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A Dynamic and Deadline-Oriented Road Pricing Mechanism for
Urban Traffic Management

Jiahui Jin, Xiaoxuan Zhu, Biwei Wu, Jinghui Zhang�, and Yuxiang Wang

Abstract: Road pricing is an urban traffic management mechanism to reduce traffic congestion. Currently, most of

the road pricing systems based on predefined charging tolls fail to consider the dynamics of urban traffic flows and

travelers’ demands on the arrival time. In this paper, we propose a method to dynamically adjust online road toll

based on traffic conditions and travelers’ demands to resolve the above-mentioned problems. The method, based on

deep reinforcement learning, automatically allocates the optimal toll for each road during peak hours and guides

vehicles to roads with lower toll charges. Moreover, it further considers travelers’ demands to ensure that more

vehicles arrive at their destinations before their estimated arrival time. Our method can increase the traffic volume

effectively, as compared to the existing static mechanisms.
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1 Introduction

Large cities nowadays face a challenging problem on
urban road networks, which is traffic congestion[1, 2].
China’s economic loss caused by traffic congestion
accounts for 20% of the disposable income of the urban
population, which is equivalent to 5%–8% of the annual
gross domestic product loss, reaching 250 billion yuan
per year (http://www.cnki.com.cn/Article/CJFDTotal-
JSHJ2011S2031.htm). To reduce traffic congestion,
immense attention has been given to road pricing
mechanism in the urban management field, which
aims to divert traffic flows by charging vehicles on
busy roads[3]. In this way, vehicles wanting to reduce
travel expenses are guided to noncongested and cheaper
roads. This scheme is implemented using electronic toll
collection and has been successfully applied in some
countries or regions.
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In implementing road pricing, determining a
reasonable price for each road is mostly important[4].
Figure 1a depicts an abstract road network diagram,
where vertices represent urban areas, edges
represent roads, weights of edges represent road
price, and thickness of edges represents traffic
volume. On road network, two problems with road
pricing arise: First, traffic conditions constantly
change and are highly dynamic, especially during
unexpected circumstances, e.g., traffic accidents.
For example, Fig. 1b illustrates the one-day traffic
volume of a real-life road condition in Nanjing,
China (http://www.cnki.com.cn/Article/CJFDTotal-
JSHJ2011S2031.htm), where traffic flows of the road
change from time to time. Thus, dynamic road pricing
based on the real-time traffic volume is a necessary
action to carry out. Second, driving routes of vehicles
are highly time-related. Some people, such as office
workers and individuals who have a scheduled flight
or train, may have strict time requirements. They
must arrive at their destination before the exact time,
so they may not mind the traveling expense, while
other travelers who do not have time requirements
are more willing to choose routes with lower toll
charges. Figure 1c depicts how travelers’ deadline
affects toll sensitivity. When travelers’ deadline is fast
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Fig. 1 An example of road pricing.

approaching, they have lower sensitivity to tolls. On the
other hand, when travelers’ deadline is far, they tend
to have higher sensitivity. Therefore, a dynamic road
pricing mechanism is proposed that can set real-time
road price based on the current traffic volume on the
roads and it considers travelers’ time requirements to
arrive at the destination at the exact time.

Static and dynamic pricing mechanisms are the
existing road pricing mechanisms[5]. Static pricing,
which sets fixed tolls on roads, is easy to implement
but may not match the traffic dynamics. As for dynamic
pricing, in some early works, dynamic pricing is
assigned in different tolls to a road on different time
slots[6]; however, this may not adapt well to the
dynamic traffic environment. Recent machine learning
approaches adjust road fees in real time dynamically.
An example is DyETC[7] that uses a policy function
based on ˇ distribution to solve this problem. However,
DyETC has some issues: First, tolls are limited to
a range Œ0; amax� (e.g., in Singapore, the maximum
toll is 6 Singapore dollars), and the ˇ distribution is
ineffective when it comes to dealing with bounded toll
interval. Hence, it cannot adapt properly to the traffic
environment. Second, it does not consider the travelers’
time requirement, and thus, cannot be well adapted with
the complex and dynamic environment.

In this paper, a novel dynamic road pricing mechanism
aiming to optimize traffic congestion and meet travelers’
time requirements is proposed. Travelers’ demands refer
to the requirement of individuals moving in different
ways for various purposes. We propose travelers’
deadlines to model travelers’ demands. The deadlines
prompt vehicles to arrive at their destination before
a specific time. Vehicles’ choice of routes will also

be affected by deadlines. We also propose a deep
reinforcement learning based algorithm to solve this
problem.

In summary, our contributions are as follows:
• Deadlines are used as travelers’ demands to adapt

to real-life traffic environment. Each deadline of vehicles
is allocated randomly to adapt to the changing time
requirements in reality. To reduce the scale of state space
and speed up calculation, deadlines are assigned at the
minute level, and the travelers having the same deadline
are regarded as traffic flow to reduce the complexity of
the problem.

• To adapt to real-time changing traffic conditions
and meet the travelers’ time requirements, we propose
dynamic and deadline-oriented (DADO), a deep
reinforcement learning based algorithm, which uses deep
neural networks to simulate the policy network and critic
network in the policy gradient algorithm, thereby better
representing policy and value functions. In addition, we
adopt an asynchronous method to accelerate training
speed.

• As the experimental results show, the method we
proposed increases the amount of vehicles arriving at the
destination before the estimated deadline as compared
to other existing mechanisms.

This paper is organized as follows. Section 1 points out
the relevant background of road pricing, introduces the
issues existing in the current road pricing mechanisms,
and puts forward our solutions. Section 2 outlines the
existing research work on road pricing mechanisms.
Section 3 introduces the modeling process for the road
pricing mechanism considering the deadline. Section 4
develops the DADO algorithm in detail. Section 5 offers
details of experiments conducted to compare the DADO
algorithm with the existing road pricing mechanisms
to verify the effectiveness and efficiency of the DADO.
Section 6 provides a conclusion to the paper.

2 Related Work

In recent years, road pricing mechanism received
immense attention in the urban traffic management
field. The research on road pricing mechanism has gone
through three stages[8].

The first stage of road pricing mechanism was the
original static pricing. Researchers based road price on
historical traffic flow data and experience. Joksimovic
et al. formulated the optimal toll assignment problem
as a bi-level optimization problem[9]. Comparing the
effects of fixed tolls and time-varying tolls assigned
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on the road network, they adopted a simple heuristic
search algorithm to determine the optimal toll pattern[8].
Lin et al. proposed an algorithm[10] using a heuristic
combining dual variable approximation technique and
a method of successive average to determine the toll
charges on roads. Zhou et al. assumed that the traffic
demand on road networks was known and the vehicles on
the road are homogeneous[11]. Except for adopting a two-
level iteration method to solve the problem, approximate
subgradient projection method for outer-level iteration
and partial linearization method for inner-level iteration
were proposed.

The second stage was initial dynamic road pricing.
Researchers started assigning fine-grained, time-varying
tolls; however, a lot of strict assumptions were made
about the model. Sharon et al. introduced an efficient
tolling scheme and proved the effectiveness of the
secheme using a traffic secheme[13]. Based on previous
work, Sharon et al. proposed a new dynamic charging
scheme, �-tolling. It was the first time a dynamic
road pricing model was realized. The toll on each road
was distributed proportionally based on the difference
between the current driving time of the vehicle and the
free driving time without congestion. Since �-tolling
was based on the observed traffic flow, �-tolling could
adapt to real-time traffic conditions. The calculated
locally toll could adapt to large networks. However, they
assumed that the parameters on each link are the same[12].
Bui et al. designed a novel mechanism known as user-
centric dynamic pricing (UCDP)[14]. This mechanism
introduced a fairness constrained shortest path problem
with a special structure, thus maximizing social welfare
and guaranteeing fairness through polynomial time
computation of path allocation.

With machine learning development, various research
projects on road pricing mechanism based on
reinforcement learning methods have been proposed.
Mirzaei et al. defined �-tolling in more details. They
considered that the parameters on each link were
different. Although it would introduce more parameters
and increase training difficulties, they had verified
the effectiveness of varying parameters based on
reinforcement learning[15]. PG-ˇ adopted reinforcement
learning to implement traffic charging for city roads[7]

and adopted the policy gradient algorithm. It aims to
maximize the number of vehicles that arrives at their
destination. PG-ˇ defined a DyETC model, abstracted
city links into road network diagrams, adopted the
bureau of public roads (BPR) model to explain vehicles’

driving time, and then expressed DyETC problem as a
Markov decision process problem. Based on DyETC
model , PG-ˇ defined several elements in reinforcement
learning. Compared with some traditional heuristic
algorithms, the trained PG-ˇ alleviates traffic congestion
by allocating the road tolls. Although PG-ˇ was one of
the few successful examples of reinforcement learning,
it had limitations since different time requirements of
travelers were not taken into account. Soylemezgiller et
al. proposed a radically different road pricing scheme[16],
wherein the road price is adjusted dynamically based
on the instantaneous traffic densities of each road. In
addition, machine learning algorithm is adopted to learn
the past usage statistics of the road in order to predict
a possible congestion. The mechanism proposed in this
paper homogenizes the traffic densities over the entire
traffic network. DPG-ˇ[17] proposed deep reinforcement
learning to solve the problem of low computational
efficiency. The DPG-ˇ adopted a deep neural network
to replace the linear representation of PG-ˇ and used
temporal difference to replace the Monte Carlo to speed
up the update of the target value. However, the research
was only limited to travelers who have the same time
requirements and did not distinguish among different
travelers.

Except for adopting punishment mechanism to
alleviate the traffic flow, some research projects use
incentive mechanism to divert traffic flow on busy
roads. Aung et al. proposed a new congestion pricing
system based on reward and punishment policies in a
smart city environment[18]. The vehicles were rewarded
for voluntarily choosing to take an alternative path to
alleviate traffic congestion. Aung et al. also designed
a new virtual currency known as T-coin (traffic coin),
which is used to reward the vehicles for their positive
attitude[18].

3 Problem Formulation

This section outlines the urban traffic environment and
builds models for areas, roads, vehicle driving time,
vehicle travel costs, and traffic demand.

3.1 Dynamic road pricing problem

Urban environment: We define the dynamic road
pricing problem based on the DyETC[7] model. The
city is represented as a directed graph network G D
.O;E;U /. O represents the set of origin-destination
pairs, E is the set of roads, and U is the set of urban
areas. An OD (origin-destination) pair requires a pair
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of origin and destination, as well as the transportation
needs and all the paths from the origin to the destination
in the entire road network. We define the OD pair as a
tuple huk; uj ; qtk;j ; Pk;j i, where area uk is origin, uj is
destination, qt

k;j
represents the OD demand from uk to

uj at time step t , and Pk;j represents all the paths from
uk to uj , which do not contain a cycle. qt

k;j
is a random

variable following a Gaussian distribution function.
Deadlines: Travelers’ demands refer to the

requirements of individuals moving in different
ways for various purposes. Deadlines are used to
model the travelers’ demands to adapt to real-life
traffic environment. The deadlines mean that vehicles
must arrive at their destination before an exact time.
Many vehicles are on the road during peak hours, and
intuitively, each traveler has a different deadline. If each
traveler’s deadline is processed separately, this problem
will result in large data volume and high dimension,
making the data processing and training tasks difficult.
Therefore, treating travelers with the same deadline as
traffic flow is considered.

The government published road tolls during the rush
hour of the day; the length of decision-making time
is H (minute). We divide H into some integer time
intervals. The length of each interval is � minutes. Thus,
continuous time H is discretized to some time periods
t D 0; 1; : : : ;H . Deadline d D 0; : : : ;H (minute) is
assigned to vehicles randomly, and vehicles with the
same deadline are treated as traffic flow. For example, if
d D 1, the traveler’s deadline is the first minute in the
long decision-making time. Travelers having the same
deadline are regarded as a flow to process, which in turn,
can reduce the data volume, improve the accuracy of
neural network model, reduce the training difficulty, and
increase the speed of calculation.

Driving time: The driving time of vehicles whose
deadlines are d on road e at time step t is T te D T

0
e Œ1C

M.ste=Ce/
N �, and T 0e is the free driving time on road

e (no congestion), which depends on the length of the
road e. M and N are constants in the BPR model; their
function is to quantify the impact of the traffic congestion
to the vehicles’ driving time. ste denotes the amount of
vehicles on road e; the more vehicles on the road, the
longer the driving time. Ce indicates the capacity of road
e.

Travel cost: The travel cost through path p 2 Pk;j
from areas uk to uj includes road price cost and time
cost. As mentioned before, each traveler has different
deadlines. If the current time is still long before the

traveler’s deadline, the traveler considers the road price
and the time cost in choosing a route, but when the
current time is very close to the traveler’s deadline,
the traveler’s time cost increases abruptly, leading the
traveler to choose the nearest route. Specifically, the
travel cost is defined as follows:

ctk;j;p;dD

8̂<̂
:
P
e2p.a

t
eCe

D�x/; x>D; d¤0I

.D � x/2; x<D; d¤0IP
e2p.a

t
eC!T

t
e /; dD0

(1)

We denote
�
d �

�
T te C .t � 1/ �

��
as x, which

indicates the time interval between the current time
and the traveler’s deadline. Furthermore, d is the
traveler’s deadline, and T t

e;d
is the driving time on

road e during period t . t represents the current time
period. Additionally, .t � 1/� indicates the vehicles’
total driving time from the beginning of the decision-
making process. Those vehicles with d equal to zero
have no time constraint; hence, they choose route based
on the road tolls and the driving time on the road. ate
is the road price on the road e. w is the value of time.
When d ¤ 0, the choice will be very different. D is a
time threshold, and it is a constant. When x > D, it
indicates that the remaining time is very abundant, which
leads the traveler to choose route based on road toll and
the remaining time. With the decrease of x, the cost will
increase slowly. When x < D, the current time is very
close to the deadlines. With the increase of x, the time
cost of travelers increases dramatically.

Our traffic flow model is based on the widely adopted
stochastic user equilibrium model[7, 19–21], which is

xt
k;j;p;d

D
expf�w0ct

k;j;p;d
gP

p02Pk;j
expf�w0ct

k;j;p0;d
g

, measuring the

proportion of the traffic flow demand via path p from uk
to uj . �w0 is a constant measuring vehicles’ sensitivity
to traveling cost. When the sensitivity is higher, the cost
is greater, making the traffic demand of this route smaller.
When the sensitivity becomes smaller, the traffic cost
becomes smaller, making the traffic demand of this route
greater.

3.2 Reinforcement learning model

The problem we defined is a long time decision
problem. We formulate the problem as a discrete-time
Markov decision process (MDP), wherein the scale and
dimension of state and action are high. Due to the huge
scale of MDP, a reinforcement learning based model
is used to determine dynamic road pricing. Different
from the existing mechanisms, we further consider
the traveling deadline to model the travelers’ time
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requirements. The reinforcement learning model has
four elements: environment, state, action, and reward
function. Figure 2 depicts the reinforcement learning
framework of our problem.

State: The state in traffic environment is st
e;j;d

, which
means that the amount of vehicles traveling on road e
going to their destination uj must get there before d .
ste D hste;j;d i is the state vector of road e at time step t ,
and st D hstei is the state matrix of road network G.

Action: The government should publish a reasonable
road price at each time step t , so the action is defined
as at D

˝
ate
˛
; e 2 E. We assume that all roads have toll

facility.
Traffic demand: Traffic conditions and road price

change with time; therefore, once a traveler reaches the
end of a certain road, there is an incentive to change
his path according to the current traffic conditions and
tolls at the intersection. The readjusted route does not
depend on decisions made by the traveler in the past
but only depends on the travelers’ specified destination
and deadline. Therefore, for vehicles whose deadline
falls in d arriving at the end point uj of the road e, we
think it is the new starting point uk of these vehicles,
and the destination of these vehicles is still uj ; their
deadlines are still unchanged. In order to distinguish
these vehicles from vehicles that really start with uk , we
define as follows:

During time period t , there are two types of total OD
demands, namely, primary OD demand and secondary
OD demand. The primary OD requirements qt

k;j;d
from

uk to uj are the amount of vehicles that hope to start
from the uk at time period t , while the secondary
OD demand q�t

k;j;d
is the amount of vehicles from the

adjacent road of uk to the destination uj during the time
period t � 1. Vehicles generating these two types of OD
demands must arrive at their destination before d . The
secondary OD demand pair from uk to uj is expressed
as q�t

k;j;d
D
P
e
0CDuk

st
e0;j;d;out. s

t
e0;j;d;out is the vehicles

Fig. 2 Reinforcement learning interaction diagram.

leaving the road. Supposing they are proportional to the
average speed of vehicles during the time period t , it

is formulated as
st
e;j;d
� �

T 0e Œ1CM.s
t
e=Ce/

N �
. eC represents

the terminal point of road e (correspondingly, e� is the
starting point of road e).

State transition: After the traffic equilibrium is
formed, the environment can be switched to the next
state. The amount of vehicles on road e during time step
t C 1 depends on three parts, expressed as

stC1
e;j;d
D ste;j;d �

st
e;j;d
� �

T 0e Œ1CM.s
t
e=Ce/

N �
CX

ukDe
�\e2p2Pk;j

�
qtk;j;d C

X
e
0CDuk

ste0;j;d;out

�
� xtk;j;p;d

(2)
where st

e;j;d
is the amount of vehicles still on road

e at last time step t , and this batch of vehicles’

deadlines is d .
st
e;j;d
� �

T 0e Œ1CM.s
t
e;d
=Ce/N �

is the amount of

vehicles leaving the road.
P
ukDe

�\e2p2Pk;j
.qt
k;j;d
CP

e
0CDuk

st
e0;j;d;out/ �x

t
k;j;p;d

is the vehicles entering the
road. As mentioned earlier, there are two kinds of traffic
demands on a road. One is the primary demand, that
is, the vehicles taking uk as the origin and uj as the
destination, and the other is the secondary demand, that
is, the traffic entering road e from neighboring roads.

Reward function: The effect of the reinforcement
learning model depends on the setting of reward function.
With an effort to get a policy aiming to guide vehicles in
order to alleviate traffic congestion, we designed several
different reward functions, based on which the road
pricing mechanism on alleviating traffic congestion is
compared.

The effect is measured by the number of vehicles
arriving at their destination before deadline. The reward
function is defined as follows:

Rt .st / D
X
e2E

X
ukDe

C

st
e;j;d
� �

T 0e Œ1CM.s
t
e=Ce/

N �
; d > t � �

(3)
This reward function measures the number of vehicles
arriving at their destination before deadline. The agent
will maximize the expected rewards.

Rt .st / D�
X
e2E

X
ukDe

C

st
e;j;d
� �

T 0e Œ1CM.s
t
e=Ce/

N �
;

d < t � � (4)
The goal of above reward function is to minimize the

number of travelers who fail to arrive at their destination
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on time with the final strategy.

Rt .st / D�
X
e2E

X
ukDe

C

st
e;j;d
� �

T 0e Œ1CM.s
t
e=Ce/

N �
�

.t � � � d/ ; d < t � � (5)

This function aims to minimize the time of arrival at
the destination beyond travelers’ deadlines.

The state value function vt .st / represents the expected
total reward obtained by selecting actions according to
the strategy � from t to t CH :

vt .st / D
tCHX
t 0Dt


 t
0�tRt

0

.st
0

/ (6)

where 
 is a discount factor.
Policy: At time step t , the policy � t .at jst / is a

conditional probability function, used to determine the
probability of selecting an action in a certain state. The
optimal policy obtained by training the agent maximizes
the value function.

4 DADO Algorithm

Due to the huge scale of the problem, great
challenges are faced in finding the optimal policy
function. Traditional machine learning methods require
a comprehensive understanding of the environment.
However, in our defined problem, traffic environment
is complicated and constantly changing; it cannot
be expressed by mathematical formulas. In addition,
the characteristics of samples used by traditional
machine learning usually need to be designed by
human experts. As known, features have a crucial
influence on the generalization of the model; however,
traffic environment features cannot be expressed
as the environment changes with time. Generally,
with the increase of state and action space, the
complexity of the reinforcement learning increases
exponentially. Traditional reinforcement learning has
a two-dimensional Q table presenting the value of state-
action pair, but this problem has multidimensional and
continuous state space and action space[22].

Hence, function approximators are generally adopted.
There are many kinds of approximators such as
linear function approximation or nonlinear function
approximation. Deep neural networks as nonlinear
function approximation have also been used for large
reinforcement learning tasks. Deep neural networks have
the ability of automatic feature extraction; thus, the use
of deep learning is an advantage to represent the agent’s
observation as an abstract representation in learning

an optimal control policy. When faced with the high-
dimensional state space and bounded and continuous[23]

action space, deep learning will have convergence
problems. The policy gradient methods have advantages
when dealing with this situation[24, 25]. The policy
gradient uses gradient descent methods in finding the
optimal policy. Policy gradient does not estimate the
value of state-action functions; it learns the policy
directly. Based on the above factors, we present our
solution algorithm, which is the DADO policy gradient
algorithm.

DADO is different from the Monte Carlo based policy
gradient algorithm that observes the whole process of an
episode and calculates the accumulative reward until
the end of the episode. It uses the average reward
of all episodes to estimate the reward of the current
policy. The total reward from an episode is a random
variable, and the Monte Carlo based algorithm uses the
sum of the reward, leading to the large variance of the
actual cumulative reward obtained by the Monte Carlo
algorithm.

DADO adopts temporal difference learning, which has
lower variance compared to the Monte Carlo algorithm.
More specifically, DADO adopts a structure named
“actor-critic”. Actor is the policy function aiming to
approximate the optimal policy and choose the optimal
action, while critic is the value function that evaluates
the actor’s choice and guides the next choice. We use the
advantage function that has a small variance compared
with accumulative reward as the evaluation indicator of
critic. The formula of advantage function is as follows:

A�.s; a/ D Q�.s; a/ � V�.s/ (7)

where V�.s/ is the sum of the value of all possible
actions taken in this state. Q�.s; a/ is the action
value function corresponding to the action in this state.
Q�.s; a/ � V�.s/ means the advantage of action value
function over the current state value function.

The actor aims to maximize the sum of discounted
rewards J.�; st /. J.�; st / is represented as

EŒlog�� .ajs/.Q�.s; a/ � V �s /� (8)

where log�� .ajs/ is the logarithm of the probability of
taking action given the state s. Q�.s; a/ is the action
value when performing the action a given the state s.
V �s denotes the state value, and it is the output of the
critic. The critic learns the state value, and we use Eq.
(9) as loss function. The critic learns to minimize the
difference between real action value and estimated value:

losscritic D .Q
�.s; a/ � V �s /

2 (9)
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The state value of the traditional MDP will not change
with time, but in the problem we studied, the amount
of vehicles arriving at the destination depends on the
specific time step and OD demand of the future time
step. In addition, the action also depends on an exact
time period. Hence, we updated its value function vt .st /
and policy function � t .ajs; � t / for each time period t :
5� tv�.s/ D Qt .st ; at /5� t log� t .at jst ; ��� t / (10)

where Qt .st ; at / is the action value of executing action
under a given state.

The actor training network of DADO uses a deep
neural network with three full connection layers
to approximate the policy function � t .at jst /. The
critic network consists of two full connection layers.
Connected parameters are trained separately and updated
with the stochastic gradient descent method.

The data network required is independent and
distributed. An asynchronous method is adopted that
does not produce data at the same time to break the
correlation between data and make the convergence
easier. Each worker directly takes parameters from the
global network and interacts with the environment to
output the action. The gradient of each worker is used to
update the parameters of the global network. Figure 3
depicts the architecture of the proposed DADO.

At each time step, the local agent extracts state
representation from traffic dynamics and puts the state
to the actor, and the actor performs an action based on
the input state and policy. After that, the critic makes an
evaluation of the action and updates the local parameters.
After the update, the local agent will push the parameters
to the global agent and pull the latest parameter from the

global agent.
Algorithm 1 illustrates the processing of a single actor.

In Algorithm 1, we assume the global shared network

Algorithm 1 DADO algorithm for each actor learner
1: == Assume global shared parameter vectors ��� and ### and

global shared counter T D 0
2: == Assume thread-specific parameter vectors � 000 and ### 0

3: Initialize global ��� t  ���0; ###
t
 ###0;8t D 0; 1; : : : ;H � 1;

4: Initialize step counter t  1

5: repeat
6: Reset gradients: d�t  0 and d#t  0

7: Synchronize thread-specific parameters
� 0t D �t and # 0t D #t

8: tstart D t

9: Get state st
10: repeat
11: Choose action at with the highest probability according

to policy � .at jst I � 0/;
12: Receive reward rt and new state stC1
13: t  t C 1

14: T  T C 1

15: until terminal st or t � tstart DD tmax

R D

(
0; for terminal st I

V.st ; #
0/; for non-terminal ==Bootstrap from last state

16: for i 2 ft � 1; : : : ; tstartg do
17: R ri C 
R

18: Accumulate gradients � 0t W
d�t  d�t C5� 0t log�

�
ai jsi I �

0
t

� �
R � V

�
si I#

0
t

��
19: Accumulate gradients # 0t W

d#t  d#t C @
�
R � V

�
si I#

0
t

��2
=@# 0t

20: end for
21: Perform asynchronous update of �t using d�t and of #t

using d#t
22: until T > Tmax

State 
representation

t1 t2 t3

Traffic dynamics

S 
t S t

S t

…  

…  

at at at

Critic

Policy

DNN

Update

AC 1 AC 2 …�  AC m 

Tolling agents

AC 1 AC 2 … AC m AC 1 AC 2 … AC m

Global AC

Push Pull

Actor

tH

1 2 H

H21

Fig. 3 Architecture of the proposed DADO.
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parameters are vectors ��� and ### . The thread-specific
parameter vectors are ��� 0 and ### 0. The input requires
the decision-making horizon H and the global shared
counter T . We need to initialize the step counter t to
perform an advanced update. Later, the algorithm starts
the loop. In the loop, the agent resets the gradients,
pulls the global parameter assignments to the local
network, and starts a new episode. Post that, the agent
interacts with the environment, and the action is selected
based on the policy function � .at jst I � 0/. The agent will
receive immediate rewards which are computed using
Eqs. (3)–(5), and the environment will transform to
the next state. If an episode has ended or the number
of steps calculated in advance has been reached (Line
15), the algorithm then begins to calculate the total
discount reward and updates the parameters at each time
period with stochastic gradient descent method.Rmeans
the sum of rewards from time tstart to t obtained from
the interactions, representing the “real” value based on
the policy. V.si I# 0/ is the “estimated” sum of rewards
approximated by the critic. After updating the local
parameters, the local parameters will be pushed to the
global network to update the global net. The whole
process iterates until the number of episodes reaches
a predefined global counter Tmax.

5 Evaluation

The effectiveness of our approach is evaluated using
simulations performed on a PC with Intel CPU (I7
87000K), 16 GB memory, and NVIDA GPU (2080Ti).
Simulation data and parameters are as follows.

Simulation data: The simulation data are generated
based on the “2019 Main Population Data of Nanjing
Regions” published by the Nanjing Municipal Bureau
of Statistics, containing the population of Qinhuai,
Jiangning, Jianye, and Qixia districts. A road network
connecting these districts (see Fig. 4) is used in our
evaluation.

We use the amount of vehicles per person in different
urban areas to estimate the real origin-destination
demands of Nanjing. The regional population is 3:5415
million, and the total number of vehicles is 2:58

million; hence, the amount of vehicles per person has is
258=354 D 0:73.

At the initial time period t , the amount of vehicles
on the road that falls in each d .d D 0; 1; : : : ;H/ is
randomly generated by random function within the range
of 0:5 � 0:7 of road capacity. The primary OD demand
is generated by a function of time, where the demand at

Fig. 4 Road network used by simulations.

time period t D 0 is the lowest, reaches the peak in the
middle of the decision time H , and then gradually tends
to a lower level. This specialty is realized via a Gaussian
distribution function. The peak traffic demand for each
origin-destination pair is randomly generated within
Œ8; 12� vehicles per minute. We set the OD demand at
t D 0 (usually starting at peak time) to 60% of the peak
OD demand.

Parameter setting: Table 1 showcases the parameter
setting of the simulations. The actor and critic’s learning
rate are set as 10�10 and 10�7, respectively, which
decide the fineness of learning. Discount factor 
 assigns
different weights to different time periods. The amount
of episodes of training is 1000, and there are 10 agents
interacting with the environment at the same time. The
number of urban areas U is set to 4, and roads are
set to jEj D 10. Advanced update method is adopted;
hence, the local agent will update parameters every
five steps. Furthermore, the constants M and N in
driving time definition are set to 0:15 and 4, respectively.
We determine that the max toll on each road is 6
Yuan according to Singapore’s road tolls. Decision time
(usually the peak time) is set as 360min, and each time
period � is 10min. The value of time of travelers with
no time requirements is set as 0:5.

Table 1 Parameter setting.
Parameter Value Parameter Value

Learning rate of actor 10�10 Period length � 10 min
Learning rate of critic 10�7 Update step 5

Discount factor 
 0.9 Number of local agents 10

Training episodes 1000 Number of areas 4
Max toll 6 Number of roads 10

Decision time H 360min N 4
M 0.15 Cost sensitivity w0 0:5

Value of time w 0.5
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5.1 Comparison with other mechanisms

We compare DADO based on three policies trained
with existing road pricing mechanisms. The existing
mechanisms are as follows:

(1) Fixed[26]. This road pricing mechanism allocated
fixed fees on each road through assuming that fees are
proportional to average traffic demand on the road at
each time step. The traffic demand is estimated based on
historical traffic data.

(2) ���-tolling[13]. The tolls were allocated in
proportion to the difference between the current driving
time and the free driving time of vehicles on each road.

(3) DyETC[7]. The road pricing policy adopted
beta distribution to balance the “exploitation” and
“exploration” when choosing actions.

Results: The policy of DADO in Figs. 5a and 5d is
trained based on Eq. (3). Figure 5b is trained based on
Eq. (4), and Fig. 5c is trained based on Eq. (5). Figure 5
is the comparison result of different mechanisms
under different measuring standards. Figures 5a–5d
indicate that DADO performs better than the other
three mechanisms under different measuring standards.
Figure 5a shows that DyETC, which is also based

on reinforcement learning, is not sensitive in time
dimension and cannot handle the time requirements
of vehicles, leading to the same effect of guiding the
traffic flow as the heuristic �-tolling. Figures 5b and
5c show that when processing the time dimension,
DADO performed very well. The number of vehicles
that fails to arrive on time and the time beyond
deadlines are at the minimum compared with others.
Figure 5d is the total traffic flow without considering
time dimension. It shows that when time dimension
is not considered, our proposed DADO performs a
little worse when compared with DyETC. In the real-
life traffic environment, the agent would give more
consideration about the environment, so the effect would
be less than DyETC with no time consideration.

5.2 Effects of different traffic conditions

We compare DADO trained by Eq. (3) with the
existing road pricing mechanisms under different traffic
conditions. The results are shown in Fig. 6.

Results: The optimization objective is to maximize
the number of vehicles arriving at destination before
the deadline. Figure 6 depicts the amount of vehicles
arriving at destination before the deadline for different
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road pricing mechanisms under different traffic settings.
The y-axis is the amount of vehicles arriving at their
destination before deadline; the x-axis is for parameters
to be evaluated, and its value represents the scaling ratio
compared to the original setting. Figure 6a illustrates
how the traffic flow increases with an increase of the
initial amount of vehicles and DADO performs better in
different scales of initial state. The effect of two heuristic
algorithms on traffic flow is not good; we analyze the
reason for it as that in the subsequent decision-making
process, too many vehicles are imported into the roads
and the heuristic algorithm cannot adapt well to the
dynamically changing traffic environment. Figure 6b
depicts initial traffic demand. With an increase in traffic
demand, all the mechanisms are increased. DADO
performs better than the other mechanisms. The two
heuristic algorithms perform poorly than the others. We
hold the opinion that fixed scheme and�-tolling scheme
cannot adopt to large-scale traffic demand. Figure 6c
depicts that as the cost sensitivity of vehicles increases,
the traffic flow of road pricing mechanisms also
increases. When the traveling cost of a busy road
increases, the vehicles will divert to the less busy
and cheaper road, which can reduce the traveling cost.
Figure 6d depicts the better adjustment ability of DADO
under different maximum tolls.

As can be seen in Figs. 6a–6d, we can observe
that under different traffic parameter settings, DADO
mechanism’s performance is still optimal, and
DyETC mechanism’s effect is slightly worse than the
DADO mechanism. However, these two road pricing
mechanisms perform better than other mechanisms. It
can be deduced from Fig. 6 that the performance of
heuristic algorithm under different traffic conditions
is not as good as that of the reinforcement learning
algorithm. We analyze that heuristic algorithm cannot
adapt to the dynamic traffic environment with time
dimension, hence the poor performance.

5.3 Effects of different policies

Setting reward functions plays an important role in policy
learning. To verify the effectiveness, we trained three
sets of policy (parameters) under three predefined reward
functions.

Results: Figure 7 depicts the experimental result. p1
is for parameters trained based on the reward function
that maximizes the number of vehicles arriving on
time; this policy will make more vehicles arrive at their
destination on time when the agent adopts this policy. p2
is for parameters trained based on the reward function
that minimizes the number of vehicles failing to arrive
on time, and this policy will minimize the number
of vehicles arriving over time. p3 is for parameters
trained based on the reward function that minimizes
the time of failure to arrive on time. As can be seen
in Figs. 7a–7c, for different goals, each of the training
policies trained by the specific reward function performs
better than the others. For example, from Fig. 7a,
y-axis is the number of vehicles arriving on time, and
x-axis is different policies. p1 performs better than
the others, and Figs. 7a–7c prove the effectiveness of
the reward function we designed. In Fig. 7d, y-axis
is the number of vehicles arriving at the destination
without considering whether the vehicles arrive on time.
Because we want to know which policy is the most
effective in reducing traffic congestion on a macro level,
we can see that policy 2 is better on alleviating traffic
congestion without time consideration.

6 Conclusion

In this paper, we design a reinforcement learning model
and a neural network model based for dynamic road
pricing. The DADO algorithm based on the policy
gradient algorithm is proposed. In the study, the road
pricing mechanisms trained by the DADO algorithm
are compared with the other three existing road pricing
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mechanisms to verify the effectiveness of DADO
algorithm. Although this paper considers the difference
in time value of different travelers, the varied money
sensibility of different travelers is not taken into account.
For example, travelers with high wages may be more
concerned about time costs, while travelers with low
wages are more concerned about money costs. This
factor will be considered in our future work.
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