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SIGNGD with Error Feedback Meets Lazily Aggregated Technique:
Communication-Efficient Algorithms for Distributed Learning

Xiaoge Deng, Tao Sun, Feng Liu, and Dongsheng Li�

Abstract: The proliferation of massive datasets has led to significant interests in distributed algorithms for solving

large-scale machine learning problems. However, the communication overhead is a major bottleneck that hampers the

scalability of distributed machine learning systems. In this paper, we design two communication-efficient algorithms

for distributed learning tasks. The first one is named EF-SIGNGD, in which we use the 1-bit (sign-based) gradient

quantization method to save the communication bits. Moreover, the error feedback technique, i.e., incorporating

the error made by the compression operator into the next step, is employed for the convergence guarantee. The

second algorithm is called LE-SIGNGD, in which we introduce a well-designed lazy gradient aggregation rule to

EF-SIGNGD that can detect the gradients with small changes and reuse the outdated information. LE-SIGNGD saves

communication costs both in transmitted bits and communication rounds. Furthermore, we show that LE-SIGNGD

is convergent under some mild assumptions. The effectiveness of the two proposed algorithms is demonstrated

through experiments on both real and synthetic data.
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1 Introduction

The past few decades have witnessed an explosion of
data in both the number of observations and parameters,
resulting in significant interests in distributed
algorithms for solving large-scale machine learning
problems[1–7]. However, efficient implementations of
the distributed optimization algorithms for machine
learning applications are challenging. Both intensive
computational workloads and the volume of data
communication demand careful system designs. This
paper is devoted to the algorithmic development of
communication-efficient algorithms for distributed
learning tasks, which can be formulated as
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min
!!!2Rd

f .!!!/ with f .!!!/ WD
X
m2M

fm.!!!/ (1)

where !!! 2 Rd is the parameter vector to be learned.
f and ffm; m 2Mg are smooth (may be nonconvex)
functions, where M WD f1; : : : ;M g denotes the set
of workers. Problem (1) arises in a large number of
distributed machine learning tasks, ranging from linear
models to deep neural networks[2, 8, 9]. In distributed
settings, fm is also a sum of functions, i.e., fm.!!!/ WDP
n2Nm

`.xm;nI!!!/, where `.xI!!!/ is the loss function

associated with parameter !!! and training sample x, and
Nm is the number of data samples at worker m.

Gradient Descent (GD) is the main workhorse for
Problem (1), which is performed as

!!!kC1 D !!!k � 
 �

MX
mD1

rfm.!!!
k/ (2)

where !!!k is the parameter value at iteration k and 

denotes the step size. In the commonly used parameter
server architecture, the implementation details of the
GD method are as follows: At iteration k, the server
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broadcasts !!!k to all workers; every worker m 2 M
computes the local gradient rfm.!!!k/ and uploads it
to the server; the server aggregates all the gradients,
i.e.,

X
m2M

rfm.!!!
k/, and updates the parameters via

Eq. (2). The server needs to communicate with all
workers to obtain fresh gradients frfm.!!!k/gMmD1 in
each iteration. However, communication is much slower
than computation in several settings[3]. Therefore, as the
number of workers grows, or when incorporating popular
deep learning-based models with high-dimensional
parameters, worker server communications become a
major bottleneck[10].

1.1 Related work

Communication-efficient distributed learning methods
have gained popularity recently[10–14]. We briefly review
two kinds of related work.

Communication bits. Gradient quantization is a
simple but efficient method to reduce communication
bits. It aims to compress gradients by limiting the number
of bits that represent floating point numbers during
communications. Multi-bit quantization schemes have
been studied in Refs. [15, 16], where an adjustable
quantization level can offer additional flexibility
to control the trade-off between the per iteration
communication cost and the convergence rate. One-bit
quantization method (e.g., SIGNSGD) has been developed
in Refs. [17–19], which reduces each component of the
gradient to only its sign (one bit). References [18, 19]
provided theoretical and empirical evidence that 1-bit
signed gradient schemes converge well under some
assumptions. However, Refs. [12, 20] show that naive
use of this sign-based gradient compression scheme may
lead to the divergence of SIGNSGD. To this end, they
proposed SIGNSGD with Error Feedback (EF-SIGNSGD),
which can fix possible divergence[20].

Communication rounds. Many communication-
efficient schemes have been recently developed to reduce
the number of communication rounds. Instead of the
gradient information, higher-order information (Newton-
type method) were leveraged to reduce the number
of communication rounds[21–23]. Novel aggregation
techniques, such as periodic aggregation[24, 25] and
adaptive aggregation[16, 26–29], are used to skip some
communications. Among these, the Lazily Aggregated
Quantized gradients (LAQ) approach which was
proposed in Ref. [16] is the first to quantize the computed
gradients, and then skip less informative quantized
gradient communications, which means that it saves

both the communication bits and rounds. Reference [30]
also reported a lower bound on communication rounds.

1.2 Our contribution

This paper focuses on developing the GD method
Eq. (2) to reduce communication costs with a theoretical
convergence of guarantees. Our contributions are as
follows:

(1) To save the communication bits, we used the
1-bit gradient quantization method. The error feedback
technique was employed for the convergence guarantee.
We named this method as EF-SIGNGD and designed it
for the distributed systems. In EF-SIGNSGD[20], only a
single worker is considered. In this paper, we studied
the more interesting distributed setting. Without relying
on the unrealistic assumptions that have a large mini-
batch and unimodal symmetric gradient noise in Refs.
[18, 19], we show that EF-SIGNGD is convergent under
mild assumptions.

(2) To reduce the communication rounds, we
introduced a lazily aggregated rule and named this
algorithm as LE-SIGNGD, which can save communication
bits and rounds simultaneously without sacrificing the
desired convergence properties. In particular, jointly
adopting multiple techniques makes our theoretical
analysis highly challenging.

(3) We tested these two algorithms both on real and
synthetic data, and the numerical experiment results
verified the effectiveness of the proposed algorithms.

Notation: Bold lowercase letters denote column
vectors. For a vector x 2 Rd , kxk and kxk1 denote
the `2-norm and `1-norm of x, respectively, xi is the i -th
component, and sign.x/ is the vector whose i -th element
is sign.xi /.

2 SIGNGD Algorithm with Error Feedback

In this section, we intend to apply the 1-bit gradient
compression approach for saving the communication bits
of the basic GD method Eq. (2) with the error feedback
technique.

2.1 Algorithm development

In the 1-bit gradient compression methodology, the m-th
worker only uploads the sign of the gradient computed
on its portion of the data, which suggests an update of
the following form:

!!!kC1 D !!!k � 
 �

MX
mD1

sign.rfm.!!!k// (3)

However, Ref. [20] presented some counterexamples
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to substantiate that naively using such a sign-based
algorithm may not generalize or even converge. The
sign operator misses massive information about the local
gradient’s magnitude and direction.

Thus, we employ an elegant error feedback technique
to fix the abovementioned problems. The error feedback
technique is performed as follows: scaling the signed
vector by the `1-norm of the gradient to ensure the
magnitude of the gradient is not forgotten; locally
storing the difference between the actual and compressed
gradient, and adding it back into the next step so that the
correct direction is not forgotten. We named this sign-
based GD method with Error Feedback as EF-SIGNGD
(Algorithm 1) and applied it to the distributed system.

More specifically, in Algorithm 1, ekm represents the
accumulated error from all compression steps in the
previous k iterations of worker m. This residual error
is added to the gradient step rfm.!!!k/ to obtain the
corrected direction gkm, i.e.,

gkm D rfm.!!!
k/C ekm (4)

All workers will upload kgkmk1 and sign.gkm/ to the
server, and the compression gradient is defined as the
signed vector sign.gkm/ scaled by kgkmk1=d , i.e.,

C.gkm/ WD
kgkmk1
d

sign.gkm/ (5)

and stores information about the magnitude. d represents
the parameter dimension. Therefore, the EF-SIGNGD
algorithm is updated by

!!!kC1 D !!!k � 
 �
X
m2M

C.gkm/ (6)

Our focus here is to reduce the number of worker-
to-server uplink communications, which also refer to
uploads (the same as Ref. [16]). Table 1 shows the
communication bits per upload of various algorithms.
Compared with GD and SIGNGD, we find a trade-
off between the number of communication bits and
convergence guarantee. In large-scale machine learning

Algorithm 1 EF-SIGNGD
1: Input: step size 
 > 0, worker number M .
2: Initialize: !!!0 D 0; e0m D 0; 8m 2M.
3: for k D 0; 1; : : : ; K do
4: server broadcasts !!!k to all workers.
5: for worker m D 1; : : : ;M do
6: worker m computes gkm D rfm.!!!k/C ekm.
7: C.gkm/ WD .kgkmk1=d/ sign.gkm/.
8: worker m updates ekC1m D gkm � C.gkm/.
9: worker m uploads kgkmk1 and sign.gkm/.

10: end for
11: server update parameter !!! according to Eq. (6).
12: end for

Table 1 Communication bits of different algorithms when
training a d-dimensional parameter with M workers.

Algorithm Number of bits per upload

GD 32Md

SIGNGD Md

EF-SIGNGD M.32C d/

tasks, the dimension d of the parameters is usually very
large, so the cost of the extra 32M bits is negligible.

2.2 Theorem guarantee

This part shows the theoretical guarantee of the EF-

SIGNGD method under several standard conditions. The
detailed proof will be given in the Appendix.

Assumption 1 (smoothness) Function fm.�/ is Lm-
smooth, and f .�/ is L-smooth.

Assumption 2 (gradient boundedness) For a given
!!! 2 Rd , the local gradient rfm.�/ and the global
gradient rf .�/ are bounded, i.e., there exits constant
�m; � 2 R such that

krfm.!!!/k 6 �m; krf .!!!/k 6 � (7)

We use the definition of compressor given in
Ref. [20].

Lemma 1 (in Ref. [20], Lemma 8) The operator
C.�/ defined in Formula (5) is a ı-approximate
compressor, i.e., there exits a constant ı 2 .0; 1/, such
that

kC.x/ � xk2 6 .1 � ı/kxk2;8x 2 Rd (8)

With the gradient bound assumption, we are prepared
to present a critical lemma, which is used to bound the
residual error in Algorithm 1.

Lemma 2 Under Assumption 2, at any iteration k
of EF-SIGNGD, the accumulated error in worker m, i.e.,
ekm, is bounded:

kekmk
2 6

4.1 � ı/

ı2
�2m (9)

Lemma 2 shows that the residual errors maintained
in Algorithm 1 do not accumulate too much. Then we
can estimate the object value descent by performing one-
iteration of the EF-SIGNGD method, and the convergence
theorem of our algorithm will also be given.

Lemma 3 (EF-SIGNGD descent) Under Assumption
1, !!!kC1 is generated by running the one-step EF-SIGNGD
iteration Eq. (6) given!!!k and step size 0 < 
 < 2=.�C
L/. The objective values satisfy

f .���kC1/ � f .���k/ 6 �kEF (10)

where � > 0 and

���k WD !!!k � 
 �

MX
mD1

ekm (11)



Xiaoge Deng et al.: SIGNGD with Error Feedback Meets Lazily Aggregated Technique: Communication-Efficient : : : 177

�k
EF WD �


�
1 �

.�C L/


2

�
krf .!!!k/k2 C

L2
2

2�




 MX
mD1

ek
m




2

(12)
Theorem 1 Under Assumptions 1 and 2, let the

sequence f!!!kgk>0 be generated by EF-SIGNGD with step
size 0 < 
 < 2=.�C L/, then

min
06k6K

krf .!!!k/k2 6
a.f 0 � f �/


 � .K C 1/
C b � 
 (13)

where f 0 WD f .!!!0/, f � is the optimal value of Problem

(1), a WD
2

2 � .�C L/

, b WD

4L2M�2.1 � ı/

�ı2Œ2 � .�C L/
�
, and

�2 WD

MX
mD1

�2m.

Remark 1 Lemma 1 shows that C.�/ is a ı-
approximate compressor, which implies that a ı-
fraction of the gradient information is sent at each
iteration. The rest is added to the residual error to
be transmitted later. Therefore, the sequence f���kgk>0
defined in Formula (11) is the result of error correction
for f!!!kgk>0, and it has the property:

���kC1 D !!!k � 


MX
mD1

gkm D ���
k
� 
rf .!!!k/ (14)

3 Lazily Aggregated EF-SIGNGD Method

The EF-SIGNGD method reduces the number of
communication bits per upload. At the same time,
we can further reduce the number of uploads
while ensuring the convergence of the algorithm.
In this section, we employ the lazily aggregated
technique to develop a smart lazy aggregation rule
to skip certain communications. This approach can
save communication bits and rounds simultaneously
without sacrificing the desired convergence properties.
Throughout the paper, one round of communication
means one worker upload.

3.1 Lazily aggregated algorithm

The basic idea of the lazily aggregated technique is that
if the difference of two consecutive locally compressed
gradients is small, then the redundant uploads may
be skipped and the previous one in the server can be
reused. This idea comes from a simple rewriting of the
EF-SIGNGD iteration Eq. (6) as

!!!
kC1
D !!!

k
�


X
m2M

C.gk�1m /�

X
m2M

.C.gkm/�C.gk�1m //

(15)
The difference in two consecutive compressed

gradients on worker m, i.e., C.gkm/ � C.gk�1m /, can

be viewed as a refinement to C.gk�1m /. Obtaining this
refinement requires a round of communication between
the server and the worker m. If this refinement is small
enough, i.e.,

kC.gkm/ � C.gk�1m /k �



 X
m2M

C.gk�1m /



;

then we can skip the communication between the server
and the worker m to reduce the communication rounds.

Generalizing on this intuition, the lazily aggregated
EF-SIGNGD algorithm, named LE-SIGNGD, will be updated
by
!!!kC1D!!!k� 


X
m2M

C.Qgk�1m /�

X
m2Mk

.C.gkm/� C.Qgk�1m //D

!!!k � 

� X
m2Mk

C.gkm/C
X
m2Mk

c

C.Qgk�1m /
�
D

!!!k�

X
m2M

C.gkm/C

X
m2Mk

c

�
C.gkm/ � C.Qgk�1m /

�
(16)

where Qgkm D rfm. Q!!!
k
m/C ekm, Mk and Mk

c are the sets
of workers that do and do not communicate with the
server in iteration k, respectively. We will only use the
fresh compressed gradients from the selected workers in
Mk , and reuse the outdated compressed gradients from
the rest of workers, which means
Q!!!km WD !!!

k;8m 2Mk
I Q!!!km WD Q!!!

k�1
m ;8m 2Mk

c ;

Qgkm WD gkm;8m 2Mk
I Qgkm WD Qg

k�1
m ;8m 2Mk

c

(17)
Therefore, the iteration process of LE-SIGNGD can also

be expressed as
!!!kC1 D !!!k � 
rk; rk WD

X
m2M

C.Qgkm/ (18)

The difference between two compressed gradients in
workerm at the current iterate!!!k and the old copy Q!!!k�1

is defined as
�km WD C.gkm/ � C.Qgk�1m / (19)

We find that
r
k
D r

k�1
C

X
m2Mk

�km (20)

Combining Eqs. (18) and (20), we can observe that,
instead of requesting all fresh compressed gradients in
EF-SIGNGD, the lazily aggregated trick is to obtain rk

by refining the previously aggregated gradient rk�1. If
rk�1 is stored in the server, then we can scale down the
per-iteration communication rounds from M to jMkj.

Designing a principled criterion to select a subset of
workers Mk

c that does not communicate with the server
at each iteration is critical. Our focus is on the trade-off
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between the communication cost and the convergence
guarantee of the LE-SIGNGD algorithm. Therefore, we
compare the one-step descent amount of EF-SIGNGD and
that of LE-SIGNGD. For EF-SIGNGD, as shown in Lemma 3,
the one-step descent is �kEF. The one-step descent of LE-

SIGNGD is �kLE, which will be specified in the following
lemma.

Lemma 4 (LE-SIGNGD descent) Under Assumption
1, !!!kC1 is generated by running the one-step LE-SIGNGD
iteration (Eq. (18)) given!!!k . The objective values satisfy

f .���kC1/ � f .���k/ 6 �kLE (21)

�kLE WD �



2




rf .!!!k/


2 C L2
2

2�




 MX
mD1

ekm



2C�

�C L

2
�
1

2


�
k���kC1 � ���kk2 C




2




 X
m2Mk

c

�km




2
(22)

where � > 0.
Remark 2 Different from Eq. (14) in EF-SIGNGD,

the sequence f���kgk>0 has the following property:

���kC1 D !!!k � 


MX
mD1

gkm C 

X
m2Mk

c

�km D

���k � 
rf .!!!k/C 

X
m2Mk

c

�km (23)

Lemmas 3 and 4 estimate the objective value descent
by performing one iteration of the EF-SIGNGD and LE-

SIGNGD methods, respectively, conditioned on a common
iterate !!!k . EF-SIGNGD finds �kEF by performing M

rounds of communication with all the workers, while
LE-SIGNGD yields �kLE by performing only jMkj rounds
of communication with a selected subset of workers.
Our pursuit is to select a subset Mk to ensure that LE-

SIGNGD enjoys larger per-communication descent than
EF-SIGNGD; that is

�kLE

jMkj
6
�kEF

M
(24)

For simplicity, we choose the step size 
 D 1=.�CL/,
ignore the same residual error term, and obtain


 X

m2Mk
c

�km




2 6 jMk
c j

M
krf .!!!k/k2 (25)

If we can further show that

k�kmk
2 6

1

M 2
krf .!!!k/k2; 8m 2Mk

c (26)

then we can prove that Formula (25) holds. However,
directly checking Formula (26) in the local worker
is impossible because obtaining the fully aggregated

gradient rf .!!!k/ requires information from all the
workers. It does not make sense to reduce uploads if
the fully aggregated gradient has been obtained. Instead,
we approximate krf .!!!k/k2 in Formula (26) as follows:

krf .!!!k/k2 �
1


2

DX
dD1

˛dk!!!
kC1�d

�!!!k�dk2 (27)

where f˛d gDdD1 are constant weights. The fundamental
reason here is that, as f is smooth, rf .!!!k/ can
be approximated by weighted previous gradients or
parameter differences.

Building upon Formulas (26) and (27), we will include
worker m in Mk

c if it satisfies

k�kmk
2 6

1


2M 2

DX
dD1

˛dk!!!
kC1�d

�!!!k�dk2 (28)

Although the intuition for Formula (28) is not
mathematically strict, we will show that the convergence
of the algorithm is guaranteed under this selection
rule. In summary, LE-SIGNGD can be implemented as
follows: At iteration k, the server broadcasts the learning
parameter to all workers; each worker calculates the
local gradient, adds the residual error, and compresses
the local information; the worker in Mk selected by
Formula (28) will upload the local information to the
server; the server aggregates the fresh compressed
gradient from the selected workers Mk and the outdated
gradient information (stored in the server) from Mk

c

to update the parameter. The LE-SIGNGD algorithm is
summarized in Algorithm 2.

Algorithm 2 LE-SIGNGD

1: Input: step size 
 > 0, and f˛d gDdD1.
2: Initialize: !!!0 D 0; Qg0m; e0m D 0;8m 2M.
3: for k D 0; 1; : : : ; K do
4: server broadcasts !!!k to all workers.
5: for worker m D 1; : : : ;M do
6: worker m computes gkm D rfm.!!!k/C ekm.
7: C.gkm/ WD .kgkmk1=d/ sign.gkm/.
8: if worker m violates Formula (28) then
9: worker m uploads kgkmk1 and sign.gkm/.

10: worker m updates ekC1m D gkm � C.gkm/.
11: set Qgkm D gkm for worker m.
12: else
13: worker m uploads nothing.
14: set Qgkm D Qg

k�1
m and ekC1m D ekm.

15: end if
16: end for
17: server updates parameter !!! according to Eq. (18).
18: end for
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3.2 Convergence analysis

In this section, we will establish the convergence of LE-

SIGNGD under the following assumption.
Assumption 3 For a given parameter !!! 2 Rd , the

local gradient in workers i and j satisfies

hrfi .!!!/;rfj .!!!/i > 0 (29)

Although Assumption 3 is non-standard, it can be
verified reasonably in real-world experiments. For
example, in the logistic regression problem, i.e.,
fm.!!!/ D log.1 C exp. � yT

mXm!!!//, where fXm 2
Rnm�d ; ym 2 Rnm�1g are data in worker m, we then
have

hrfi .!!!/;rfj .!!!/i D
.XT
i yi /TXT

j yj

.1C eyT
i

Xi!!!/.1C eyT
j

Xj!!!/
(30)

If we distribute the data randomly and evenly to each
worker, which means that the data in workers i and j are
not significantly different, then .XT

i yi /TXT
j yj > 0 and

Assumption 3 hold.
As f � denotes the optimal value of Problem (1), we

define a vital Lyapunov function as follows:

Lk WD f .���k/ � f � C

DX
dD1

ˇdk!!!
kC1�d

� !!!k�dk2C

�

MX
mD1

kekmk
2 (31)

where � and fˇd gDdD1 are constants that will be
determined later. The Lyapunov function is coupled
with the selection rule Formula (28) that contains the
parameter difference terms. Compared with LAQ[16] and
Lazily Aggregated Gradient (LAG)[26], our Lyapunov
function introduces a residual term to cope with the
difficulties caused by multiple technical combinations.
We will start with an important descent lemma of the
Lyapunov function Lk .

Lemma 5 (descent lemma) Under Assumptions 1
and 3, if the step size 
 and constant weights f˛d gDdD1
are chosen properly, then the Lyapunov function satisfies

LkC1 � Lk 6 � cf krf .!!!k/k2 � ce
MX
mD1

kekmk
2
�

DX
dD1

cdk!!!
kC1�d

�!!!k�dk2 (32)

where constants cf ; ce; c1; : : : ; cD > 0 depend on 
 , � ,
f˛d g, and fˇd g (see the Appendix for details).

In the proof of Lemma 5, we combined Lemma
2 to conduct a further analysis of the residual term.

Moreover, we discussed the choice of parameters to
satisfy Formula (32).

Theorem 2 Under Assumptions 1 and 3, if the
step size 
 and constant weights f˛d gDdD1 are selected
properly, let the sequence f!!!kgk>0 be generated by LE-

SIGNGD, then8̂̂<̂
:̂

min
06k6K

k!!!kC1 �!!!kk2 D o
�
1

K

�
I

min
06k6K

krf .!!!k/k2 D o
�
1

K

� (33)

Theorem 2 shows that LE-SIGNGD can achieve an order
of convergence rate identical to the GD method with
the judiciously designed lazy gradient aggregation rule
Formula (28).

Remark 3 Note that Theorem 1 shows that the EF-

SIGNGD algorithm only has a sub-linear convergence
rate O.1=

p
K/ with the decreasing step size 
 D

O.1=
p
K/. Theorem 2 does not require additional

assumptions, and is more general. If we assume Formula
(29) holds, we can also easily prove that the EF-SIGNGD
algorithm has the same convergence rate as the GD
method.

4 Numerical Result

This section contains some numerical experiments to
demonstrate the effectiveness of the proposed two
distributed algorithms: EF-SIGNGD and LE-SIGNGD. We
evaluate the performance of these algorithms for the
regularized logistic regression problems as

fm.!!!/ D log.1C exp.�yT
mXm!!!//C

�

2
k!!!k2 (34)

By default, we consider one server and ten workers in
the distributed system, and the regularization parameter
is set to � D 0:001. We use the GD, SIGNGD, and
LAG[26] algorithms as benchmarks. GD is described
in Eq. (2) and SIGNGD is updated by Eq. (3). LAG
improves the basic GD algorithm by introducing lazy
aggregation techniques. To optimize performance and
ensure stability, we choose the decreasing step size 
k D
1=.
p
kL/ for SIGNGD. And step size for other algorithms

is chosen as 
 D 1=L. For LE-SIGNGD, the constant
weights f˛d g are set to ˛d D .D � d C 1/=D with
D D 10.

We first consider a synthetic dataset fXm 2

R200�100gmD1;:::;10, which is synthesized with
increasing smoothness constants. As shown in Fig. 1,
the proposed two algorithms achieve the same iteration
complexity as GD and reduce the needed communication
bits by several orders of magnitude compared with
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Fig. 1 Objective function value vs. iteration and communication cost in a synthetic dataset.

LAG and GD. Moreover, the LE-SIGNGD algorithm saves
communication bits and rounds simultaneously without
sacrificing the desired convergence properties.

Performance is also tested on a real dataset, Gisette,
which is constructed from the MNIST data[31]. The
dataset contains 6000 samples, and each sample xm;n 2
R5000. To reduce the computational cost, we randomly
sampled 2000 samples and projected them to dimension
1000 by Principal Component Analysis (PCA). Figure
2 shows the test results in terms of iteration and
communication cost. In Fig. 2a, we can see that
our proposed two algorithms can achieve comparable
performance as GD and outperform SIGNGD. As shown
in Fig. 2b, LE-SIGNGD requires fewer communication
rounds than EF-SIGNGD and GD because of the lazy
selection rule, but more rounds than LAG due to
gradient compression. Nevertheless, the total number
of communication bits of our proposed algorithms is
significantly smaller than that of LAG and GD, as
demonstrated in Fig. 2c.

Figure 3 records the convergence performance of the
gradient norm for different algorithms, which also shows
that our algorithm can obtain better performance.

5 Conclusion

This paper proposed two communication-efficient
algorithms for distributed learning tasks. EF-SIGNGD used
the sign-based method to reduce the communication
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Fig. 3 Gradient norm vs. communication cost in two
datasets.

bits by several orders of magnitude. LE-SIGNGD further
introduced the lazily aggregated technique to save both
communication bits and rounds. Convergence guarantees
have been provided under some mild assumptions.
The effectiveness of the two algorithms has also
been demonstrated by empirical performance on both
synthetic and real datasets.
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Appendix

Proof of Lemma 2

As shown in Lemma 1, C.�/ defined in Formula (5) is a ı-
approximate compressor. Combined with the definition of
the error sequence, we have

kekC1m k
2
D kgkm � C.gkm/k

2 6 .1 � ı/kgkmk
2
D

.1 � ı/krfm.!!!
k/C ekmk

2 6

.1 � ı/
�
.1C �/kekmk

2
C .1C 1=�/krfm.!!!

k/k2
�

(35)

where we used Young’s inequality (for any � > 0). Notice
that e0m D 0 and rfm.!!!k/ is bounded in Assumption 2,
so a simple computation yields

kekC1m k
2 6 .1 � ı/.1C �/kekmk

2
C .1 � ı/.1C 1=�/�
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.1 � ı/.1C 1=�/�2m D

.1 � ı/.1C 1=�/

1 � .1 � ı/.1C �/
�2m (36)

Let us select � D ı
2.1�ı/

such that 1C 1=� D .2� ı/=ı 6
2=ı. Thus, we have

kekC1m k
2 6

2.1 � ı/.1C 1=�/

ı
�2m 6

4.1 � ı/

ı2
�2m (37)

�

Proof of Lemma 3

From Formula (11), the sequence f���kg has the property
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Given that the function f is L-smooth, i.e.,

krf .x/ � rf .y/k2 6 Lkx � yk2;
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We have
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(40)

The third inequality follows from the mean-value
inequality and holds for any � > 0. �

Proof of Theorem 1

The one-step descent of EF-SIGNGD is given in Lemma 3,
and the residual error is bounded in Lemma 2. Summing
the terms in Formula (40) over k yields
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where we used
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Noticed that ���0 D !!!0 and f � is the optimal value.
Given step size 
 < 2=.� C L/, rearranging the terms
in Formula (41) and averaging over k can lead to
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Therefore, we finished this proof. �

Proof of Lemma 4

The sequence f���kg in LE-SIGNGD has the following property:
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The smoothness of f is
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where (a) uses Young’s inequality (for any � > 0), and (b)
uses 2ha; bi D kak2 C kbk2 � ka � bk2, i.e.,
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Proof of Lemma 5

By the definition of Lk in Formula (31), it follows that
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Using Young’s inequality, for any �1 and �2 > 0,
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Plugging Formulas (47) and (48) into Formula (46), we
arrive at
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Noticed that in the proof of Lemma 2, Formula (35) shows
that kekC1m k2 satisfies
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Furthermore, if the step size 
 , parameters � , fˇd g, and
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We can see that the Lyapunov function is non-increasing,
i.e., LkC1 6 Lk , and the proof is completed. �

Choice of parameter: We then will show that simple
parameter selection can satisfy Formula (54). We can
choose ˇ1 D
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equivalent to
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Notably, Qc2 < 1, �; �1 > 0, we can choose the sufficiently
large � and �1 to satisfy Formulas (55a) and (55b) for the
theoretical guarantee. In practice, the step size 
 and the
trigger constants f˛d g can be chosen as follows:
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Proof of Theorem 2

Lemma 5 implies that
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where the constant c.
 I � I f˛d g/ > 0 is defined as c.
 I � I
f˛d g/ WD minfcf ; ce; c1; : : : ; cDg.

Rearranging the terms in Formula (57) and summing up
both sides over k, we have
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Given that the Lyapunov function (Formula (31)) is lower
bounded by Lk > 0;8k, and L0 6 1. Taking K ! 1,
we have that
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Using the implications of summable sequences in Ref.
[32], the theorem follows. �
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