
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/18 pp114–126
DOI: 10 .26599 /TST.2020 .9010023
Volume 27, Number 1, February 2022

C The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Increasing Momentum-Like Factors: A Method for Reducing Training
Errors on Multiple GPUs

Yu Tang, Zhigang Kan, Lujia Yin, Zhiquan Lai, Zhaoning Zhang, Linbo Qiao�, and Dongsheng Li�

Abstract: In distributed training, increasing batch size can improve parallelism, but it can also bring many difficulties to

the training process and cause training errors. In this work, we investigate the occurrence of training errors in theory

and train ResNet-50 on CIFAR-10 by using Stochastic Gradient Descent (SGD) and Adaptive moment estimation

(Adam) while keeping the total batch size in the parameter server constant and lowering the batch size on each

Graphics Processing Unit (GPU). A new method that considers momentum to eliminate training errors in distributed

training is proposed. We define a Momentum-like Factor (MF) to represent the influence of former gradients on

parameter updates in each iteration. Then, we modify the MF values and conduct experiments to explore how

different MF values influence the training performance based on SGD, Adam, and Nesterov accelerated gradient.

Experimental results reveal that increasing MFs is a reliable method for reducing training errors in distributed training.

The analysis of convergent conditions in distributed training with consideration of a large batch size and multiple

GPUs is presented in this paper.

Key words: multiple Graphics Processing Units (GPUs); batch size; training error; distributed training; momentum-like

factors

1 Introduction

Deep learning has made great progress in numerous
fields, such as object detection[2–5], semantic
segmentation[6–8], and image classification[9–11].
As the number of layers of neural networks continues
to increase and the scale of data continues to expand,
the training of deep neural networks has increased the
demand for computing power. The development and
application of Graphics Processing Units (GPUs) satisfy
existing requirements and facilitate the training of deep

�Yu Tang, Linbo Qiao, Lujia Yin, Zhiquan Lai, Zhaoning
Zhang, and Dongsheng Li are with Science and Technology
on Paralled and Distributed Processing Laboratory, and College
of Computer Science and Technology, National University
of Defense Technology, Changsha 473000, China. E-mail:
qiao.linbo@nudt.edu.cn; dsli@nudt.edu.cn.
�A part of this paper has been published at Algorithms and

Architectures for Parallel Processing, 2020Œ1�.
�To whom correspondence should be addressed.

Manuscript received: 2020-06-19; revised: 2020-07-10;
accepted: 2020-07-13

neural networks within an acceptable time. However,
factors, such as GPU memory, still limit large-scale
neural network training.

Distributed training architecture provides new ideas
for training deep neural networks, including new ideas
about distributed training[12–14]. Plenty of paralleled
work is proposed recently[15, 16]. Parameter sever[17] is a
new type of distributed training architecture, through
which we could achieve an ideal reduction of time
without compromising accuracy.

Stochastic gradient algorithms, such as Stochastic
Gradient Decent (SGD)[18], are commonly used in deep
learning and even in certain nonconvex or nonsmooth
problems[19–21]. SGD utilizes a random subset of a
training dataset to update the weights of the loss
function. Batch size can affect training speed and exert
nonnegligible influence on the convergence of neural
networks. Nowadays, large-scale training has become
a research hotspot[22]. Large batch sizes can be used
to improve the parallelism of SGD and reduce training

Yu Tang et al.: Increasing Momentum-Like Factors: A Method for Reducing Training Errors on Multiple GPUs 115

time[23–26] while small batch sizes may lead to enhanced
training performance at the cost of time.

To fully understand these issues and identify a method
to reduce the training errors in distributed training, we
train ResNet-50[27] on CIFAR-10[28] and conduct several
experiments. In this work, we show how the batch
size affects training performance and convergence in
a parameter server[17]. We also analyze the influence
of the number of GPUs in a parameter server. In our
experiments, we fix the total batch size in a parameter
server. According to the experimental results, a large
batch size and a large number of GPUs adversely
influence distributed training performance. To address
this problem, we analyze the accuracy drop in distributed
training and identify a method related to “momentum”
in stochastic gradient algorithms. For convenience, we
define a new variable named Momentum-like Factors
(MFs), which are factors that control the influence of
former gradients on parameter updates in each iteration.
Stochastic gradient algorithms are commonly split into
first-order algorithms and second-order algorithms and
are presented in different ways by using MFs. On the
basis of our analysis, we change the MFs in different
optimizers, such as SGD, Adaptive moment estimation
(Adam), and Nesterov Accelerated Gradient (NAG), and
explore how they affect training performance. Moreover,
we train a Multilayer Perceptron (MLP) on MNIST and
a Long Short-Term Memory model (LSTM) on the Penn
TreeBank (PTB) dataset to investigate the influence of
MFs. We summarize our main contributions as follows.
� We present our analysis and prove the reason behind

the accuracy drop in a multi-GPU training process with
Batch Normalization (BN). To the best of our knowledge,
this analysis is the first one of its kind in the field of
multi-GPU training processes.
� We introduce MFs and explore how they affect

training performance in distributed training. We also
provide an explanation for the improvement of accuracy
after increasing MFs.
� Experiments are conducted on CIFAR-10 by using

SGD and Adam, and the influences of a large batch
size and different numbers of GPUs are compared.
Experiments are also executed on several datasets by
modifying the MFs from f0:9; 0:95; 0:975; 0:99g on
different optimizers. Our experimental results further
verify that increasing the MFs can improve the training
performance of first-order and second-order stochastic
gradient algorithms, especially given large batch sizes
and multiple GPUs.

2 Related Work

2.1 Stochastic gradient descent and its variants

SGD[18] is one of the simplest first-order algorithms,
but it introduces noise into the gradient and blocks
optimization in the training progress[29]. SGD randomly
selects one sample or a random sample set at one time
for parameter updates so that updating the parameters
does not create redundancy. When the data size is large,
SGD can effectively accelerate the training process.

Smith and Le[30] stated that SGD should be interpreted
as integrating stochastic equations. They also presented
the scale of random fluctuations in the SGD dynamics as

g D �

�
N

M
� 1

�
(1)

where � is the learning rate, N is the size of the
training set, and M is the batch size. If we reduce the
learning rate �, the noise scale g drops, thus leading
to an improved training performance. If we keep the
learning rate � constant, then we could also increase
batch size M to reduce the negative impact of noise
scale. By contrast, a small batch size increases the noise
scale and adversely affects the training performance.
According to Ref. [31], calculating the mean and
variance values over a batch makes the loss calculated
for a particular example dependent on other examples
in the same batch. Therefore, if the batch size is large,
a high dependency between samples in the batch limits
the training performance. This fluctuation scale g can
also be considered as a noise factor. When M � N ,
applying a linear scaling rule[32] maintains the mean
SGD weight update constant per training sample. A
specific description about the linear scaling rule[32] is
shown in Section 2.2.

SGD has several variants[33–35]. A common one is
SGD with momentum[36]; specifically, Smith and Le[30]

extended the traditional SGD to include momentum, and
found that the noise factor g changes into

g D
�

1 �m

�
N

M
� 1

�
�

�N

M.1 �m/
(2)

where m is the momentum. Equation (2) degenerates
into Eq. (1) when m D 0. If a linear scaling rule is
adopted, �=M is constant. Then, we obtain g / 1=.1 �
m/. Increasing m results as g rises may cause a drop
in generalization performance. Adam[37] combines the
advantages of two optimization algorithms, namely,
AdaGrad[38] and RMSProp[39]. Adam evaluates the
first moment estimation of a gradient and the second
moment estimation and then calculates the update step.

116 Tsinghua Science and Technology, February 2022, 27(1): 114–126

This algorithm is a second-order optimization method,
which adjusts the learning rate for each parameter by
performing small updates for frequently used parameters
and large updates for seldomly used parameters. In the
vanilla Adam algorithm[37], ˇ1 and ˇ2 are set to control
the influence of gradients and the square of gradients on
the parameter update, respectively. They play a similar
role to momentum in the SGD method with momentum.
NAG[40] is an improved method of momentum[36] and
a first-order optimizer. It updates with the gradient by
“looking ahead” instead of using the current gradient.
Moreover, it calculates the variance of gradients with
respect to the last one. By utilizing these values, NAG
updates the parameters in the training process.

SGD and its variants, known as stochastic gradient
algorithms, can be regarded as first-order or second-order
stochastic gradient algorithms, as shown in Algorithms
1 and 2, respectively.

Algorithm 1 First-order stochastic gradient algorithms with
MF
Input: �1 2 Rd , learning rate f�t g

T
tD1

(we use a constant � in
our experiments), momentum-like factor MF, batch size M , and
optimizer OP.
Output: �T

1: Init MF and v0 D 0

2: for t D 1 to T do
3: Draw M samples Bt from B

4: Compute gt
1

M

X
xt2Bt

rLt .�t ; xt /

5: vt MF � vt�1 C �gt D MF � vt�1C

G �
X

xt2Bt

rLt .�t ; xt /

6: �t �t�1 � vt

7: return �T

Algorithm 2 Second-order stochastic gradient algorithms
with MF
Input: �1 2 Rd , learning rate f�t g

T
tD1

(we use a constant � in
our experiments), momentum-like factors MF1 and MF2, batch
size M , optimizer OP, and scaling function �.
Output: �T

1: Init MF1, MF2, m0 D 0, and v0 D 0.
2: for t D 1 to T do
3: Draw M samples Bt from B

4: Compute gt
1

M

X
xt2Bt

rLt .�t ; xt /

5: mt MF1 �mt�1 C .1 �MF1/ � gt

6: vt MF2 � vt�1 C .1 �MF2/ � g
2
t

7: �t �t�1 � � � �.mt ; vt ;MF1;MF2/

8: return �T

2.2 Linear scaling rule

Assume a deep neural network model with parameters � ,
and its corresponding loss function L.�/. Thus, L.�/ is
defined as the average of the total loss over the training
dataset. The formula is as follows:

L.�/ D
1

M

MX
iD1

Li .�/;

where Li .�/ is the loss of the i-th training example. As
stated in Section 2.1, SGD uses one stochastic sample
or one stochastic sample set to obtain the approximation
of the gradient of the loss function L.�/. For batch B
which includes m training examples, the batch size is m.
Its corresponding weight update rule is

�kC1 D �k C ���k;

���k D �
�

m

mX
iD1

r�Li .�k/ (3)

where k is the k-th epoch.
From Eq. (3), we can obtain Ef���g D

��Efr�L.�/g, which denotes the average weight
update of SGD could be kept when changing the learning
rate proportionally. Thus, for batch B whose batch
size is m, the mean value of the SGD weight update
is proportional to �=m. Adopting the linear scaling
rule involves keeping the mean SGD weight update per
training example constant[31].

This linear scaling rule is adopted widely in Refs.
[30, 32, 41–43]. We apply the linear scaling rule to our
theoretical analysis of Algorithms 1 and 2 (Section 3.2).
This rule is an important foundation of our algorithms
and experiments.

2.3 Batch normalization

BN[44] is commonly deployed in modern deep neural
networks. It has shown excellent achievements in
improving training performance. However, it also causes
performance decline in multi-GPU distributed training.
The standard BN is shown as follows.

For batch B D fx0; x1; : : : ; xM�1g with batch size
M , its mean value is

�B D
1

M

M�1X
iD0

xi ;

where xi is one sample of batch B. Its variance is

ı2B D
1

M

M�1X
iD0

.xi � �B/
2 (4)

Yu Tang et al.: Increasing Momentum-Like Factors: A Method for Reducing Training Errors on Multiple GPUs 117

Then, the samples are normalized by

Oxi D
xi � �Bq
ı2B C �

(5)

where i changes from 1 to M and � is a small enough to
avoid a zero denominator for Eq. (5). The mathematical
expectation is

E1 D E.ı2B/ D .M � 1/ı2 (6)

After BN, the samples follow the normal distribution
whose variance is ı2. These values are fed into several
layers in the deep neural network to achieve superior
training results. This analysis is important in multi-GPU
distributed training, as described in Section 3.1.

3 Algorithm

3.1 Multi-GPU training

As discussed in Section 2.3, the standard BN is
analyzed in this work. At this point, we consider
the training on multiple GPUs and explore how it
affects the performance with BN. Assume P GPUs
in the distributed training system and batch B D
fx0; x1; : : : ; xM�1g whose batch size is M . The batch
per GPU is a subset of batch B, and its batch size is
K DM=P . On GPU j.j D 0; : : : ; P � 1), the mean
value of its training samples is

�j D
1

K

K�1X
iD0

xj i D
P

M

M=P�1X
iD0

xj i ;

and its corresponding variance is

ı2j D
1

K

K�1X
iD0

.xj i � �j /
2
D
P

M

M=P�1X
iD0

.xj i � �j /
2;

where xj i is the i-th training sample on GPU j . The
mean value of all samples of batch B is

O�B D
1

P

P�1X
jD0

�j :

The sum of each variance of all GPUs in the system is

Se D

P�1X
jD0

M

P
ı2j D

M

P

P�1X
jD0

ı2j :

The variance of all training batches among GPUs is

Sa D

P�1X
jD0

M

P
.�j � O�B/

2
D
M

P

P�1X
jD0

.�j � O�B/
2:

Thus, the total variance St is

St D SeCSa D
M

P

P�1X
jD0

ı2j C
M

P

P�1X
jD0

.�j � O�B/
2 (7)

When P D 1, Eq. (7) degenerates into Eq. (4).
According to statistical knowledge, the expectation of
Eq. (7) is

E2 D E.St / D .M � 1/ı2 C
M.P � 1/

P
ı2 (8)

By comparing Eq. (6) with Eq. (8), we obtain E2 > E1
while ignoring the dependencies between training
samples if P > 1, in which case the input features
after BN decline in multi-GPU training. Therefore,
the variance of training on multiple GPUs results in
performance degradation in distributed training.

3.2 Momentum-like factor

As the variance of BN increases, the gradients calculated
on each worker in the parameter server tends to be
unstable. The gradients in multi-GPU training are more
updated than those on a single GPU. Herein, we explore
a new method to reduce the training errors on multiple
GPUs. We define the MF as a new variable that controls
the influence of the last gradient on the current parameter
update in each iteration. We formalize the stochastic
gradient algorithms, including the first-order and second-
order stochastic gradient algorithms, with MFs. The
two types of algorithms are abstracted into Algorithms
1 and 2. We apply the linear scaling rule[32] to the two
algorithm types.

In general, the set of learning rate f�tgTtD1 in
Algorithms 1 and 2 could contain more than one value.
However, we keep the learning rate constant in each
training process. Thus, the set of learning rate f�tgTtD1
changes into a constant � . As we apply the linear scaling

rule,
�

M
D G remains unchanged in each iteration.

Let us consider training on multiple GPUs with MF
using first-order stochastic gradient algorithms with MF
(Algorithm 1). The MF update rule for the proportion of
the former gradient in the training process[45] is

�A D �.1 �MF/AC
dL.�/

dw
(9)

�w D �A� (10)

where A denotes the “accumulation” and �A is its

variety while
dL.�/

dw
is the average gradient of per

training example. Increasing the MF can lower �A
and slow down the attenuation of weights. Therefore,
we obtain �w, which is relatively small. This property
correspondingly reduces the training errors on multiple
GPUs in the same iteration.

Let us focus on Algorithm 1. For Line 5 in

118 Tsinghua Science and Technology, February 2022, 27(1): 114–126

Algorithm 1, let us assume
X
xt2Bt

rLt .�t ; xt / DX
xt�12Bt�1

rLt�1.�t�1; xt�1/, that is, rL.�; x/ is

constant in each iteration. Therefore, increasing the
MF in Algorithm 1 results in an increase in vt . The
outcome leads to a small parameter update, which is the
same as that achieved in the previous analysis and leads
to good training performance.

As for the second-order stochastic gradient algorithms
with MF1 and MF2 (Algorithm 2), the “accumulation”
update is

�A D �.2 �MF1 �MF2/AC
dL.�/

dw
(11)

Then, the parameter update follows Eq. (10). In
Algorithm 2, � is a function of mt ; vt ;MF1; and
MF2. For example, in Adam, the function could be

�.mt ; vt ;MF1;MF2/ D
mt
p
1 �MF2

.
p
vt C �/.1 �MF1/

, where

� is a relatively small value, such as 10�8, to avoid a
zero denominator.

By applying a linear scaling rule[32] to Algorithm 2,
we obtain a constant G, which is similar to
the former one. Hence, we mainly focus on � �

�.mt ; vt ;MF1;MF2/ in Line 7 (Algorithm 2). The
function � plays an important role in this analysis.
Take Adam as an example, �.mt ; vt ;MF1;MF2/ D

mt
p
1 �MF2

.
p
vt C �/.1 �MF1/

. If we only change MF1 rather

than MF2, we can view all formulas with MF2 and vt as
constants G1 and G2, respectively.

According to our analysis, increasing MF1 in
Algorithm 2 has the same effect as increasing the
MF in Algorithm 2. The detailed analysis is shown in
Appendix A.

For ease of study, we present the influence of
increasing the MF value in stochastic gradient algorithms
in Figs. 1 and 2. With an increase in the number of
iterations, the training process tends to be stable, and

Fig. 1 Parameter update change of increasing the MF value
when gt declines. If we want to obtain the same ��� tCCC1 given
the decline of gradients, namely, gt

000<<< gt, we ought to increase
from the MF (the brown line) to the MF0 (the red line). This
method reduces the training errors accordingly.

Fig. 2 Parameter update change to increase the MF value
on the condition that the gradients do not change. Increasing
from MF to MF000 results in a new parameter update direction,
���000t+1 (the red one). This new direction could correct the error
caused by a large batch size or multi-GPU training.

the gradients in each iteration tend to decline. Therefore,
the change in gradients in the training process declines
either minimally, with the change almost left unseen, or
excessively. As shown in Fig. 1, �t is the parameter in
the t-th iteration. Taking this situation as an example and
for the sake of simplifying, we use MF (the brown line)
to represent the updates resulting from the MF value
in the training process. The same is true for MF0 (the
red line). In Fig. 1, gt (the green line), (resp. g0t , the
yellow line) marks the gradients calculated from the
samples in the t-th iteration with respect to MF (resp.
MF0). In large-scale distributed training, we may obtain
g0t < gt as a result of a large batch size or multi-GPU
training. Therefore, if we want to obtain the same �tC1,
the parameter in the .t C 1/-th iteration (the purple line,
then we should change MF to MF0. In this situation,
we have MF0 > MF. Therefore, increasing the MF
value could alleviate the drop in accuracy in distributed
training to some extent, that is, the training errors in
distributed training could be reduced, especially when
the batch size is large and when multiple GPUs are used
in the training process. In certain situations, we may
achieve a good parameter update (�tC1) as a result of an
increase in MF values. Considering the slight decline of
the gradients, we arrive at the situation shown in Fig. 2.
The variables have the same meaning as those in Fig. 1.
In this situation, we might obtain a poor parameter
update (�tC1) as a result of the large-scale training or
training on multiple GPUs. Therefore, increasing the MF
value corrects the parameter update (�tC1) and reduces
the training errors correspondingly.

3.3 Distributed algorithm

In this section, we present distributed algorithms. As we
use the parameter server architecture in our experiments,
we show the training algorithms of workers and servers
in Algorithms 3 and 4, respectively.

Yu Tang et al.: Increasing Momentum-Like Factors: A Method for Reducing Training Errors on Multiple GPUs 119

Algorithm 3 refers to the training algorithms on
workers in the parameter server. In Algorithm 3, we
input all the hyperparameters needed by the experiments
and allocate P GPUs as workers in the initialization
phase. In the t-th iteration, the workers give the servers
the signals of Pull trigger and Pull last saved parameter
(�t�1). These parameters are fed into Algorithms 1
or 2 according to OP. Finally, workers send the Push
trigger and Push �t to the servers. Algorithm 4 shows
the training algorithms on servers in the parameter server
architecture. It has the same initialization phase as
Algorithm 3 but a different process. In the t-th iteration,
when receiving the Pull trigger from the workers, the
servers Push �t�1 to the workers. After receiving the
signal of Push trigger, the servers are responsible for
Pull �t and save it locally.

Algorithms 1 and 2 are performed on the basis of the
first- and second-order stochastic gradient. All of our

Algorithm 3 Training algorithm-workers
Input: �1 2 Rd , learning rate �, momentum-like factors MF

for first-order stochastic gradient algorithms (MF1 and MF2 for
second-order stochastic gradient algorithms), the total batch size
M , optimizer OP (such as SGD), the number of GPUs P , iteration
number T , and the number of nodes N (the scaling function � for
second-order stochastic gradient algorithms).
Output: �T , Pull trigger, and Push trigger.
1: Init: allocate P GPUs as workers.
2: for t D 1 to T do
3: Send Pull trigger to servers.
4: Pull �t�1 from servers.
5: if OP is a first-order stochastic gradient algorithm then
6: Input �t�1, �, MF, M=N , OP into Algorithm 1.
7: Get the output �t of Algorithm 1.

8: if OP is a second-order stochastic gradient algorithm then
9: Input �t�1, �, MF1, MF2, M=N , OP into

Algorithm 2.
10: Get the output �t of Algorithm 2.

11: Send Push trigger to servers.
12: Push �t to servers.
13: return �T

Algorithm 4 Training algorithm-servers
Input: the iteration number T , Pull trigger, and Push trigger.
1: Init: allocate P GPUs as servers.
2: for t D 1 to T do
3: if Pull trigger then
4: Push �t�1 to workers.
5: if Push triggers then
6: Pull �t and save.
7: return

experiments are based on these algorithms.

4 Experiment and Analysis

To explore the impact of batch size and the number
of GPUs on the performance of the algorithms in the
parameter server architecture, we conduct experiments
by using MXNet[46] and train ResNet-50[27] on CIFAR-
10. We are aware that training performance may decline
as the batch size and number of GPUs increase. To
eliminate the negative impact of a large batch size
and multiple GPUs, we increase the MFs in different
stochastic gradient algorithms.

4.1 Experimental setup

4.1.1 Dataset
Experiments are executed on three different datasets,
namely, CIFAR-10[28], MNIST[47], and Penn
Treebank (PTB)[48].

The CIFAR-10 dataset consists of 60 000 natural
images in 10 classes of 32 � 32 resolution on Red,
Green, and Blue (RGB) scale; 50 000 of these images
are training images, and 10 000 are test images[28].
MNIST has 55 000 training samples and 10 000 test
samples and was first introduced in Ref. [47] to
train digital handwritten image recognition. The PTB
dataset comprises 923 000 training, 73 000 validation,
and 82 000 test words[48], and it is a commonly used
dataset in the field of language models.

4.1.2 Setup
In our experiments, we train ResNet-50 on CIFAR-10
by adopting three optimizers, namely, SGD, Adam, and
NAG. We then set the batch sizes to 32, 64, 128, 256,
512, 1024, and 2048. The experiments are conducted
across multiple GPUs simultaneously by using 1, 2,
4, 8, 16, and 32 GPUs to evaluate the validation
accuracy of ResNet-50 on CIFAR-10 in the case of
different batch sizes and GPU numbers in the parameter
server architecture. The GPUs are Tesla K80. In these
experiments, we train 300 epochs and set MF D 0:9

in SGD and NAG, and MF1 D 0:9;MF2 D 0:999 in
Adam. We also set a default value of batch size D 128
and learning rate D 0:05. We also adopt a linear scaling
rule[32] in our experiments as well. The learning rates
corresponding to different batch sizes are displayed in
Table 1.

Inspired by Ref. [49], we focus on setting the
MFs to 0.9, 0.95, 0.975, and 0.99 in the first-order
stochastic gradient algorithms (MF in Algorithm 1)

120 Tsinghua Science and Technology, February 2022, 27(1): 114–126

Table 1 Learning rates corresponding to different batch
sizes.

Batch size Learning rate Batch size Learning rate
32 0.0125 512 0.2
64 0.025 1024 0.4
128 0.05 2048 0.8
256 0.1

and second-order stochastic gradient algorithms (MF1
in Algorithm 2). We then analyze how they influence
training performance given a large batch size of 1024. In
addition, we also train an MLP on MNIST[47]. For the
sake of convenience, we use “momentum” to represent
MF in the corresponding optimizer.

4.2 Training ResNet-50 on CIFAR-10

We use two different optimizers, namely, SGD and
Adam, in training ResNet-50 on CIFAR-10. MF is set to
0.9 in SGD. As for the Adam optimizer, MF1 and MF2
are set to 0.9 and 0.999, respectively. Figures 3 and 4
show the results of SGD and Adam, respectively. For
convenience, we omit in Fig. 3 the validation accuracy
of 0.199 given a batch size of 32 and 32 GPUs. These
values are also shown in Table 2. As for Adam, the
results of the training on multiple GPUs in the parameter
sever are summarized in Table 3.

4.2.1 Batch size
In distributed training, the choice of batch size is critical.
According to the curves in Figs. 3 and 4, a large batch
size causes the validation accuracy to drop given a
constant number of GPUs. As shown in Fig. 3, when
the batch size is 32 and the number of GPUs is 32,
the validation accuracy is 0.199, which means that in

Fig. 3 Validation accuracy of Resnet50 on CIFAR-
10 of different batch sizes on multiple GPUs in the
parameter server based on SGD. In these experiments,
all hyperparameters, except batch size and number of GPUs,
are set to their default values.

Fig. 4 Validation accuracy of Resnet50 on CIFAR-10 of
different batch sizes on multiple GPUs in the parameter
server based on Adam. The hyperparameters are set to be
the same as those in the previous SGD experiments.

Table 2 SGD’s validation accuracy for ResNet-50 on
CIFAR-10 of different batch sizes on multiple GPUs in the
parameter server.

Batch size
Validation accuracy

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs
32 0.928 0.923 0.917 0.910 0.917 0.199
64 0.928 0.924 0.916 0.908 0.891 0.839
128 0.923 0.924 0.917 0.906 0.896 0.870
256 0.926 0.914 0.913 0.901 0.891 0.878
512 0.925 0.917 0.907 0.901 0.893 0.880
1024 0.927 0.916 0.909 0.899 0.893 0.876
2048 0.923 0.919 0.906 0.901 0.885 0.872

Table 3 Adam’s validation accuracy for ResNet-50 on
CIFAR-10 of different batch sizes on multiple GPUs in the
parameter server.

Batch size
Validation accuracy

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs
32 0.807 0.839 0.864 0.894 0.898 0.432
64 0.734 0.802 0.845 0.885 0.908 0.901
128 0.665 0.765 0.816 0.869 0.897 0.922
256 0.547 0.665 0.757 0.848 0.886 0.910
512 0.492 0.583 0.562 0.794 0.871 0.902
1024 0.399 0.329 0.361 0.578 0.847 0.883
2048 0.173 0.177 0.103 0.353 0.675 0.768

distributed training, such a small batch size cannot make
the training process converge. In this case, the batch size
on each node is four. The batch size is too small for the
training process to converge. From Fig. 3, we observe a
downtrend when the batch size increases. When the
batch size exceeds 512, the effect of increasing the
batch size on the experimental results is small, and
the maximum drop is 0.008 (16 GPUs). Nearly the
same situation happens in Fig. 4. The setting causes a
bad validation performance under the condition with 32

Yu Tang et al.: Increasing Momentum-Like Factors: A Method for Reducing Training Errors on Multiple GPUs 121

GPUs and a batch size of 32. Thus, we conclude that in
multi-GPU situations, a large batch size may increase
parallelism in distributed training, but the validation
accuracy tends to drop.

4.2.2 GPU
When the numbers of GPUs are 1, 2, and 4, we only
need to use a single node. According to Figs. 3 and 4,
when the GPU number changes from 1 to 4 within a
single host, the accuracy difference is relatively small.
In Fig. 3, the largest accuracy difference of 0.018 lies in
batch sizes 512 and 1024. When using multiple GPUs,
especially 32 GPUs, the accuracy drops by 0.069 (batch
size of 64) given a convergent training process. Nearly
for each line in Figs. 3 and 4, the validation accuracy
declines if the number of GPUs increases for a constant
batch size.

4.3 SGD versus Adam

4.3.1 Experimental result
In this section, we mainly focus on the influence of
different MF values on SGD and Adam. As discussed
previously, increasing the number of GPUs in the
parameter server causes a decline in training accuracy
when the batch size remains constant. To improve the
accuracy in this situation, we increase the MFs and
compare the improvements caused by different MFs
given a large batch size of 1024 and 16 GPUs.

We train ResNet-50 on CIFAR-10 by utilizing the
optimizers SGD and Adam. The batch size is 1024, and
the learning rate is set to 0.4 (Table 1). The validation
accuracy of SGD is illustrated in Fig. 5. When the batch
size is 1024 and the momentum is 0.9, the final validation
accuracy is 0.927 on 1 GPU and drops to 0.876 on 32
GPUs (green line). When the momentum is 0.95, the

Fig. 5 Validation accuracy of different MFs on multiple
GPUs utilizing SGD. In these experiments, we set the MF
values 0.9, 0.95, 0.975, and 0.99, respectively.

validation accuracies are 0.93 and 0.892 on 1 GPU and
32 GPUs, respectively (red line). Relative to those when
the momentum is 0.9, these accuracy values increase
by 0.003 and 0.016. When the momentum increases to
0.99, the accuracies are 0.904 on 1 GPU and 0.907 on
32 GPUs (purple line). Compared with that indicated
by the green line (momentum is 0.9), the accuracy
drops by 0.026 on 1 GPU but increases by 0.031 on
32 GPUs. For SGD, we find that increasing the MF can
effectively alleviate the accuracy degradation caused by
the increase in the number of GPUs in the parameter
server. The improvement is particularly obvious for
multi-GPU scenarios. Therefore, increasing the MFs
yields better effects in the first-order stochastic gradient
algorithms than in the second-order ones.

As far as Adam, we change MF1 from 0.9 to 0.95,
0.975, and 0.99 to explore the influence of such change
on distributed training given the same batch size and
learning rate. We display the validation accuracy of
Adam in Fig. 6. We observe that increasing MF1
can improve distributed training performance. The
improvements are not obvious in Adam. Moreover, we
spot trends that are not similar to those in Fig. 6. A
decline in accuracy occurs when MF1 D 0:9, 0.95, and
0.975 when the number of GPUs increases from 1 to
4. When MF1 is 0.99, such decline does not occur.
Increasing MF1 still alleviates the negative impact of
multiple GPUs on accuracy and stabilizes the training
process on multiple GPUs in Adam. Therefore, the
influence of increasing MFs in second-order stochastic
gradient algorithms is not as obvious as that in first-order
stochastic gradient algorithms. Nevertheless, increasing
MFs remains effective and leads to a relatively stable
trend when the number of GPUs increases.

Fig. 6 Validation accuracy of different MF1s on multiple
GPUs utilizing Adam. In these experiments, we set the MF1

values 0.9, 0.95, 0.975 and 0.99, respectively.

122 Tsinghua Science and Technology, February 2022, 27(1): 114–126

4.3.2 Convergent condition
In certain situations in Section 4.3.1, the results show
that the training process does not converge. In this
section, we provide our convergence analysis and
establish a number of convergent conditions in which
MFs are considered in distributed training.

As pointed out previously, we view the deep learning
problem as

min
�2Rd

G.�/ D E Œf .�/� D 1

n

nX
iD1

fi .�/ (12)

where f .�/ is a nonconvex loss function and each fi W
Rd ! R is a smooth and nonconvex function.

For the first- and second-order stochastic gradient
algorithms, we have the following assumptions.
� A1: The gradient of f is L-Lipschitz continuous,

i.e., krfi .x/ � rfi .y/k 6 Lkx � yk;8x; y 2 Rd .

Then we haveG.x/ 6 G.y/ChrG.y/; x�yiC
L

2
kx�

yk2;
� A2: The minimum value of Eq. (12) is lower-

bounded, i.e., G� D min
�2Rd

f .�/ > �1;

� A3: The gradient gt of ft .�t / is an unbiased
estimate;
� A4: The gradients are bounded, i.e., rft 6 C ;
� A5: The second-order moment of the gradient gt is

uniformly upper-bounded, that is to say, Ekgtk2 6 C .
In A4 and A5, C < C1 and it is a constant. Such

assumptions are typical in the analysis of stochastic
gradient methods[50, 51].

From A3 and A4, in each iteration, we have
1

Mnode

X
�2Rd

ft .�t / 6 C , where Mnode is the batch size

on each node in the distributed training system. Then,
we obtain

Mnode >

P
�2Rd ft .�t /

C
(13)

Formula (13) means that the training process is
convergent when M satisfies Formula (13).

As for the MF in the first-order stochastic gradient
algorithms, we could obtain

1 �MFt

1 �MF
<
T

�
(14)

where T represents the number of iterations. The
mathematical derivation is shown in Appendix B.

As Refs. [51, 52] point out, a constant MF in the
second-order stochastic gradient algorithms will result
in divergence. Therefore, we establish our convergent
conditions for distributed training.

(1) The batch size Mnode on each node in the

distributed training satisfies
P
�2Rd ft .�t /

C
6Mnode 6

M , where M denotes the size of the training set;
(2) (a) For the first-order stochastic gradient

algorithms,
1 �MFt

1 �MF
<
T

�
and MF < 1;

(b) For the second-order stochastic gradient
algorithms, MF < 1 and MF does not decrease[52].

4.4 Extended experiments on MF

4.4.1 NAG
We also conduct a number of experiments utilizing
another first-order optimizer, NAG. In Fig. 7, we show
the validation accuracy given a batch size is 1024 and
MFs are 0.9, 0.95, 0.975, and 0.99. From Fig. 7, we find
that when using a large number of GPUs in distributed
training, the validation accuracy drops when the MFs
are 0.9, 0.95, and 0.975. When the MF is 0.99, the
validation accuracy improves. A large MF helps alleviate
the negative influence of a large number of GPUs. This
result is consistent with that in Section 4.3.1.

4.4.2 MLP
We train MLP on MNIST of 30 epochs on 8 GPUs
to explore the influence of the values of MFs. We
use a simple MLP consisting of three fully connected
layers, that is, two activation layers and a softmax
layer, to identify the output of the MLP. We use the
SGD optimizer and set the batch size to 64 and the
learning rate to 0.05; the momentum in SGD selected
from f0:9; 0:95; 0:975; 0:99g. Figure 8 shows the test
accuracy of the MLP in our experiment. We can identify
that the test accuracy increases as the MF increases to a

Fig. 7 Validation accuracy of ResNet-50 on CIFAR-10 given
different batch sizes on multiple GPUs in the parameter
server based on NAG. The hyperparameters are set to be the
same as those in the previous SGD and Adam experiments.

Yu Tang et al.: Increasing Momentum-Like Factors: A Method for Reducing Training Errors on Multiple GPUs 123

Fig. 8 MLP test results on MNIST of different momentums.
The MLP comprises three fully connected layers: two
activation layers and a softmax layer.

certain degree. When the MF is 0.975, the test accuracy
on MNIST is the highest. However, when the MF is 0.99,
the test accuracy drops relative to those given MF values
of 0.95 and 0.975. We assume that this phenomenon is
caused by a small batch size of 64 and a lack of BN.

4.4.3 RNN
In this section, we present the results of the influence
of increasing the MF value in the RNN task. We train
LSTM[53] on the PTB dataset. We set the batch size to
64 and the learning rate to 0.01 and then use SGD. The
training and validation perplexities are then analyzed.
We present our results in Table 4. When MF = 0.975,
the smallest training perplexity of 13.40 is noted. When
MF = 0.95, the best validation perplexity of 155.31 is
observed. From Table 4, we can identify that increasing
the MF value within a specific range can reduce the
training errors introduced by multiple GPUs.

5 Conclusion

In this work, we discuss different types of stochastic
gradient algorithms and distributed algorithms used
in our experiments and explore the influence of batch
size and the number of GPUs on distributed training
performance. We train ResNet-50 on the CIFAR-
10 dataset under the parameter server architecture.
According to the experimental results, we find that
to some degree, we could increase the efficiency of

Table 4 LSTM’s training and validation perplexity on PTB
of different MFs.

MF value Train perplexity Validation perplexity
0.9 29.93 161.98
0.95 17.04 155.31

0.975 13.40 158.72
0.99 17.84 173.88

distributed training and reduce the training time by
increasing the batch size and increasing the number
of GPUs. When the number of GPUs is increased to
achieve distributed training, the batch size increases
to ensure training convergence. On the other hand, we
conclude that for SGD-like optimizers, increasing the
MFs alleviates the performance loss caused by the
increase in the number of GPUs in distributed training
or even improves the accuracy. Increasing MFs not only
benefits first-order optimizers, such as SGD, but also
suits second-order optimizers, such as Adam. For small
tasks, increasing the MF values can relieve the negative
effects introduced by multiple GPUs.

Appendix

A Analysis of Increasing MF1 in Algorithm 2
The detailed analysis of increasing MF1 in Algorithm 2
is as follows. For convenience, we use � to represent
�.mt ; vt ;MF1;MF2/ in Eq. (A1).

� � � D � �
mt
p
1 �MF2

.
p
vt C �/.1 �MF1/

D

� �
mtG1

G2.1 �MF1/
D

G1

G2

�.MF1mt�1 C .1 �MF1/gt /

1 �MF1
D

G1

G2

�
�.MF1 �mt�1/

1 �MF1
C � � gt

�
(A1)

� � gt nearly has the same form as that analyzed in
Algorithm 1 in Section 3.2. It could also be viewed as
constant if we assume rL.�; x/ constant. Therefore, the

whole focus is on
MF1

1 �MF1
. Hence, increasing MF1 has

the same effect as increasing MF in the Algorithm 1 in
Section 3.2.

B Mathematical Derivation of Eq. (A2)

We show the mathematical derivation of Eq. (A2) here.
Considering vt in Algorithm 1, we have

vt D MF � vt�1 C �gt D

MF � .MF � vt�2 C �gt /C �gt D

MF2 � vt�2 CMF � �gt C �gt D � � � D

MFt � v0 CMFt�1 � �gt C � � � CMF � �gt C �gt (B1)

As v0 is initialized commonly to 0, so we have
vt D MFt�1 � �gt C � � � CMF � �gt C �gt D

.MFt�1 C � � � CMFC 1/ � �gt D

1 �MFt

1 �MF
� �gt :

According to A4 in Section 4.3.2, we have gt 6 C .
Therefore,

124 Tsinghua Science and Technology, February 2022, 27(1): 114–126

vt D
1 �MFt

1 �MF
� �gt 6

1 �MFt

1 �MF
� �C:

The training process involves T iterations; thus, vT 6
1 �MFT

1 �MF
� �C .

From the definition of vt , we have 0 6 vt < t � C . This
definition is easy to understand. If MF D 1, then, we have
the entire gradient in the current iteration. However, such
scenario is not realistic in the stochastic gradient method
with MF. Therefore, t �C is its upper bound. Then, we get

vT 6
1 �MFT

1 �MF
� �C 6 t � C < T � C

Finally, we get
1 �MFT

1 �MF
<
T

�
;

as shown in Section 4.3.2.

Acknowledgment

This work was partially supported by the Major State
Research Development Program (No. 2016YFB0201305),
the National Key R&D Program of China (No.
2018YFB2101100), the National Natural Science
Foundation of China (Nos. 61806216, 61702533,
61932001, and 61872376).

References

[1] Y. Tang, L. J. Yin, Z. N. Zhang, and D. S. Li, Rise the
momentum: A method for reducing the training error on
multiple GPUs, in Algorithms and Architectures for Parallel
Processing, S. Wen, A. Zomaya, and L. T. Yang, eds. Cham,
Germany: Springer, 2020.

[2] F. Chollet, Xception: Deep learning with depthwise
separable convolutions, in Proc. 2017 IEEE Conf. on
Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 2017, pp. 1800–1807.

[3] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.
Weinberger, Densely connected convolutional networks,
in Proc. 2017 IEEE Conf. on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 2017, pp. 2261–2269.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C. Y. Fu, and A. C. Berg, SSD: Single shot multibox
detector, in Proc. 14th European Conf. on Computer Vision,
Amsterdam, the Netherlands, 2016, pp. 21–37.

[5] J. F. Dai, Y. Li, K. M. He, and J. Sun, R-FCN: Object
detection via region-based fully convolutional networks,
in Proc. 30th Conf. on Neural Information Processing
Systems, Barcelona, Spain, 2016, pp. 379–387.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich
feature hierarchies for accurate object detection and
semantic segmentation. in Proc. 2014 IEEE Conf. on
Computer Vision and Pattern Recognition, Columbus, OH,
USA, 2014, pp. 580–587.

[7] J. Long, E. Shelhamer, and T. Darrell, Fully convolutional
networks for semantic segmentation, in Proc. 2015 IEEE

Conf. on Computer Vision and Pattern Recognition, Boston,
MA, USA, 2015, pp. 3431–3440.

[8] J. F. Dai, K. M. He, and J. Sun, Instance-aware semantic
segmentation via multi-task network cascades, in Proc.
2016 IEEE Conf. on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 2016, pp. 3150–3158.

[9] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A Alemi,
Inception-v4, inception-resnet and the impact of residual
connections on learning, in Proc. 31st AAAI Conf. on
Artificial Intelligence, San Francisco, CA, USA, 2017.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
A. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al., Imagenet large scale visual recognition challenge, Int.
J. Comput. Vis., vol. 115, no, 3, pp. 211–252, 2015.

[11] Z. Qin, Z. N. Zhang, X. T. Chen, C. J. Wang, and Y.
X. Peng, Fd-mobilenet: Improved mobilenet with a fast
downsampling strategy, in Proc. 2018 25th IEEE Int. Conf.
on Image Processing, Athens, Greece, 2018, pp. 1363–
1367.

[12] D. S. Li, Z. Q. Lai, K. S. Ge, Y. M. Zhang, Z. N.
Zhang, Q. L. Wang, and H. M. Wang, HPDL: Towards
a general framework for high-performance distributed deep
Learning, in Proc. 2019 IEEE 39th Int. Conf. on Distributed
Computing Systems, Dallas, TX, USA, 2019.

[13] F. Tong and X. L. Liu, Samples selection for artificial neural
network training in preliminary structural design, Tsinghua
Science and Technology, vol. 10, no. 2, pp. 233–239, 2005.

[14] Z. Y. Hu, D. S. Li, and D. K. Guo, Balance resource
allocation for spark jobs based on prediction of the optimal
resource, Tsinghua Science and Technology, vol. 25, no. 4,
pp. 487–497, 2020.

[15] L. Guan, T. Sun, L. B. Qiao, Z. H. Yang, D. S. Li, K. S. Ge,
and X. C. Lu, An efficient parallel and distributed solution
to nonconvex penalized linear SVMs, Front. Inf. Technol.
Electron. Eng., vol. 21, no. 4, pp. 587–603, 2020.

[16] K. S. Ge, H. Y. Su, D. S. Li, and X. C. Lu, Efficient parallel
implementation of a density peaks clustering algorithm on
graphics processing unit, Front. Inf. Technol Electron. Eng.,
vol. 18, no. 7, pp. 915–927, 2017.

[17] M. Li, D. G. Andersen, J. Woo Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B. Y. Su, Scaling
distributed machine learning with the parameter server,
in Proc. 11th USENIX Symposium on Operating Systems
Design and Implementation, Broomfield, CO, USA, 2014.

[18] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L.
Wesolowski, A. Kyrola, A. Tulloch, Y. Q. Jia, and K. M.
He, Accurate, large minibatch SGD: Training imagenet in 1
hour, arXiv preprint arXiv: 1706.02677, 2017.

[19] L. Shen, P. Sun, Y. T. Wang, W. Liu, and T. Zhang,
An algorithmic framework of variable metric over-relaxed
hybrid proximal extra-gradient method, in Proc. 35th Int.
Conf. on Machine Learning, Stockholm, Sweden, 2018.

[20] L. Shen, W. Liu, G. Z. Yuan, and S. Q. Ma, GSOS:
Gauss-Seidel operator splitting algorithm for multi-term
nonsmooth convex composite optimization, in Proc. 34th

Int. Conf. on Machine Learning, Sydney, Australia, 2017,
pp. 3125–3134.

Yu Tang et al.: Increasing Momentum-Like Factors: A Method for Reducing Training Errors on Multiple GPUs 125

[21] X. Wang, S. Q. Ma, D. Goldfarb, and W. Liu,
Stochastic quasi-Newton methods for nonconvex stochastic
optimization, SIAM J. Optim., vol. 27, no. 2, pp. 927–956,
2017.

[22] Y. You, Z. Zhang, C. J. Hsieh, J. Demmel, and K. Keutzer,
ImageNet training in minutes, in Proc. 47th Int. Conf. on
Parallel Processing, Eugene, OR, USA, 2018, pp. 1–10.

[23] Y. You, I. Gitman, and B. Ginsburg, Large batch training of
convolutional networks, arXiv preprint arXiv: 1708.03888,
2017.

[24] T. Akiba, S. Suzuki, and K. Fukuda, Extremely large
minibatch SGD: Training ResNet-50 on ImageNet in 15
minutes, arXiv preprint arXiv: 1711.04325, 2017.

[25] L. Balles, J. Romero, and P. Hennig, Coupling adaptive
batch sizes with learning rates, arXiv preprint arXiv:
1612.05086, 2016.

[26] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,
and P. T. P. Tang, On large-batch training for deep learning:
generalization gap and sharp minima, in Proc. 5th Int. Conf.
on Learning Representations, Toulon, France, 2017.

[27] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, Deep residual
learning for image recognition. in Proc. 2016 IEEE Conf.
on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 2016, pp. 770–778.

[28] A. Krizhevsky and G. Hinton, Learning Multiple Layers of
Features from Tiny Images, Toronto, Canada: University of
Toronto, 2009.

[29] S. Ghadimi, G. Lan, and H. C. Zhang, Mini-batch stochastic
approximation methods for nonconvex stochastic composite
optimization, Math. Program., vol. 155, nos. 1&2, pp. 267–
305, 2016.

[30] S. L. Smith and Q. V. Le. A Bayesian perspective on
generalization and stochastic gradient descent. in Proc. 6th

Int. Conf. on Learning Representations, Vancouver, Canada,
2017.

[31] D. Masters and C. Luschi, Revisiting small batch training
for deep neural networks, arXiv preprint arXiv: 1804.07612,
2018.

[32] A. Krizhevsky, One weird trick for parallelizing
convolutional neural networks, arXiv preprint arXiv:
1404.5997, 2014.

[33] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C.
Baldassi, C. Borgs, J. Chayes, L. Sagun, and R. Zecchina,
Entropy-SGD: Biasing gradient descent into wide valleys,
in Proc. 5th Int. Conf. on Learning Representations, Toulon,
France, 2016.

[34] Q. X. Li, C. Tai, and W. E. Stochastic modified equations
and adaptive stochastic gradient algorithms, in Proc. 34th

Int. Conf. on Machine Learning, Sydney, Australia, 2017,
pp. 2101–2110.

[35] F. Y. Zou, L. Shen, Z. Q. Jie, J. Sun, and W. Liu, Weighted
adagrad with unified momentum, arXiv preprint arXiv:
1808.03408, 2018.

[36] N. Qian, On the momentum term in gradient descent
learning algorithms, Neural Netw., vol. 12, no, 1, pp. 145–
151, 1999.

[37] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization. in Proc. 3rd Int. Conf. on Learning
Representations, San Diego, CA, USA, 2015.

[38] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient
methods for online learning and stochastic optimization, J.
Mach. Learn. Res., vol. 12, pp. 2121–2159, 2011.

[39] T. Tieleman and G. Hinton, Divide the gradient by a running
average of its recent magnitude, COURSERA: Neural Netw.
Mach. Learn., vol. 4, pp. 26–30, 2012.

[40] Y. Nesterov, A method for unconstrained convex
minimization problem with the rate of convergence
O.1=k2), Soviet Math. Dokl., vol. 27, no. 2, pp. 372–376,
1983.

[41] J. M. Chen, X. H. Pan, R. Monga, S. Bengio, and R.
Jozefowicz, Revisiting distributed synchronous SGD, arXiv
preprint arXiv: 1604.00981, 2016.

[42] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization
methods for large-scale machine learning,
https://doi.org/10.1137/16M1080173, 2018.

[43] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y.
Bengio, and A. Storkey, Three factors influencing minima
in SGD, arXiv preprint arXiv: 1711.04623, 2017.

[44] S. Ioffe and C. Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
in Proc. 32nd Int. Conf. on Machine Learning, Lille,
France, 2015, pp. 448–456.

[45] S. L. Smith, P. J. Kindermans, C. Ying, and Q. V. Le, Don’t
decay the learning rate, increase the batch size, in Proc. 6th

Int. Conf. on Learning Representations, Vancouver, Canada,
2017.

[46] T. Q. Chen, M. Li, Y. T. Li, M. Lin, N. Y. Wang, M.
J. Wang, T. J. Xiao, B. Xu, C. Y. Zhang, and Z. Zhang,
MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems, arXiv preprint
arXiv:1512.01274, 2015.

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-
based learning applied to document recognition, Proc.
IEEE, vol. 86, no, 11, pp. 2278–2324, 1998.

[48] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini,
Building a large annotated corpus of English: The Penn
Treebank, Comput. Linguist., vol. 19, no, 2, pp. 313–330,
1993.

[49] I. Sutskever, J. Martens, G. Dahl and G. Hinton, On
the importance of initialization and momentum in deep
learning, in Proc. 30th Int. Conf. on Machine Learning,
2013, pp. 1139–1147.

[50] S. Ghadimi and G. H. Lan, Stochastic first- and zeroth-order
methods for nonconvex stochastic programming, SIAM J.
Optim., vol. 23, no. 4, pp. 2341–2368, 2013.

[51] F. Y. Zou, L. Shen, Z. Q. Jie, W. Z. Zhang, and W. Li,
A sufficient condition for convergences of Adam and
RMSProp, in Proc. 2019 IEEE/CVF Conf. on Computer
Vision and Pattern Recognition, Long Beach, CA, USA,
2019.

[52] S. J. Reddi, S. Kale, and S. Kumar, On the convergence
of Adam and beyond, in Proc. 6th Int. Conf. on Learning
Representations, Vancouver, Canada, 2018.

[53] S. Hochreiter and J. Schmidhuber, Long short-term memory,
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

126 Tsinghua Science and Technology, February 2022, 27(1): 114–126

Yu Tang received the BS degree from
National University of Defense Technology,
China in 2018, where he is currently
pursuing the master degree. His current
research interests include distributed
machine learning and Alternating Direction
Method of Multipliers (ADMM).

Zhigang Kan received the BEng degree
from National University of Defense
Technology, China in 2017. His research
interests include event extraction and
natural language processing.

Lujia Yin received the MS and BS
degrees in computer science from National
University of Defense Technology (NUDT)
in 2017 and 2014, respectively. He is
currently a PhD student at the National
Key Laboratory for Parallel and Distributed
Processing of NUDT. His current research
interests include deep learning in cloud

environment and Intel CPU deep learning accelerating.

Zhiquan Lai received the PhD, MS, and
BS degrees in computer science from
National University of Defense Technology
in 2015, 2010, and 2008, respectively.
He is currently an assistant researcher at
the National Key Laboratory for Parallel
and Distributed Processing of NUDT.
He worked as a research assistant at

Department of Computer Science, the University of Hong Kong
from Oct. 2012 to Oct. 2013. His current research interests
include high-performance system software, distributed machine
learning, and power-aware computing.

Zhaoning Zhang received the PhD and
MS degrees from National University
of Defense Technology, China in 2014
and 2009, respectively. He is currently an
associate researcher with the College of
Computer, NUDT. His research interests
primarily focus on computer vision, deep
learning acceleration, and distributed

computing.

Linbo Qiao received the PhD, MS, and BS
degrees in computer science and technology
from National University of Defense
Technology, China in 2017, 2012, and
2010, respectively. Now, he is an assistant
researcher at the National Laboratory
for Parallel and Distributed Processing,
National University of Defense Technology,

China. He worked as a research assistant at Chinese University
of Hong Kong from May 2014 to Oct. 2014. His research
interests include structured sparse learning, online and distributed
optimization, and deep learning for graph and graphical models.

Dongsheng Li received the PhD degree
in computer science and technology from
National University of Defense Technology
in 2005. He is a professor and doctoral
supervisor at the College of Computer,
National University of Defense Technology.
He was awarded the Chinese National
Excellent Doctoral Dissertation in 2008.

His research interests include distributed systems, cloud
computing, and big data processing.

