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Metabolite-Disease Association Prediction Algorithm Combining
DeepWalk and Random Forest

Jiaojiao Tie, Xiujuan Lei�, and Yi Pan�

Abstract: Identifying the association between metabolites and diseases will help us understand the pathogenesis

of diseases, which has great significance in diagnosing and treating diseases. However, traditional biometric

methods are time consuming and expensive. Accordingly, we propose a new metabolite-disease association

prediction algorithm based on DeepWalk and random forest (DWRF), which consists of the following key steps:

First, the semantic similarity and information entropy similarity of diseases are integrated as the final disease

similarity. Similarly, molecular fingerprint similarity and information entropy similarity of metabolites are integrated

as the final metabolite similarity. Then, DeepWalk is used to extract metabolite features based on the network of

metabolite-gene associations. Finally, a random forest algorithm is employed to infer metabolite-disease associations.

The experimental results show that DWRF has good performances in terms of the area under the curve value,

leave-one-out cross-validation, and five-fold cross-validation. Case studies also indicate that DWRF has a reliable

performance in metabolite-disease association prediction.
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1 Introduction

Metabolism is the power source that drives all life
activities of organisms[1]. Substances produced or
consumed during metabolism are called metabolites.
The levels of metabolites can directly reflect the
physiological state of the body, and sufficient evidence
shows that disease is always accompanied with changes
in metabolites[2]. Therefore, the recognition of abnormal
and disease-related metabolites is of great significance
not only to improve the level of clinical diagnosis, but
also to better understand the pathological metabolic
process.

Over the years, many biologists have obtained
considerable achievements in the study of
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metabolites[3–6]. Moats et al.[7] used quantitative
1H magnetic resonance spectroscopy to analyze 10
patients with Alzheimers disease (AD) and seven
normal elderly patients, and the findings showed
abnormal metabolite concentrations in the patients
with AD. Unschuld et al.[8] used high-field-intensity
MRS technology to identify the relationship between
brain metabolites and cognitive function within the
7-Tesla range in patients with Huntingtons disease. Hori
et al.[9] used gas chromatography-mass spectrometry
for the metabolomics analysis of patients with lung
cancer (LC). Cheng et al.[10] described changes in
the lipid metabolism that regulate metabolic diseases,
such as nonalcoholic fatty liver disease, obesity,
and cancer, and suggested that natural compounds
may provide potential therapeutic agents for the
treatment or prevention of metabolic disorders with
abnormal lipid metabolism. To organize metabolite
data more intuitively, some metabolite databases were
created[2, 11, 12]. The traditional biological methods are
time consuming and labor intensive. Therefore, it is
necessary to develop an effective computational method
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to predict metabolite-disease associations. Based on the
functional relationship between metabolites in metabolic
pathways, Shang et al.[13] proposed a path-based random
walk method to identify candidate metabolites for
diseases. Metabolites with similar functions are often
associated with the same or similar diseases. Yang et
al.[14] used a random walk method to predict disease-
related metabolites based on the similarity of metabolites.
Considering a large number of metabolic markers in
diseases, Wang et al.[15] used the collaborative filtering
strategy to construct a reliable metabolic network based
on the literature scores and functional similarity of
metabolites to further predict the relationship between
metabolites and diseases. These methods are based on
disease and metabolite similarities and use common
network computing methods to predict the metabolite-
disease associations. Moreover, only metabolite-disease
association data were used instead of their respective
topological features. Intuitively, metabolites do not exist
independently in the human body, and other behaviors
of life activities will also lead to abnormal metabolites,
which will lead to the occurrence of diseases. Thus,
new metabolite features or disease features can be
obtained by combining other omics data. In recent
years, machine learning methods have been widely
used in computational biology. In this article, we
introduce the relationship between metabolites and
diseases and use DeepWalk (DW) method to extract new
metabolite features. The random forest (RF) algorithm
has been widely applied in bioinformatics and has
achieved good results. Qi[16] demonstrated that the RF
has unique advantages in dealing with small sample
sizes, high-dimensional feature spaces, and complex data
structures, and its application in computational biology
is increasing. Chen et al.[17] found that the RF has a
good performance in dealing with unbalanced problems.

In this article, we propose a novel method
called DWRF (combination of DW and RF) to
identify potential metabolite-disease associations. First,
we calculate disease semantic similarity, molecular
fingerprint similarity of metabolites, and the information
entropy similarity of metabolites and diseases, and
integrate the similarity of diseases and metabolites.
Second, we extract metabolite features from a
metabolite-gene network using the DW method. Finally,
the RF algorithm is used to predict disease-related
metabolites. The results of our evaluation show that
DWRF has a good performance in metabolite-disease
association prediction.

2 Material and Method

2.1 Data

The Human Metabolome Database (HMDB) records
detailed information about small molecule metabolites
found in the human body[12]. By removing redundant
and missing data downloaded from the HMBD, we
extract 3460 metabolite-disease associations, including
1478 metabolites and 237 diseases. In the HMDB, genes
associated with metabolites were recorded. We also
extract the association between metabolites and genes,
including 4903 genes, 1478 metabolites, and 67295
metabolite-gene associations. The adjacency matrix
Ynm�nd can be utilized to describe the associations
between metabolites and diseases, where nm and
nd indicate the number of metabolites and diseases,
respectively. If metabolite mi is related to disease dj ,
then Y.i; j / is equal to 1; otherwise 0.

2.2 Disease semantic similarity

According to the Medical Subject Headings descriptors
of a disease[18], the topology of each disease is visualized
as a directed acyclic graph (DAG), in which the nodes
represent the disease terms and edges represent the links
from the parent disease term nodes to the child disease
term nodes. Let DAG.d/ D .d; T .d/; E.d//, where d
indicates disease d , T .d/ indicates the set of diseases
that includes disease d and the ancestors of disease
d , and E.d/ indicates the set of edges. The semantic
contribution of disease t in DAG(d ) to disease d can be
calculated as follows:

Dd .t/D

(
1; if tDd I
max f��Dd .t/ j t2children of tg ; if t¤d

(1)
where the disease t 2 T .d/ and � is the semantic
contribution decay factor and we set � D 0:5[19].

The semantic similarity between di and dj can be
calculated as follows:

DS
�
di ; dj

�
D

P
t2T .di /\T .dj /

�
Ddi

.t/CDdj
.t/
�

P
t2T .di /

Ddi
.t/C

P
t2T .dj /

Ddj
.t/

(2)

where T .di / \ T .dj / indicates the common diseases
between disease di and dj and DS represents the disease
semantic similarity with dimension nd � nd .

2.3 Molecular fingerprint similarity of metabolites

The HMDB database records the molecular structure
of the metabolites, so we calculate the similarity of
metabolites by converting the molecular structure of the
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metabolite into a series of binary fingerprint sequences.
In this study, the Morgan fingerprints are used to
measure the similarities between metabolites. The
Morgan fingerprints are round fingerprints obtained by
modifying the standard Morgan algorithm. Each element
in the fingerprint represents a specific substructure
that can be easily analyzed and interpreted and used
for similarity calculations. The molecular fingerprint
similarity of metabolites mi and mj is calculated as
follows:

MS.mi ; mj / D
c

aC b � c
(3)

where MS represents the molecular fingerprint similarity
of metabolites, a and b indicate the number of 1 in the
molecular fingerprint of metabolite mi and metabolite
mj , respectively, and c represents the number of 1 in the
fingerprint sequences of metabolite mi and mj .

2.4 Calculation of metabolites and disease
similarity based on information entropy

In a previous study, information entropy and mutual
information were used to calculate the miRNA similarity[20].
In the present study, we use information entropy and
mutual information to calculate the metabolite similarity
and disease similarity based on metabolite-disease
associations. The disease sets of metabolites A and B
are T A
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, where nma and nmb

represent the number of diseases associated with
metabolites A and B , respectively. The information
entropy of metabolite A can be calculated as
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where p.T A
m .i// D n.T

A
m .i//=N represents the ratio of

i-th disease associated with metabolite A in the disease
set of metabolite A, N is the total number of known
metabolite-disease interactions, and n.T A

m .i// is the
number of known associations between the i -th disease
and all metabolites in the disease set associated with
metabolite A.

The similarity of metabolite A and metabolite B can
be calculated by using the mutual information of them:
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B
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where H.T A
m \ T

B
m / represents the information entropy

of the common disease between metabolites A and
B . The higher the probability of the metabolite-related
disease, the less information it carries, and vice versa.

Similarly, the similarity of diseases can be obtained

through information entropy and mutual information
between diseases, which is represented by MId .

2.5 Integrated similarity for diseases and
metabolites

Based on disease terms, we obtain the disease semantic
similarity, which has many empty values. Hence, we use
the disease similarity based on the information entropy
to supplement the empty value in the disease semantic
similarity matrix DS. The integrated disease similarity
of diseases i and j can be calculated as

Sd .i; j /D

(
MId .i; j /; DS.i; j / D 0I
DS.i; j /; DS.i; j / ¤ 0

(6)

Similarly, the integrated metabolite similarity can be
calculated as

Sm.i; j / D ˛MS.i; j /C .1 � ˛/MIm (7)
where MIm represents the information entropy similarity
of metabolite and ˛ is used to balance the molecular
fingerprint similarity of metabolites and metabolite
similarity based on information entropy. In this study,
we set ˛ D 0:5, which means that the two similarities
are equally important.

2.6 DWRF prediction method

2.6.1 Feature extraction of metabolites based on
the DW method

In view of the sparsity of network representation
learning, DW is proposed to learn the social
representation of graph vertices[21]. To extract
metabolite-gene association data, we establish the
association network between them and use the adjacency
matrix MG to represent the metabolite-gene network.
In this paper, DW is used to extract the feature
of metabolites from MG. Chris et al.[22] integrated
some deep learning algorithms into a library called
deeplearning4j library, from which we could obtain the
DW algorithm. Subsequently, the extracted metabolite
features are represented by SNE.

The main idea of DW is to use the co-occurrence
relation between nodes in the graph to learn the vector
representation of nodes, which can be divided into two
main steps: (1) The random walk algorithm is used
to sample the nodes in the graph. (2) The skip-gram
algorithm is used to learn the embedding of each node
based on the generated node sequence.

Suppose Wvi is the result of a random walk starting
with vertex vi , and then traverse the random walk vertex
sequence Wvi by using the sliding window, and the size
of the window is w. In each window, the representation
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of the current vertex ˚.vi / is updated by maximizing
the possibility of the vertex appearing in the window,
so as to learn the representation of each vertex ˚ . The
skip-gram algorithm uses the independence assumption,
and the conditional probabilities are approximated as
follows:

Pr .fvi � w; : : : ; vi C wg =vi j ˚.Vi // DY
jDi�w;j¤w

.Pr.vj j˚.vi /// (8)

The above description can be represented by Fig.1.

2.6.2 Construction of feature vectors for
metabolite-disease pairs

Three types feature vectors are utilized to describe
the feature of metabolite-disease pairs: vectors based
on metabolite similarity Sm, vectors based on
extracted metabolite feature SNE from metabolite-gene

Fig. 1 Main steps of DW. Node v4 is the initial node, the
random walk is used to obtain the node sequence, and then
the node sequence is inputted into the skip-gram to obtain the
representation vector of the node.

associations and vectors based on disease similarity
Sd . Therefore, the feature vector of metabolite mi and
disease di can be described as follows:

Fi;j D .S
NE
Œi�dim�; S

m
Œi�nm�; S

d
Œj�nd�/ (9)

where Fi;j is the feature vector of metabolite mi and
disease di ; dim indicates the dimension of SNE (i.e.,
128); nm and nd indicate the number of metabolites
and diseases, respectively; and F indicates the feature
matrix of all metabolite-disease pairs, whose dimension
is nm� .dimCnmCnd/. Then we normalize F to F final

as follows:
F final

D
F � Fmin

Fmax � Fmin
(10)

where Fmin and Fmax are the minimum and maximum
values in F , respectively.

2.6.3 Prediction of metabolite-disease associations
by RF

RF is an algorithm that integrates multiple trees through
the idea of ensemble learning, which depends on the
classification of most decision trees to determine the
final classification results[23, 24]. In metabolite-disease
association data, positive and negative samples are
unbalanced. Considering the wide application of RF and
its good performance on unbalanced samples, we build
a prediction model of metabolite-disease pairs based on
RF. The framework of our method is shown in Fig. 2.

RF is a mature algorithm that has been integrated into
the machine library in Python. We classified metabolite-
disease pairs by feeding the final feature into RF. In
the experiment, we use the grid search method to select

Fig. 2 Framework of DWRF.
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the parameters. Finally, the main parameters of the RF
classifier, namely, the max features (the range is 0 to 1
with a step size of 0.1), n estimators (the range is 10 to
50 with a step size of 10), and min samples leaf (the
range is 10 to 50 with a step size of 10), are set to 0.2,
30, and 10, respectively.

3 Result

3.1 Evaluation metrics

To illustrate the performance of our method at predicting
latent metabolite-disease associations, we utilized
five-fold cross-validation (FFCV) and leave-one-out
cross-validation (LOOCV) for evaluation. The receiver
operating characteristic curve (ROC) is a common
standard for evaluating models. The area under the
ROC curve is AUC. Moreover, a series of broader
assessment criteria[25, 26], including the area under the
precise-recall curve (AUPR), F1-measure (F1), accuracy
(ACC), specificity (SPE), recall (REC), and precision
(PRE), are used for more comprehensive and equitable
evaluation of proposed models.

3.2 Performance of DWRF

Because the data of metabolite-disease associations are
unbalanced, we randomly choose equal amounts of
negative and positive samples. Then, FFCV and LOOCV
are conducted to test the performance of our method.
Figure 3 shows the ROC of our method under the FFCV
and LOOCV. The AUPR, F1, ACC, SPE, REC, and

Fig. 3 ROC of our method. (a) ROC curve of DWRF under
FFCV, (b) ROC curve of DWRF under LOOCV.

PRE values of FFCV are shown in Table 1. DW is used
to extract metabolite features from the metabolite-gene
association network. The effect of the value of the DW
dimension on the AUC is shown in Fig. 4, where the
AUC value achieves the highest when the dimension is
128.

3.3 Comparison with other classifiers

To estimate the performance of a classifier, we compare
the RF with common machine learning algorithms,
including logistic regression, support vector machines
(SVMs), Gaussian naive bayes (GNB), K-nearest
neighbor, and AdaBoost under FFCV. The AUC
comparison with the different classification algorithms
is shown in Fig. 5, and the results of other evaluation
criteria with different classification algorithms are shown

Table 1 Values of the AUPR, F1, ACC, REC, and PRE
under FFCV.

Fold AUPR F1 ACC SPE REC PRE
1 0.971 0.899 0.901 0.908 0.894 0.904
2 0.956 0.883 0.884 0.896 0.872 0.895
3 0.963 0.901 0.905 0.922 0.887 0.912
4 0.971 0.904 0.886 0.855 0.934 0.875
5 0.972 0.895 0.899 0.908 0.869 0.922

Average 0.966 0.896 0.895 0.897 0.891 0.901

Fig. 4 Effect of the DW dimension.

Fig. 5 AUC comparison with different classification
algorithms.
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in Table 2. It’s worth saying that we input the features
obtained in Eq. (10) into different classifiers.

Boxplot, also known as box-whisker plot, is a
statistical plot used to display information about the
dispersion of a set of data[27]. It is mainly used to
reflect the distribution characteristics of the original
data, and can also be used to compare the distribution
characteristics of multiple groups of data. Because the
number of negative samples is much more than the
number of positive samples, we randomly take as many
negative samples as the positive samples for 20 times
and then perform FFCV under different classifiers to
obtain AUC. Finally, the boxplots of 20 AUC values of
different classifiers are drawn as shown in Fig. 6. In
six different classifiers, DWRF has the highest median.

Table 2 Results of other evaluation criteria with different
classification algorithms.

Classifier AUPR F1 ACC SPE REC PRE
SVM 0.783 0.738 0.807 0.897 0.768 0.711
LR 0.935 0.842 0.876 0.826 0.885 0.844

GBDT 0.916 0.834 0.831 0.815 0.846 0.833
Adaboost 0.932 0.867 0.862 0.823 0.900 0.836

KNN 0.896 0.844 0.839 0.762 0.882 0.792
RF 0.966 0.896 0.895 0.897 0.891 0.901

Fig. 6 Boxplot of 20 times FFCV for different classifiers.

This finding shows that DWRF has the best performance
in predicting the associations between metabolites and
diseases.

To further assess the performance of DWRF, we
perform experiments on nine common diseases, namely,
Lewy body dementia, Crohns disease, Parkinsons
disease, autism, celiac disease, periodontal disease,
uremia, prostate cancer, and gout. Figure 7 shows
the comparison of these diseases in different classifiers
under FFCV. As shown in Fig. 7, DWRF shows good
performance as the AUC values are higher than those of
other classifiers among the nine diseases, except gout.

Fig. 7 Comparison of nine diseases in different classifiers under FFCV.
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The AUC of SVM and DWRF on the FFCV results of
gout were 0.882 and 0.721, respectively. In this study,
DW is used to obtain the characteristics of metabolites.
The parameters of DW mainly consider most diseases,
and the prediction results of a few diseases with less
known associations are expected to be lower.

3.4 Comparison with different features

In this study, we integrate the embedding features of
metabolites into a biological similarity. We also perform
experiments under FFCV: (a) only use the embedded
features of metabolites obtained by DW and integrated
disease similarity and (b) only use the biological
similarity, including integrated disease similarity and
integrated metabolite similarity. Figure 8 shows the ROC
curve comparison results of the two experiments, where
only DW and only BioSIM represent the abbreviation of
the first and second experiments, respectively.

3.5 Case study

To testify the reliability of DWRF, we consider three
common human diseases, namely, AD, colorectal cancer
(CRC), and LC. The predicted scores are presented in a
descending order, and we obtain the top 10 metabolites
associated with the diseases. We successively take each
related metabolite and search for verifiable literature
from the National Center for Biotechnology Information
(NCBI). The metabolite-disease associations can be
verified by the literature. We give the PubMed Unique
Identifier to the corresponding literature; otherwise, we
set unconfirmed. AD is a neurodegenerative disease
with an insidious onset and slow progression that has
caused serious public health problems[28]. The top 10
candidate metabolites of AD are shown in Table 3, 9
of which can be found in verifiable literature in NCBI.

Fig. 8 ROC curve comparison results of the two
experiments.

Table 3 Top 10 candidate metabolites associated with AD.
Rank Metabolite Name Evidences

1 Betaine PMID:28671332
2 Adenosine monophosphate Unconfirmed
3 L-Tyrosine PMID:24898638
4 L-Phenylalanine PMID:23857558
5 L-Alanine PMID:21292280
6 L-Isoleucine PMID:29519576
7 L-Lysine PMID:9693263
8 L-Serine PMID:28929385
9 L-Glutamine PMID:26402632
10 Creatine PMID:26402632

CRC has become a common type of cancer and currently
ranks among the highest in morbidity and mortality
worldwide[29]. The top 10 candidate metabolites of
CRC are shown in Table 4, which can all be found in
verifiable literature. LC is one of the malignancies with
the fastest increase in morbidity and mortality and the
greatest threat to human health and life[30]. The top 10
candidate metabolites of LC are shown in Table 5, 9
of which can be found in verifiable literature of NCBI.
These results demonstrate that DWRF can effectively
predict metabolite-disease associations.

We also draw the top 10 association networks
predicted metabolite candidates for AD, CRC, and

Table 4 Top 10 candidate metabolites associated with CRC.
Rank Metabolite Name Evidences

1 Acetic acid PMID:25700314
2 beta-Alanine PMID:30296444
3 Creatine PMID:29168152
4 8-hydroxy-Deoxyguanosine PMID:30932412
5 Choline PMID:25785727
6 Glycine PMID:27351202
7 Gentisic acid PMID:25037050
8 Hypoxanthine PMID:28640361
9 L-Phenylalanine PMID:31289671
10 L-Alanine PMID:28207045

Table 5 Top 10 candidate metabolites associated with LC.
Rank Metabolite Name Evidences

1 Taurine PMID:29552188
2 L-Alanine PMID:25961003
3 Acetic acid PMID:22157537
4 L-Threonine Unconfrimed
5 Glycine PMID:18953024
6 Betaine PMID:23383301
7 Creatine PMID:25961003
8 Trimethylamine N-oxide PMID:22157537
9 Choline PMID:25591716
10 L-Serine PMID:29251665
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LC and the genes associated with those metabolites.
A disease is related to different metabolites, and a
metabolite is associated with different genes. Different
diseases can be associated with the same metabolites,
so we remove 30 duplicated metabolites associated
with the three common human diseases to obtain 20
metabolites and take out the common genes associated
with the 20 metabolites from all the genes. In Fig. 9,
the rectangle, blue hexagon, and green ellipse represent
the disease, gene, and metabolite, respectively. The
solid line in cyan indicates the association between
CRC and metabolites. The solid line in purple indicates
the association between LC and metabolites. The solid
line in red indicates the association between AD and
metabolites. The association between diseases and
metabolites and metabolites and genes are represented
by lines of different colors. Figure 9 shows that different
diseases are related to the same metabolite. For instance,
the metabolite creatine is related to LC, AD, and colon
cancer. Additionally, different metabolites are related to
the same gene, such that the gene UGT1A1 is related
to gentisic acid, acetic acid, and beta-alanine. Based on
this information, it is advisable to extract features from
the association between genes and metabolites.

4 Conclusion

In this paper, we introduce known metabolite-gene
associations. DW is used to extract the new metabolite
features. Compared with the previous methods, the

Fig. 9 Top 10 association networks predicted metabolite
candidates for AD, CRC, and LC and the genes associated
with those metabolites.

biological similarity features of metabolites and
the topological features of bipartite networks are
integrated to make more reliable prediction results of
disease-related metabolites. Combining the biological
information features and the features extracted from
the metabolite-gene associations, the machine learning
method, RF, is used to predict the potential metabolite-
disease association. The results of LOOCV, FFCV, and
case studies of three human diseases (AD, CRC, and
LC) demonstrated that DWRF is a reliable prediction
algorithm.

Nonetheless, our method still has limitations. The
random selection of negative samples will lead to the
deviation of the results, and a relatively good negative-
sample selection strategy should be considered in future
works. The accuracy of predicting new metabolites and
isolated diseases should also be improved.
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