine (NFM) offers a
new second-order interaction layer called bi-interaction.
Similar to the FM algorithm, bi-interaction multiplies
and adds all features in pairs to obtain a combined
vector with a fixed length, which is then used as the
input to the neural network layer. These models combine
second-order feature interactions with fully connected
neural networks and achieve relatively good prediction
results. However, all these algorithms simply multiply
the original features. This type of value multiplication is
not enough to characterize cross features. In real-world
applications, different feature interactions usually have
different levels of predictive power. Interactions with few
useful features should be assigned low weights as their
contribution to prediction is minimal. Therefore, simple
value multiplication cannot distinguish the importance
of feature interactions and may thus weaken prediction
performance.

In this study, we propose an effective CTR prediction
algorithm that is based on the global attention
mechanism and DNN. The attention mechanism is

widely used to distinguish the importance of feature
interactions, and it has recently been applied to CTR
prediction tasks. For instance, attentional factorization
machine (AFM)?! introduces the attention mechanism
to the classic FM algorithm by adding attention weight
information before the traditional feature pair. However,
AFM does not explore the impact of higher-order
feature interactions on prediction. Meanwhile, deep
interest network (DIN)!'!! obtains the attention weight
value of the viewed product and the product to be
recommended in the special product collection. However,
DIN is designed for specific datasets, and the calculation
of attention values through outer products and fully
connected networks results in high complexity.

Different from existing algorithms, the global
attention mechanism proposed herein has made
outstanding achievements in NTM in terms of the
construction of second-order cross features. Reference
[20] proposed two attention mechanisms for NTM,
namely, local attention mechanism and global attention
mechanism. These mechanisms differ in terms of their
focus on words. In NTM, the global attention mechanism
calculates the attention weight between all word vectors
in the entire sentence, whereas the local attention
mechanism only calculates the weight relationship
between the words around the target word vector
by setting a moving window. Given the complexity
and large volume of word vectors involved document
translation, computational overhead tends to increase,
thereby calling for more local attention mechanisms.
In the field of recommendation systems, the number of
features is much smaller than the text vocabulary in NMT.
Hence, the complexity of global attention construction
need not be considered, and the weight factors of all
features can be easily calculated. These advantages
result in rich cross feature information. Therefore, we
refer to the global attention mechanism as the low-order
feature interaction scheme in our work.

In brief, the proposed CAN scheme effectively
exploits the influence of low- and high-order feature
interactions on the prediction effect.

3 Cross Feature-Based CTR Prediction
Model: CAN

3.1 Framework of proposed CAN model

The purpose of a CTR task is to predict the probability of
a user clicking a recommended ad. Figure 1 presents the
framework of the proposed CAN system. Each input data
comprises categorical features and numerical features,
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Fig. 1 Framework of cross feature-based CTR prediction: CAN.

and one hot encoding turns the categorical features into
a series of binary inputs. The embedding layer is then
used to project all numerical and categorical features
into fixed-length vectors, which represent the value
of each feature. Next, the output of the embedding
layer is fed into the interaction layer. The interaction
layer restructures the feature vectors on the basis of the
attention mechanism. The DNN layer further models
the higher-order nonlinear feature interactions. The final
result is then predicted through the prediction layer. For a
clear discussion, we present in Table 1 the main notations
used in this study and their meanings.

3.2 Embedding layer

The embedding layer is illustrated in Eq. (1). The
embedding layer is a fully connected layer that projects
each categorical feature and numerical feature to a dense
vector.

e = Wembed,ixi (1)

where e; is the embedding vector and x; is the input of
the i-th feature. W, ,upeq € R9*% is the corresponding
embedding matrix; and d., d; are the embedding size

Table 1 Main notations in this study and their meanings.
Notation Description
e; Embedding vector of i-th field of feature
w Parameter matrix for obtaining attention weights
Om.k Degree of association between feature m and
feature k
am, k Attention weight between feature m and feature k
em Feature vector m after reconstruction by attention
layer

y True label of user clicking on the advertisement

and size of x;, respectively.

Figure 2 illustrates the embedding process of two
different types of features. x; (2 < i < m) is the original
categorical feature represented by a set of high-
dimensional binary numbers. We convert each feature
into a fixed-length vector e; by multiplying the value
with the embedding matrix, which is W, peq, in Eq. (1).
X1 is a scalar value representing the original numerical
feature. We adopt the same strategy to convert this
feature into a fixed-length vector. After the processing
of the embedding layer, the two types of original feature
data are converted into low-dimensional fixed-length
vectors. The output of the embedding layer is e =
[e1, €2, ..., em], Where e; is the embedding of the i-th
feature.

3.3 Interaction layer

3.3.1 Feature interaction based on global attention
mechanism

Once the numerical and categorical features are
embedded in the same low-dimensional space, we
proceed to the modeling of second-order cross features
based on the global attention mechanism.

Figure 3 illustrates the application of the global
attention mechanism to the construction of the second-

Categorical feature

Numerical feature

Fig. 2 Structure of embedding layer.
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Fig. 3 Global attention mechanism used in CAN.

order feature interaction. Taking the m-th feature as
an example, we can obtain the attention weight o, k,
which represents the degree of connection between any
pair of embedding vectors e,, and ex. A new vector e,
is constructed by weighted summation to characterize
the interaction information of feature m relative to the
other features. The detailed processes are described in
the next subsection.

3.3.2 Attention weight

Figure 4 takes feature m as an example and illustrates

how the global attention mechanism computes the

attention weight o, x, with the other features k.
(pm,kzeLxerk, k=1,2,...,n;

exp(@m k) 2
Z;\;l exp((pm,l)

The specific implementation process is shown in
Eq. (2). ey € R is the embedding vector of feature
m, and d is the embedding size. W € R%*¢ is the
corresponding parameter matrix, and ey € R? is the
embedding vector of feature k. The parameter matrix
W is used to construct the connection coefficient
¢m. k> between two features. After a softmax layer,
the connection coefficient is normalized to obtain the
attention weight o, ¢, the weight coefficient represents
the degree of correlation between features. The greater
the weight value (o) is, the greater the relationship
between features (m, k). A new vector é,, is obtained

Uk =

o-000 000000
00000 )
00000
OO0O00O

(pm,kz e;rn X w X €

Fig. 4 Inferring cross feature attention weight.

by the process of weighted summation shown in Eq. (3).
The original vector e, and the é,, vector have the same
dimensions, but the latter contains weight information
with other features.

n
G =) Om X €k 3)
k=1

3.3.3 Output of interaction layer

After attaining each new feature vector, we obtain the
output of the interaction layer through Eq. (4).
z=e1®H D - Dey, “)
where @ denotes the add-by-bit operation. After the
addition, an output vector z with the same length as the

embedding size is obtained. This output vector contains
the interactive information between each feature.

3.4 DNN layer

As shown in Fig. 5, the deep network is a stack of fully
connected layers, which are capable of learning high-
order nonlinear interactions between features. Formally,
fully connected layers are defined as follows:

zi41 = fWizi + big1) (©))
3.5 Prediction layer

The output vector y is transformed into the final
prediction score. The final score is defined in Eq. (6):

p = sigmod(h"[y]) 6)
where y € R™ is the output of the DNN layer, vector
h € R™ denotes the neuron weights of the prediction
layer, m is the same as the number of neurons in the last
layer, and sigmod(x) = 1/(1 + exp(—x)).

3.6 Training

For binary classification, the commonly used loss
function is the log loss along with a regularization term,

Fig. 5 Structure of DNN component in CAN.
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as shown in Eq. (7).

N
Logloss = —% Z yilog(pi)+
i=1 @)
(1= yplog(1 = pi) + 2 Y _llw?
1

where p; denotes the probabilities computed from
Eq. (6), y; denotes the true labels, N is the total number
of inputs, and A is the L2 regularization parameter. The
parameters to be learned in our model are {W,peq.i
in the embedding layer, W in the interaction layer,
W; in the DNN layer, and b; in the DNN layer}. The
parameters are updated by minimizing the total Logloss
using Adam.

4 Performance Evaluation

In this section, we conduct extensive experiments to
answer the following questions:

e (Q1) How does the proposed CAN perform in a real
dataset relative to other schemes?

e (Q2) Does prediction performance improve with
CAN relative to the method of directly applying a DNN
layer without setting the attention layer?

e (Q3) What is the effect of embedding size on the
CAN model?

4.1 Experiment setup

4.1.1 Dataset description

We evaluate our proposed models on the basis of the
following datasets. The statistics of the datasets are
summarized in Table 2.

Criteo: Criteo is a benchmark dataset for CTR
prediction; it contains 45 million users’ click records
for displayed ads. It also contains 26 categorical feature
fields and 13 numerical feature fields. Given the limited
performance of the experimental machine, we sample 2
million sets of data as the training set.

MovieLens: MovieLens is a dataset of film reviews
and contains the movie ratings of one million users. Each
piece of data includes categorical characteristics, such
as movie type, user age, and gender. The original user
ratings range from O to 5. We treat the samples with
ratings greater than 3 as positive samples and remove
the neutral samples, i.e., the samples with ratings equal

Table 2 Statistics of experimental datasets.

Data Sample Field Feature
Criteo 4.5 x 107 39 2.3 % 10°
MovieLens 100209 7 90445

to 3.

For both datasets, the labels in the test sets are not
publicly available. Thus, we split the respective training
data of the two sets for validation.

4.1.2 Baseline schemes

We compare CAN with the following four models: FM,
NFM, DNN, and PNN.

o FM: FM is the most widely used model for modeling
second-order feature interactions. It does not model
nonlinear feature interactions via neural networks.

e NFM: NFM performs second-order feature
interactions by applying the FM algorithm before the
DNN layer.

e DNN: The embedding layer, output layer, and
hyperparameter tuning process of the DNN are
the same as those of CAN, PNN, and NFM. It is
different from the CAN model because of its lack of
interaction layer.

e PNN: The second-order feature interaction is
constructed by the inner product or outer product
algorithms before the DNN layer. In this experiment,
we select the inner product method.

4.1.3 Evaluation metrics

We use two metrics for model evaluation: AUC (area
under the ROC curve) and Logloss (cross entropy);
both metrics are widely used to evaluate classification
problems.

AUC: The AUC value is equivalent to the probability
that a randomly chosen positive example ranks higher
than a randomly chosen negative example>*. A high
AUC indicates good performance.

In practice, we can use the following formula to
calculate the AUC value:

YisEN 8(ri =y > 0)
M x N
SISYISN 0.5 % 8(ri — 1y = 0)

i=1,j=1
8
M x N ®)

where M represents the number of positive samples
(items actually clicked by the user), N represents the
number of negative samples (items actually not clicked
by the user), r; is the prediction score of the positive
sample, r; is the prediction score of the negative sample,
and §(condition) is the indication function. When the
condition is true, §(true) is 1; otherwise, 5(false) is 0.

Logloss: Logloss, as defined in Eq. (7), measures
the distance between the predicted score and the true
label for each instance. A low logloss indicates a good
performance.

AUC =
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4.1.4 Implementation details

We utilize TensorFlow!?! to realize our scheme. The
hyperparameters of each model are tuned by grid
searching on the validation set. Finally, we adopt
the embedding dimension (32), batch size (512), and
L2 regularization with A (0.0001) for all methods.
Considering the huge size of data, we choose Adam as
the optimization method; Adam is the most commonly
used method for CTR estimation. We apply exponential
decay in which the learning rate starts at 0.001 and the
decay rate is set to 0.9. For all the DNN-based methods,
we use four hidden layers with a size of (256, 256, 256,
256).

4.2 Quantitative results (answer to Q1)

Figures 6-9 show the performance of the models on the
Criteo and MovieLens datasets, respectively, in terms of
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Fig. 6 Illustration of Logloss of various schemes using
Criteo dataset.
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Fig. 7 Illustration of AUC of various schemes using Criteo
dataset.
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Fig. 8 Illustration of Logloss of various schemes using
MovieLens dataset .
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Fig. 9 Illustration of AUC of various schemes using
MovieLens dataset.

Logloss and AUC. The proposed CAN is marked in red
in Figs. 6 and 7; the other models are marked in blue.

For the Criteo dataset, the prediction results of the
FM model are significantly worse than those of the
other DNN-based models. The difference is explained
as follows. For data with many types of features and
for highly sparse data such as Criteo, the low-order
model, i.e., FM, cannot adequately express the complex
feature interactions. Interestingly, PNN and NFM are
worse than DNN for a similar reason, that is, they only
add low-order feature interactions before the neural
network. CAN is better than DNN. This result implies
that under extremely complex feature environments, the
use of an attention mechanism to build a low-order
feature interaction is more efficient than simple value
multiplication, which is used in NFM and PNN.

For the MovieLens dataset, the prediction result of
DNN is worse than that of the FM algorithm. This
result indicates that for datasets with few features and
a simple structure, such as MovieLens, low-order cross
features can be sufficient to express the relationship
between features. Relative to DNN, PNN, NFM, and
CAN show a significantly improved prediction effect.
This result indicates that the construction of low-order
feature interactions obviously facilitates the optimization
of neural networks and subsequently improves prediction
performance. Similar to the result of the Criteo dataset,
the attention mechanism in the MovielLens dataset is
more efficient than PNN and NFM.

4.3 Influence of second-order feature interaction
on prediction (answer to Q2)

In this study, we infer that a serious overfitting problem
may exist when raw features are used directly as
input to the neural network layer. In this part, our
experiments on the MovieLens dataset explore whether
constructing explicit second-order cross features through
the attention mechanism can help alleviate the problem
of overfitting. We choose the DNN and CAN algorithms
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for comparison. To explore the problem of overfitting,
we set the L2 regularization coefficient A in the algorithm
to 0 and set all the other parameter conditions to be the
same.

We focus on the overfitting of the algorithms on the
validation set as the epoch increases and not on the
specific prediction effect of the algorithms. From Fig. 10,
we can observe that with the continuous training of
the model, the AUC value decreases rapidly and then
tends to flatten after the DNN algorithm achieves the
best prediction effect. Although the CAN algorithm still
suffers from overfitting, its AUC value is lower than that
of the DNN algorithm. This result shows that feeding the
neural network with extensive feature cross information
can indeed alleviate overfitting and other optimization
problems to a certain extent.

4.4 Influence of embedding size (answer to Q3)

In this subsection, we investigate the performance of
the models in terms of the output dimension of the
embedding layer, i.e., the embedding size. As shown
in Fig. 11, Logloss gradually decreases initially as
the embedding size increases. When the embedding
size increases to 32, Logloss reaches the minimum
value. Similarly, as shown in Fig. 12, AUC gradually

0.90

0.851

—— DNN_train
—— CAN_train
----- DNN_valid
----- CAN_valid

]
2 0.801

0751

0'700 10 20 30 40 50 60 70 80 30

Fig. 10 Comparison of training and validation processes
between DNN and CAN.
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Fig. 11 Illustration of Logloss varying the embedding size.
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increases with the increase of embedding size. When the
embedding size reaches 32, 48, and 60, AUC reaches
the maximum value and remains almost unchanged.
Regardless of the metric used (i.e., Logloss or AUC),
prediction accuracy decreases when the embedding
size is too large. An excessively small embedding size
causes significant loss of original information, whereas
an excessively large embedding size causes serious
overfitting. According to the experimental results of
Logloss and AUC, the embedding size of the CAN model
is set to 32.

5 Conclusion

In this study, we propose a new feature interaction
network on the basis of the concept of the global
attention mechanism and DNN. The proposed scheme
first designs a second-order feature interaction layer on
the basis of the global attention mechanism. Then, high-
order nonlinear feature interactions are mined through
the neural network layer. The second-order cross feature
layer can facilitate neural network layer training, and the
neural network layer can address the insufficient ability
of low-order feature interaction models to express cross
features. Using CTR as the application scenario, we
perform thorough experiments on two actual datasets.
The results prove that the proposed CAN algorithm
achieves better prediction accuracy than other DNN-
and cross feature-based prediction models.
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