
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 14/18 pp164–173
DOI: 10 .26599 /TST.2020 .9010026
Volume 27, Number 1, February 2022

C The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

An MPI+OpenACC-Based PRM Scalar Advection Scheme in the
GRAPES Model over a Cluster with Multiple CPUs and GPUs

Huadong Xiao�, Yang Lu, Jianqiang Huang, and Wei Xue

Abstract: A moisture advection scheme is an essential module of a numerical weather/climate model representing

the horizontal transport of water vapor. The Piecewise Rational Method (PRM) scalar advection scheme in the

Global/Regional Assimilation and Prediction System (GRAPES) solves the moisture flux advection equation based

on PRM. Computation of the scalar advection involves boundary exchange, and computation of higher bandwidth

requirements is complicated and time-consuming in GRAPES. Recently, Graphics Processing Units (GPUs) have

been widely used to solve scientific and engineering computing problems owing to advancements in GPU hardware

and related programming models such as CUDA/OpenCL and Open Accelerator (OpenACC). Herein, we present an

accelerated PRM scalar advection scheme with Message Passing Interface (MPI) and OpenACC to fully exploit GPUs’

power over a cluster with multiple Central Processing Units (CPUs) and GPUs, together with optimization of various

parameters such as minimizing data transfer, memory coalescing, exposing more parallelism, and overlapping

computation with data transfers. Results show that about 3.5 times speedup is obtained for the entire model running

at medium resolution with double precision when comparing the scheme’s elapsed time on a node with two GPUs

(NVIDIA P100) and two 16-core CPUs (Intel Gold 6142). Further, results obtained from experiments of a higher

resolution model with multiple GPUs show excellent scalability.

Key words: Graphics Processing Unit (GPU) computing; Open Accelerator (OpenACC); Message Passing Interface (MPI);

Global/Regional Assimilation and Prediction System (GRAPES); Piecewise Rational Method (PRM) scalar

advection scheme

�Huadong Xiao and Yang Lu are with the Institute of Geodesy
and Geophysics, Chinese Academy of Sciences, Wuhan 430074,
China, and also with the University of Chinese Academy of
Sciences, Beijing 100049, China. E-mail: xiaohd@cma.gov.cn;
luyang@whigg.ac.cn.
�Huadong Xiao is also with the National Meteorological

Information Center, Beijing 100081, China.
� Jianqiang Huang and Wei Xue are with the Department

of Computer Science and Technology, Tsinghua University,
Beijing 100084, China. E-mail: hjqxaly@163.com;
xuewei@tsinghua.edu.cn.
� Jianqiang Huang is also with the Department of Computer

Technology and Application, Qinghai University, Xining
810016, China.
�To whom correspondence should be addressed.

Manuscript received: 2020-07-30; accepted: 2020-08-18

1 Introduction

Moisture advection describes the transport of water
vapor by wind, which plays a crucial role in the
weather/climate model[1]. The Global/Regional
Assimilation and Prediction System (GRAPES)
Piecewise Rational Method (PRM) scalar advection
scheme simulates the dynamic process of water
vapor, which is an import part of the dynamic core
in a Numerical Weather Prediction (NWP) model[2].
GRAPES is a multiscale hydrostatic and nonhydrostatic
unified NWP system developed by the Numerical
Weather Prediction Centre of China Meteorological
Administration (CMA)[3]. It is a fundamental system
for CMA’s operational model sets, including global,
regional, and ensemble models, and widely used in

Huadong Xiao et al.: An MPI+OpenACC-Based PRM Scalar Advection Scheme in the GRAPES Model over : : : 165

China.
The future weather and climate model is advancing

toward higher resolution, higher precision, more
complicated physics processes, more coupled
components, and more ensembles[4], so large amounts
of computing power are required. This is a big
challenge in terms of both the hardware and software
and can be achieved using powerful and low-energy-
consuming architectures. With the emergence of
Graphics Processing Units (GPUs) as general-purpose
computational architectures[5], the computation time of
weather/climate forecasting models can be shortened by
making full use of the power of GPUs[6].

Several examples that partially adapted GPUs
in weather and climate prediction codes showed
performance gains[7–17]. Especially, GPU acceleration
of scalar or tracer advection modules using Compute
Unified Device Architecture (CUDA) C/Fortran achieves
an approximately three-fold speedup[12, 18, 19]. Most
of these GPU adaptations use CUDA, a parallel
computing platform for GPU computing and Application
Programming Interface (API) model created by NVIDIA.
However, porting of legacy Central Processing Units
(CPU) based applications with CUDA often requires
rewriting the code with a low-level API, which
means making significant changes to the original
system. Fortunately, Open Accelerator (OpenACC),
a directive-based programming model such as Open
Multi-Processing (OpenMP), provides a set of standards,
high-level directives that enable C/C++ and Fortran
programmers to utilize accelerators without significant
programming effort[20]. With OpenACC directives, one
can easily express the offloading of both computation
and data from a host CPU device to an accelerator device
GPU and obtain a single source code that can be run on
a range of devices to achieve excellent performance.

OpenACC can be combined with Message Passing
Interface (MPI) to exploit coarse- and fined-grained
parallelism for computations. By combining it with MPI,
multiple GPUs can be employed to solve a complex
large-scale problem, in which MPI acts as a bridger for
inter-GPU communication.

The PRM scalar advection scheme is a time-
consuming module in GRAPES. When GRAPES at
25-km resolution is run with 512 parallel tasks on a
supercomputer, the system consumes about 7% of the
total run time, making it one of the most computationally
time-consuming modules in GRAPES. Computation of
the scalar advection scheme involves the repeated update

of values of associated points on a multi-dimensional
grid using only the benefits at a set of neighboring points.
Most of the computations are independent, except for
the data sharing between neighbors, and this typical
characteristic can be exploited to accelerate computation
using GPU or other accelerators.

In this paper, a parallel implementation of the
PRM scalar advection scheme is proposed based
on the combination of OpenACC and MPI. Several
optimization strategies such as minimizing data transfers,
loop restructuring to improve memory access and
exposing more parallelism, and overlapping computation
and transfers are applied for boosting performance.
The experimental results for a medium workload and
a 6-hour simulation by running the entire model in
Double Precision (DP) demonstrate that when two
NVIDIA P100 GPUs are used, a 3.5-fold speedup can be
achieved compared with two Intel Gold 6142 CPUs. The
computational performance of the accelerated scheme
with multiple GPUs scales well with increasing number
of GPUs.

The remainder of this paper is organized as follows.
Section 2 presents the description of the PRM scalar
advection scheme and its computation characteristics.
Section 3 presents our computation method with CPUs
and GPUs. Further, Section 4 illustrates the OpenACC
implementation and optimization of the scheme. The
results are analyzed and discussed in detail in Section 5.
Finally, Section 6 concludes this paper.

2 Background

The governing prognostic equation for moisture in
GRAPES[21], is given by

dq
dt
D S.q/ (1)

where t denotes time, and S.q/ represents the source
and sink term of water content q. Neglecting the source
and sink term, Eq. (1) can be expressed in flux form in
the 3D Cartesian coordinate system.
@q

@t
C
@qu

@x
C
@qv

@y
C
@qw

@z
D q

�@u
@x
C
@v

@y
C
@w

@z

�
(2)

where u, v, and w are the velocity components in x,
y, and z directions, respectively. Moreover, in the
spherical terrain-following coordinate system, the flux
form equation for water vapor is written as follows:

@q

@t
C
1

r

@

@�

� uq

cos'

�
C
1

r

@v cos'q
@ sin'

C
@q Ow

@ Oz
D

q
�1
r

@

@�

� u

cos'

�
C
1

r

@v cos'
@ sin'

C
@ Ow

@ Oz

�
(3)

166 Tsinghua Science and Technology, February 2022, 27(1): 164–173

where Oz and Ow are the height and vertical velocity in
the height-based terrain-following coordinate system,
respectively, � and ' represent the longitude and latitude,
respectively, and r is the Earth’s radius in the thin
layer approximation. Using the time-splitting algorithm,
Eq. (3) can be solved in three directions.8̂̂̂̂

<̂̂
ˆ̂̂̂:

@q

@t
C
1

r

@

@�

� uq

cos'

�
D q

1

r

@

@�

� u

cos'

�
;

@q

@t
C
1

r

@v cos'q
@ sin'

D q
1

r

@v cos'
@ sin'

;

@q

@t
C
@q Ow

@ Oz
D q

@ Ow

@ Oz

(4)

The terms on the left side of Eq. (4) can be calculated
using the 1D advection equation, and those right-side can
be calculated by correction of divergence after advection.

For brevity, the flux form of the 1D advection equation
is expressed as

@f

@t
C
@f u

@x
D 0 (5)

where f is the scalars of advection, time, coordinate in
a space, and velocity, respectively. By integrating the
equation in the control grid cell Œxi�1=2; xiC1=2�, Eq. (5)
can be discretized as

Nf nC1
i D Nf n

i �
1

�x
.giC1=2 � gi�1=2/ (6)

where n is the time-level, �x D xiC1=2 � xi�1=2,
gi�1=2 and giC1=2 represent the flux at the left and right
boundary of grid i , respectively, and Nf n

i represents the
average value of integration at grid cell i .

Nf n
i D

1

�xi

D
1

�x

Z xiC1=2

xi�1=2

Fi .x/dx (7)

where Fi .x/ is the function obtained using the fitted
algorithm in the i-th grid cell. Then the PRM scalar
advection algorithm is defined as the rational function to
fit the distribution of scalars in the domain.
Fi .x/ �Ri .x/ D

aiC2bi .x�xi�1=2/Cˇibi .x � xi�1=2/
2

Œ1C ˇi .x � xi�1=2/�2
;

x 2 Œxi�1=2; xiC1=2� (8)

The function Fi .x/ is under the limitation of the average
value of integration and boundary value for grid cell i .8̂̂̂<̂

ˆ̂:
Fi .xi�1=2/ D fi�1=2;

Fi .xiC1=2/ D fiC1=2;
1

�xi

R xiC1=2

xi�1=2
Fi .x/dx D Nfi

(9)

where fi�1=2 and fiC1=2 are the left and right boundary
values of grid cell i , respectively. The parameters in
Ri .x/ can be obtained by solving Eqs. (8) and (9).

8̂̂̂̂
<̂̂
ˆ̂̂̂:

ai D fi�1=2;

bi D ˇ Nfi C
1

�xi

. Nfi � fi�1=2/;

ˇi D
1

�xi

fi�1=2 �

Nfi

Nfi � fiC1=2

! (10)

As long as the boundary values of fi˙1=2 are determined,
the function F.x/ can be calculated. In the PRM
scalar advection scheme, the boundary value is obtained
by interpolating the average value of integration of
neighboring points[22].

In this way, the rational function of Ri .x/ is
constructed, and Nf nC1

i can be calculated from Eqs. (6)
and (7). In Eq. (6), the boundary flux giC1=2 can be
expressed as
giC1=2 DZ tnC1

tn

fmin.0; uiC1=2/R
C

iC1ŒxiC1=2�uiC1=2.t�t
n/��

max.0; uiC1=2/R
�
i ŒxiC1=2�uiC1=2.t�t

n/�gdt (11)

Then,

giC1=2 D

8̂̂̂̂
<̂
ˆ̂̂:
�
aCiC1� C b

C

iC1�
2

1C ˇCiC1�
; uiC1=2 6 0I

�
a�iC1� C b

�
iC1�

2

1C ˇ�iC1�
; uiC1=2 > 0

(12)

where � D
Z tnC1

tn

u.t/iC1=2dt .

To solve the computational stability and simulate the
moisture distribution better over the polar region, a
polar mixing technique and a time-splitting advection
algorithm with corrections are introduced. The modified
polar mixing technique with a transition stage to solve
the transition problem between mixed and unmixed
regions is used in GRAPES.8̂̂̂̂

<̂
ˆ̂̂:
ci;1 D cave1;

ci;2 D 0:7cave2 C 0:3ci;2;

ci;3 D 0:4cave3 C 0:6ci;3;

ci;4 D 0:1cave4 C 0:9ci;4

(13)

where cavej is the average value of c at the j-th latitude

circle, cavej D
1

I

IX
iD1

ci;j , i is the total number of counts

of a grid cell along the latitude circle, j D 1; 2; 3; and
4 are the corresponding latitude circles for transfering
water content from the polar region to the equator, and
c is the integration value of the concentration of water
content over the grid cell.

Huadong Xiao et al.: An MPI+OpenACC-Based PRM Scalar Advection Scheme in the GRAPES Model over : : : 167

From the aforementioned mathematical model, we can
see that for each grid point on a 3D grid, the computation
of the PRM scalar advection scheme updates its value
with a function of the value at its six neighboring points
over a number of time steps. This problem is a type of
stencil computation. In the calculation of the scheme,
the 7-point stencil in 3D space is transformed into a 3-
point stencil in 1D space along the three dimensions of
i; j; k (Fig. 1). The computing advection for a grid point
depends on itself and its neighbor points. Thus, in the
parallel computation with MPI for the scheme, different
pieces of computation have to communicate with each
other for boundary exchange, which is unlike the high
parallelism in the parameterization schemes for physical
processes. This data dependence of applying local value
of neighboring points adds considerable complexity to
achieving an effective parallel computation. A simplified
3-point stencil computation of a 1D space taken as an
example to indicate the ratio of computation to memory
access can be represented by Eq. (14):
hnew.i/ D ˛ � h.i/C
 � Œh.i � 1/C h.i C 1/� (14)

where h and hnew are the 1D array at the current/next
time and ˛ and
 are two scaled factors, respectively.
In Eq. (14), there are three reading operations (ops),
one writing ops, two adding ops, and two multiplying
ops. For this double-precision computation, the ratio of
computation to memory access is defined as FLOP/byte
i.e., 4=Œ.3C 1/ � 8� D 0:125, which is a very low
FLOP/byte ratio, where FLOP represents floating-
point operations. Thus, it is difficult to optimize the
computation with this low value, especially for multiple
GPUs. Moreover, the parallel computation of the PRM
scalar advection scheme with MPI and GPU is not easy,

(i, j, k) (i+1, j, k)(i−1, j, k)

(i, j+1, k)

(i, j−1, k)

(i, j, k+1)

(i, j, k−1)

(i, j, k) (i+1, j, k)(i−1, j, k)

(i, j, k)

(i, j+1, k)

(i, j−1, k)

(i, j, k)

(i, j, k+1)

(i, j, k−1)

Fig. 1 7-point stencil of a 3D space and 3-point of 1D space
along i, j, and k dimensions. The computation on the grid
with filled circle depends on that of the grid with the surround
hollow circles.

especially for accelerating performance. Therefore, an
appropriate method should be considered.

3 Computation with Multiple CPUs and
GPUs: Our Method

3.1 Algorithm

The entire GRAPES code is used for the GPU porting
of the PRM scalar advection scheme only by adding
or changing code relevant to the system. GRAPES
uses MPI to decompose the problem space across the
latitude and longitude dimensions. A GPU programming
model, such as CUDA, OpenCL, or OpenACC, is
used for the computation and data offloaded by the
MPI task. In this hybrid MPI and GPU programming
model, MPI is used across CPU cores, and a local
“X” programming model of choice is used within the
GPU attached to each core. Further, the code needs
fewer changes because of the high-level programming
model of OpenACC and is kept understandable and
more uncomplicated by the programmer; moreover,
single source code can be used to target both CPU only
and hybrid CPU-GPU architectures, as the directives
can be ignored when no GPU is available in the
system. Several investigations have shown that the
performance loss with OpenACC is due to the lack
of support of sharing memory usage and banking
conflicts, which is often not substantial, particularly on
the most recent GPUs[11, 15]. We employed the hybrid
MPI and OpenACC programming method. First, we
added some codes to set up the running environment
for GPUs. Second, OpenACC directives were inserted
into the computation-intensive portions of the PRM
scalar advection scheme, and the compiler automatically
mapped it to the GPU. Then the code was added to
the main program of GRAPES to obtain the number
of available GPUs and assign a GPU to each MPI
process. Each GPU was controlled by its dedicated MPI
process(es). The way for an MPI process to manage a
GPU can be implemented by attaching the identification
(ID) of the GPU device to the ID of the MPI process.
The implementation of hybrid OpenACC with MPI
programming for the PRM scalar advection scheme is
given by Algorithm 1.

3.2 Overlapping computation and data transfers

The technique of overlapping computation and data
transfers was employed in the GPU implementation of
the PRM scalar advection scheme to reduce the cost

168 Tsinghua Science and Technology, February 2022, 27(1): 164–173

Algorithm 1 Hybrid OpenACC and MPI computation of
the PRM advection scheme

1: MPI environment initialization
2: nproc number of processes
3: myid process id
4: OpenACC initialization
5: ngpus number of GPU devices on a node
6: gid myid%ngpus F Attach each GPU with one or more

processes
7: Set a desired GPU to perform computation
8: for i 1; nstep do
9: #pragma acc data copy(model data.W; W; W; W/; i ,...) F Set

OpenACC data region for data movement
10: f

11: PRM 3D(model data.W; W; W; W/; i ,...) F Perform PRM
scalar advection scheme computation on GPU

12: g

13: End MPI environment

14: procedure PRM 3D(model data.W; W; W; W/; i ,...)
15: #pragma acc data present(model data) create(� � �) F Set

OpenACC data region to indicate date resident on GPU
16: f

17: #pramga acc kernels loop F Set OpenACC compute
region

18: for j jts; jte do F jts/jte, the start/end index along j
direciton for an MPI process

19: #pragma acc loop
20: for k kts; kte do
21: #pragma acc loop
22: for i its; ite do
23: model data.i; k; j / � � �

24: UPDATEHALO(� � �) F GPU data exchange between halos
with MPI

25: g

of data transfers and achieve excellent performance.
The basic idea is that independent datasets can
provide opportunities for overlapping computation with
data transfers by asynchronous data movement and
computation by exploiting the pipeline parallelism[23].

This overlapping technique exploits inter-variable
independence. When one variable in the numerical
weather models can be computed independently from
another, the boundary exchange for this variable can be
overlapped with the computation of another variable,
as shown in Fig. 2. As the advection of water content

Scalar1

Scalar2

Scalar3

Computation

Update halo

Fig. 2 Overlapping computation and data exchange
(transfers) for different variables.

can be computed independently in GRAPES, the
following overlapping techniques were applied to these
computations.

4 OpenACC Implementation and
Optimization

4.1 Expressing parallelism with OpenACC
directives

Several compute regions are added around the parallel
loops by inserting OpenACC directives. The directive
of ACC KERNELS or ACC PARALLEL is inserted
at the top of the nested loop inside each kernel, and
the ACC LOOP directive is added right before each
loop. Then the ACC END KERNELS or ACC END
PARALLEL directive is inserted at the bottom of each
kernel. Here, the kernel means the construct of a
nested loop annotated with OpenACC instructions. With
these added directives, numerous indications are given
to the compiler where code needs to be processed in
parallel. Data regions with OpenACC data directives
are combined to manage data movement effectively.
The ACC DATA COPYIN/COPYOUT/COPY directives
are added just before calling the actual routine for the
computation of the PRM scalar advection scheme and the
ACC END DATA directive after calling the subroutine.
These directives indicate movement of the input and
output to the GPU and CPU, respectively. Furthermore,
some other code of OpenACC data directive such as
ACC DATA PRESENT combined with ACC CREATE
directive is added before the first region of the actual
computing code. In the actual computing code, the
added present clause indicates that the data have been
already available on the GPU, and thus data movement
is not required. The create clause means that the data are
only created on the GPU and not needed to be copied
to or from the GPU. Optimization of data locality and
minimization of data transfer between the CPU host and
GPU device through PCIe can be archived by adding
data regions at the outermost place of the relevant code
of the PRM scalar advection scheme.

The array variables required in the ACC DATA
PRESENT directive can be obtained from the intent
attribute of the array definition. Contrarily, variables
required for ACC CREATE directive are obtained
from the definition of local automatic arrays. As the
computation of the PRM scalar advection scheme
involves exchanging boundary data, the halo-update
functions from GRAPES Parallel Programming Interface

Huadong Xiao et al.: An MPI+OpenACC-Based PRM Scalar Advection Scheme in the GRAPES Model over : : : 169

(PPI) enveloped with many MPI functions are called at
several places of the code. OpenACC directives such as
ACC UPDATE HOST/DEVICE or ACC HOST DATA
USE DEVICE are added to maintain data coherence
between CPU and GPU in PPI. A GPU-based accelerated
version with OpenACC can be produced by the steps
described below.

4.2 Optimization

For analyzing and improving performance, the NVIDIA
profiler tool “nvprof” was used for hotspot and
bottleneck analysis of the routine. The screenshot in
Fig. 3 shows NVIDIA visual profiler for the initial
implementation running at a horizontal resolution of
0:25ı. There were no unexpected GPU-CPU transfers
and little overhead.

Systematic optimizations were performed in terms
of data transfers, loop parallelism, and data sharing.
We used different optimization techniques focused on
the computation and memory access to maximize the
throughput for the essential kernels.

4.2.1 Minimizing data transfers
To compute on a GPU, it is necessary to shift data from
CPU/host memory to GPU memory and move back
necessary data from GPU memory to CPU/host memory.
These processes consume a lot of time, which is of great
importance in improving performance. During the initial
implementation, we added a data region surrounding the
part of the code where the actual computing subrouinte is
called for the PRM scalar advection scheme to perform
data movement between CPU and GPU once. The other
place of code, where the data transfers are related to
the handling of the halo regions. Two allocatable arrays
were used to pack and unpack the halo data for arrays
with dimensions of 2, 3, and 4 in the original version,
enabling the efficient transfer of contiguous ranges
between different CPUs. We used ACC DECLARE

CREATE directive right after the declaration of the
two allocatable arrays, thus avoiding duplicate memory
requests, as only few places are involved in code array
allocation and deallocation for different dimensions.
Then we explicitly wrote a loop around the code with
Fortran array syntax that was used to copy from the
original arrays, and the COLLAPSE clause was added
to the existing ACC LOOP directive to transform the
subsequent tightly nested loops into a single loop. This
restructuring and collapsing of loops can expose more
parallelism and realize better memory coalescing.

Now the code obtained by minimizing data transfers
was considered our baseline version. For the case of
running with a horizontal resolution of 0:25ı, the most
time-consuming kernel of the 1D stencil computation
in the latitude direction per step spends about 47 ms
(see Fig. 4), which occupies 20.9% of the total GPU
computation time as shown in Fig. 3. Optimizing this
kernel is significant for improving the performance of
the entire GPU implementation. Therefore, the roofline
model is employed to optimize the accelerated PRM
advection scheme code. The performance was plotted

 10

 15

 20

 25

 30

 35

 40

 45

 50

Bas
el
in
e

Spl
itt
in
g

on
e

ke
rne

l to
 tw

o

T
im

e
 (m

s
)

47

27

20

15

Coll
ap

sin
g l

oo
p

tun
ing

 lo
op

 sc
he

du
le

Rem
ov

ing
 1D

 ar
ra

y

us
ing

 ex
ist

ing
 4D

ar
ra

y

Fig. 4 Time required for different optimization techniques
used in the kernel of 1D stencil computation in the latitude
direction.

Fig. 3 Visual profiler for the timeline of the initial GPU implementation of the PRM scalar advection scheme.

170 Tsinghua Science and Technology, February 2022, 27(1): 164–173

against the Operational Intensity (OI) and compared
with the theoretical limitations estimated from the
peak sustained memory bandwidth and the maximum
sustained performance[24]. The OI of this kernel in the
initial version was 4.10, plotted as a vertical blue line. In
Fig. 5, the blue line hits the slanted part of the roof (red
line), indicating that the kernel of 1D stencil computation
in the latitude direction is memory bound. Then memory
access was mainly considered for optimizing the kernel.

4.2.2 Loop optimization
For most key kernels, optimizations such as loop
restructuring, scalar replacement, and loop scheduling
are employed to improve performance. Merging adjacent
loops and replacing temporary arrays with scalars to
allocate on registers is an effective way to boost the
performance in terms of calculation time and data
transfer overhead. This can be achieved by reducing
the number of memory accesses and using a larger
kernel to minimize the kernel launch overhead. Changing
loop order and collapsing independent loops to increase
parallelism and enable coalesced memory access also
reduce calculation time. Other methods, such as loop fusion
to form an appropriate size of the loop, can reduce the

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100

P
er
fo
rm
an
ce

 (G
flo
ps

)

Operational intensity (FLOP/byte)

1
D

 s
te

n
c
il

c
o

m
p

u
ta

ti
o

n

Fig. 5 Roofline plot for the 1D stencil kernel of the latitude
direction on the NVIDIA P100 GPU. The blue line is plotted
according to its operational intensity: line hitting the slanted
part of the roof is limited by available memory bandwidth,
and line hitting the flat part of the roof is limited by peak
computational performance.

number of kernels and increase computational intensity.
This contributes to the reduction in kernel launch
overhead and synchronization and further improvement
of performance. In some cases, performance can be
improved using the manual setting gang, worker,
and vector clause around loops to change the kernel
scheduling during parallelism mapping to the GPU.

4.2.3 Data sharing
Computing advection for a single point requires data for
some neighbor points. For the PRM scalar advection
scheme, a 3-point stencil is required in each direction.
For example, to execute the kernel of the 1D stencil
computation along the latitude slice, each element in
the slab is required for several threads; therefore, using
shared memory for data sharing is beneficial. The
OpenACC tile clause is adopted for this purpose.

Different optimizations of time for the critical kernel
of 1D stencil computation in the latitude direction are
shown in Fig. 4 as an example. When we collapsed
two subsequent loops and set the gang worker clause for
loop scheduling, the kernel time was reduced from 47
to 27 ms. Then a 1D array was removed for caching an
existing 4D array and the 4D array was used directly,
which exposed more parallelism and reduced memory
usage. Accordingly, the time was further decreased to
20 ms. Finally, a large kernel was split into two; the time
was reduced to 15 ms, which was about one-third of the
time obtained in the baseline version.

The optimization procedure presented in Table 1
illustrates the above results. The ratio achieved for the
DP peak performance of GPU and a few other metrics
(measured by NVIDIA profiler tool “nvprof”) are also
given in Table 1 to provide a better understanding of the
present performance gains. Altogether, a performance of
more than 22.3% of NVIDIA P100 theoretical DP peak
performance was achieved for this kernel; the achievable
occupancy increased from 0.37 to 0.42. The kernel
time in the third version was the second shortest, but
with the smallest achievable occupancy. The attainable
performance of a kernel is related to not only the
achievable occupancy but also other factors[25].

Table 1 An illustrative example of the optimization procedure for the 1D stencil computation kernel in the latitude direction.

Version
FLOP efficiency (ratio of achieved

occupancy to the DP peak performance) (%)
Achieved
occupancy

Register
per thread

Baseline 7.46 0.37 26
Collapsing loop & tuning loop schedule 11.66 0.37 26
Removing 1D array & using existing 4D array 16.05 0.25 26
Splitting one kernel to two 22.30 0.42 28

Huadong Xiao et al.: An MPI+OpenACC-Based PRM Scalar Advection Scheme in the GRAPES Model over : : : 171

During all these attempts for optimization, the
incremental method was applied to make sure that the
correct result was obtained.

5 Result and Discussion

In this section, performance results using GPUs with
PGI Accelerator compilers are discussed. Four cases
with a horizontal resolution of 2:5ı, 2:0ı, 1:0ı, and 0:5ı

and 60 vertical layers in the GRAPES global model
with 144�72�60, 180�90�60, 360�180�60, and
720�360�60 grid points were run on a single GPU node,
respectively. Two other cases with a horizontal resolution
of 0:5ı and 0:25ı and the same 60 vertical layers
in GRAPES with 720�360�60 and 1440�7200�60
grid points, respectively, were run on multiple GPU
nodes. The tests were performed on a Linux GPU cluster
system with each node of dual 16-core 2.6-GHz Intel
Xeon Gold 6142 CPUs and two 16-GB NVIDIA P100
GPUs. Each node was equipped with 128-GB memory
and a 100-Gbps Intel Omni-Path adaptor. The cluster ran
on Red Hat Enterprise Linux Server release 7.2. All the
results were obtained using the PGI Accelerator compiler
18.4 with the compiling option, which supports fast,
vectorizing, binding, and target architecture optimization.
Time reported was obtained by averaging five separate
runs. Regarding the correctness of the results, the relative
error was in the range of the tolerance of machine
precision.

5.1 Single node

A 6-hour simulation with the initial conditions set by
the system initialization component of GRAPES was
performed. The time per step for both CPU and GPU
computation on a single node is shown in Table 2.

The total CPU time was obtained by running the
model with 32 MPI processes using all the CPU cores
of a node in parallel mode. The total GPU run time

Table 2 Time on CPU and GPU platform for the case with
2.5ııı, 2.0ııı, 1.0ııı, and 0.5ııı horizontal resolution.
Resolution

(ı)
CPU
core GPU

Time (ms)
Speedup

Calculation Transfer Total

2.5
32 – – – 65 –
2 2 27 10 37 1.76

2.0
32 – – – 95 –
2 2 33 16 49 1.94

1.0
32 – – – 358 –
2 2 69 55 124 2.89

0.5
32 – – – 1356 –
2 2 173 213 386 3.51

was divided into two parts: actual GPU calculation time
and data transfer time. Here one GPU was controlled
by one MPI task. The speedup was expressed in terms
of the total time and defined by the total CPU time of
computation with 2 CPUs (32 cores) over the GPU time
of that with 2 GPUs. The values obtained were 1.76,
1.94, 2.89, and 3.51 for the 2:5ı, 2:0ı, 1:0ı, and 0:5ı

cases, respectively. Especially for the 0:5ı case, the
GPU time was less than 30% of the CPU time. When the
GRAPES model resolution for the running example was
increased, the GPU computation showed much greater
advantage over the CPU computation. This can be
attributed to the computation of a much greater number
of grid points by the GPU, which can be performed
concurrently and efficiently. A small workload running
with low grid resolution of the GRAPES model did not
saturate a GPU. Furthermore, if the GPU data transfer
overhead was not considered, for the actual calculation
time and the same problem size, the GPU computing
performance was much better. Because the current exact
grid resolution of the GRAPES global model system in
operation is no less than 0:5ı, over three times speedup
can be obtained for the accelerated PRM-based scalar
advection scheme with OpenACC and MPI using two
GPUs over two CPUs within a single node.

5.2 Multiple nodes

A larger grid size can be used to saturate the GPUs
when more GPUs are used. The GRAPES domains
covered with 720�360�60 and 1440�720�60 grid
points were adopted to test the performance of multiple
GPU nodes. Each node was set with two GPUs as
mentioned above. The total GPU time per step on
multiple GPUs is shown in Fig. 6. When the number
of GPUs used on multiple nodes was increased, the

 50

 100

 150

 200

 250

 300

 350

2 4 8 16 32

(a)

T
im

e
 (m

s
)

Number of GPUs

343

217

123

81 78

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

2 4 8 16 32

(b)

T
im

e
 (m

s
)

Number of GPUs

1125

657

352

219

149

Fig. 6 GPU time per step for the running case with (a) 0.5ııı

horizontal resolution and (b) 0.25ııı horizontal resolution.

172 Tsinghua Science and Technology, February 2022, 27(1): 164–173

total GPU time deceased considerably. In addition, the
magnitude of time reduction decreased with increasing
number of GPUs, especially for the smaller case with
0:5ı horizontal resolution. It is particularly obvious for
the 0:5ı case that the total time was almost the same
when the number of used GPUs was increased from 16 to
32. This can be explained by the fact that the workload
assigned to each GPU is not sufficient for exploiting
the power of GPUs with increasing number of GPUs
and decreasing grid points for calculation. For a proper-
sized problem, such as the high resolution of the 0:25ı

case, the accelerated computation of PRM-based scalar
advection scheme scales well with increasing number of
GPUs.

6 Conclusion

In this paper, we present an MPI+OpenACC-based PRM
scalar advection scheme over a cluster with multiple
CPUs and GPUs to exploit the computational capacity
of multiple GPUs. In our proposed scheme, the total
run time of a computing node with two GPUs is about
70% less than the whole run time of a computing node
with two CPUs (with 32 cores each) for a medium-sized
problem. Comparing the performance of the two GPUs
over two CPUs (all cores used) in the same generation,
the obtained speedup factor is 3.51. Moreover, the GPU
implementation scales well with increasing number of
GPUs for large-sized problems. Overall, these results
are encouraging because in an adequately adapted
GPU code, there will be overhead only when I/O
is requested. Therefore, the overhead as a percent
of the computation time will be minimal. Using an
MPI+OpenACC directive-based programming method
not only is the parallel development of code simplified
but also achieves considerable performance, which gives
a valuable reference for the future development of other
such systems.

Acknowledgment

This work was partially supported by the decision support
project of response to climate change of China, the
National Natural Science Foundation of China (Nos.
41674085, 41604009, and 41621091), the Natural Science
Foundation of Qinghai Province (No. 2019-ZJ-7034), and
the Open Project of State Key Laboratory of Plateau
Ecology and Agriculture, Qinghai University (No. 2020-
zz-03).

References

[1] W. H. Raymond, Moisture advection using relative

humidity, J. Appl. Meteor., vol. 39, no. 12, pp. 2397–2408,
2000.

[2] Y. Su, X. S. Shen, X. D. Peng, X. L. Li, X. J. Wu, S. Zhang,
and X. Chen, Application of PRM scalar advection scheme
in GRAPES global forecast system, (in Chinese), Chinese
Journal of Atmospheric Sciences, vol. 37, no. 6, pp. 1309–
1325, 2013.

[3] D. H. Chen, J. S. Xue, X. S. Yang, H. L. Zhang, X. S. Shen,
J. L. Hu, Y. Wang, L. R. Ji, and J. B. Che, New generation
of multi-scale NWP system (GRAPES): General scientific
design, Chin. Sci. Bull., vol. 53, no. 22, pp. 3433–3445,
2008.

[4] P. Bauer, A. Thorpe, and G. Brunet, The quiet revolution of
numerical weather prediction, Nature, vol. 525, no. 7567,
pp. 47–55, 2015.

[5] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, GPU computing, Proc. IEEE, vol. 96, no.
5, pp. 879–899, 2008.

[6] M. W. Govett, J. Middlecoff, and T. Henderson, Running
the NIM next-generation weather model on GPUs, in Proc.
2010 10th IEEE/ACM Int. Conf. Cluster, Cloud and Grid
Computing, Melbourne, Australia, 2010, pp. 792–796.

[7] J. Michalakes and M. Vachharajani, GPU acceleration of
numerical weather prediction, Parallel Process. Lett., vol.
18, no. 4, pp. 531–548, 2008.

[8] T. Henderson, J. Middlecoff, J. Rosinski, M. Govett, and
P. Madden, Experience applying fortran GPU compilers
to numerical weather prediction, in Proc. 2011 Symp.
Application Accelerators in High-Performance Computing,
Knoxville, TN, USA, 2011, pp. 34–41.

[9] I. Demeshko, N. Maruyama, H. Tomita, and S. Matsuoka,
Multi-GPU implementation of the NICAM atmospheric
model, in Proc. 18th Int. Conf. Parallel Processing
Workshops, Rhodes Island, Greece, 2012, pp. 175–184.

[10] C. Yang, W. Xue, H. H. Fu, L. Gan, L. F. Li, Y.
T. Xu, Y. T. Lu, J. C. Sun, G. W. Yang, and W. M.
Zheng, A peta-scalable CPU-GPU algorithm for global
atmospheric simulations, in Proc. 18th ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming
(PPoPP’13), Shenzhen, China, 2013, vol. 48, pp. 1–12.

[11] X. Lapillonne and O. Fuhrer, Using compiler directives to
port large scientific applications to GPUs: An example from
atmospheric science, Parallel Process. Lett., vol. 24, no. 1,
p. 1450003, 2014.

[12] M. Norman, J. Larkin, A. Vose, and K. J. Evans, A case
study of CUDA Fortran and OpenACC for an atmospheric
climate kernel, J. Comput. Sci., vol. 9, pp. 1–6, 2015.

[13] M. Huang, J. Mielikainen, B. Huang, H. Chen, H. L. A.
Huang, and M. D. Goldberg, Development of efficient
GPU parallelization of WRF Yonsei University planetary
boundary layer scheme, Geosci. Model Dev., vol. 8, pp.
2977–2990, 2015.

[14] O. Fuhrer, T. Chadha, T. Hoefler, G. Kwasniewski, X.
Lapillonne, D. Leutwyler, D. Lüthi, C. Osuna, C. Schär, T.
C. Schulthess, et al., Near-global climate simulation at 1km
resolution: Establishing a performance baseline on 4888
GPUs with COSMO 5.0, Geosci. Model Dev., vol. 11, pp.
1665–1681, 2018.

Huadong Xiao et al.: An MPI+OpenACC-Based PRM Scalar Advection Scheme in the GRAPES Model over : : : 173

[15] J. Q. Huang, W. T. Han, X. Y. Wang, and W. G. Chen,
Heterogeneous parallel algorithm design and performance
optimization for WENO on the Sunway Taihulight
supercomputer, Tsinghua Science and Technology, vol. 25,
no. 1, pp. 56–67, 2020.

[16] R. Kelly, GPU computing for atmospheric modeling,
Comput. Sci. Eng., vol. 12, no. 4, pp. 26–33, 2010.

[17] S. Saarinen, D. Salmond, and R. Forbes, Preparation of
IFS physics for future architectures, presented at the 16th

ECMWF Workshop on High Performance Computing in
Meteorology, Reading, UK, 2014.

[18] I. Carpenter, R. K. Archibald, K. J. Evans, J. Larkin, P.
Micikevicius, M. Norman, J. Rosinski, J. Schwarzmeier,
and M. A. Taylor, Progress towards accelerating HOMME
on hybrid multi-core systems, International Journal of High
Performance Computing Applications, vol. 27, no. 3, pp.
335–347, 2013.

[19] W. Vanderbauwhede and T. Takemi, An investigation into
the feasibility and benefits of GPU/Multicore acceleration
of the weather research and forecasting model, in Proc.
2013 Int. Conf. High Performance Computing & Simulation
(HPCS), Helsinki, Finland, 2013, pp. 482–489.

[20] R. Farber, Parallel Programming with OpenACC.
Cambridge, MA, USA: Morgan Kaufmann Publishers,
2016.

[21] J. S. Xue and D. H. Chen, Scientific Design and Application
of Numerical Prediction System GRAPES, (in Chinese).
Beijing, China: Science Press, 2008.

[22] P. Colella and P. R. Woodward, The piecewise parabolic
method (PPM) for gas-dynamical simulations, J. Comput.
Phys., vol. 54, no. 1, pp. 174–201, 1984.

[23] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano,
T. Endo, A. Nukada, N. Maruyama, and S. Matsuoka, An
80-Fold speedup, 15.0 TFlops full GPU acceleration of
non-hydrostatic weather model ASUCA production code,
in Proc. 2010 ACM/IEEE Int. Conf. High Performance
Computing, Networking, Storage and Analysis, New
Orleans, LA, USA, 2010, pp. 1–11.

[24] S. W. Williams, A. Waterman, and D. A. Patterson, Roofline:
An insightful visual performance model for multicore
architectures, Communications of the ACM, vol. 52, no.
4, pp. 65–76, 2009.

[25] V. Volkov, Better performance at lower occupancy,
presented at GPU Technology Conf. 2010, San Jose, CA,
USA, 2010.

Huadong Xiao is currently pursuing the
PhD degree in geodesy and surveying
engineering at the Institute of Geodesy and
Geophysics, Chinese Academy of Sciences.
He is a senior engineer at National
Meteorological Information Center of
Chinese Meteorological Administration.
His research interest includes high

performance computing in meteorology and geodesy.

Yang Lu received the PhD degree from
the Institute of Geodesy and Geophysics,
Chinese Academy of Sciences in 1997.
He is a professor at the same institute.
His research interest includes geodesy,
geophysics, polar glaciology, and data
processing.

Jiangqiang Huang is an associate
professor at Qinghai University, China.
He is currently a PhD candidate in the
Department of Computer Science and
Technology, Tsinghua University. His
research interest includes high performance
computing.

Wei Xue received the BEng and PhD
degrees in electrical engineering from
Tsinghua University in 1998 and 2003,
respectively. He is an associate professor
and the director of High Performance
Computing Institute in the Department
of Computer Science and Technology,
Tsinghua University. His research interest

includes scientific computing and uncertainty quantification.

