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Security Issues and Defensive Approaches
in Deep Learning Frameworks

Hongsong Chen�, Yongpeng Zhang, Yongrui Cao, and Jing Xie

Abstract: Deep learning frameworks promote the development of artificial intelligence and demonstrate considerable

potential in numerous applications. However, the security issues of deep learning frameworks are among the main

risks preventing the wide application of it. Attacks on deep learning frameworks by malicious internal or external

attackers would exert substantial effects on society and life. We start with a description of the framework of deep

learning algorithms and a detailed analysis of attacks and vulnerabilities in them. We propose a highly comprehensive

classification approach for security issues and defensive approaches in deep learning frameworks and connect

different attacks to corresponding defensive approaches. Moreover, we analyze a case of the physical-world use of

deep learning security issues. In addition, we discuss future directions and open issues in deep learning frameworks.

We hope that our research will inspire future developments and draw attention from academic and industrial domains

to the security of deep learning frameworks.
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1 Introduction

Given the successful application of deep learning
in many fields[1–3], Artificial Intelligence (AI) has
attracted increasing attention. Owing to the development
of Graphics Processing Unit (GPU), deep learning
algorithms and large-scale datasets can solve problems
in various fields. Moreover, many practical applications
and systems are driven by deep learning algorithms.

Companies, ranging from Information Technology
(IT) firms to automobile makers (e.g., Google, Tesla,
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Baidu, Mercedes, and Uber), are testing driverless cars,
which require deep learning techniques. In addition,
major phone manufacturers offer facial authentication
features for unlocking phones, and a number of behavior-
based malware and anomaly detection solutions are
based on deep learning[4, 5]. Although deep learning
can bring certain conveniences, it is prone to numerous
vulnerabilities. Recent research has found that deep
learning is vulnerable to well-designed adversarial
samples, which can easily fool a well-behaved deep
learning model.

Szegedy et al.[6] first generated small perturbations
in an image classification problem and deceived the
most advanced Deep Neural Network (DNN) with high
probability. As a result, samples misclassified by a DNN
are called adversarial samples.

The generation of adversarial samples is based
on understanding model structures and parameters to
destroy deep learning model processes or make wrong
predictions. This type of attack, including those based on
obfuscated gradient[7] and root mean square gradient[8],
is called the white-box attack. Meanwhile, the black-box
attack is limited by knowledge on the model structure
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and parameters.
Goodfellow et al.[9] claimed that the neural network

is affected easily by small disturbances from inputs.
The authors proposed the Fastest Gradient Sign Method
(FGSM) to generate adversarial samples. Su et al.[10]

proposed a black-box DNN attack that makes only
differential perturbations to one pixel, which performs
well at different image sizes.

Defense measures were proposed to defend against
such attacks. For example, the gradient masking method
was proposed by Goodfellow et al.[9]. He et al.[11] argued
that a single-defense method performs poorly, and a
defense system composed of multiple defense measures
could better deal with adversarial examples.

A large number of deep learning-based applications
are used in the physical world, especially in security-
critical environments. Adversarial examples can be
applied to the physical world. For instance, an adversary
can construct physical adversarial examples and confuse
autonomous vehicles by manipulating a traffic sign
recognition system[11].

Other surveys on deep learning framework security
issues were conducted. For example, Xu et al.[12]

classified security issues from the perspective of
black-box/white-box attacks, poisoning attacks, and
escape attacks. Tariq et al.[13] divided attacks into
four categories, namely, causative attacks, exploratory
attacks, targeted attacks, and indiscriminate attacks.
However, the above surveys lacked a comprehensive
and systematic perspective on security and defense
approaches in deep learning frameworks. Compared
with other surveys, our classification is based on
attack phase, adversarial knowledge, attack frequency,
attack target, and attack scope. Bae et al.[14] discussed
deep learning security and privacy issues. However,
the authors mainly analyzed security issues using
mathematical formulas and principles. Similarly, we also
use figures to illustrate attack principles and mechanisms.
At the same time, we list major software vulnerabilities
in deep learning frameworks. Qiu et al.[15] discussed AI
attack methods in the training and testing phases but did
not connect them in the relationship between attacks and
defense approaches. We made a one-to-one connection
between attacks and corresponding defense technologies.
In addition, we discussed future directions and open
issues in deep learning frameworks. Thus, we conducted
a highly comprehensive and methodical research on the
security of deep learning frameworks and performed an
in-depth analysis of related studies.

The structure of this paper is organized as follows:
Section 2 introduces general deep learning models and
processes, and Section 3 presents the deep learning
principles as well as vulnerabilities and types of attacks
caused by third-party libraries. Section 4 classifies
attacks based on different viewpoints, and Section 5
details defense measures against various attacks. Section
6 describes a specific deep learning automatic driving
application scenario to identify traffic signs and analyzes
security problems. Finally, Section 7 concludes the study
and identifies future research directions.

2 Deep Learning Framework Architecture

DNN processing is divided into two phases, that is, the
training phase and the prediction phase. The training
phase involves using existing data to learn the parameters
in the network, and the inference phase employs the
learned parameters to predict the unknown data[14]. The
general DNN training process is shown in Fig. 1.

The general training process of a neural network
involves obtaining parameters to minimize the cost
function through known samples. The cost function
measures the error between the predicted value of the
model and the actual value of the sample. Completion of
the DNN training phase requires forward and backward
propagations. In the feed forward phase, the input
propagates along the layer to calculate the output. Next,
to minimize the error between the output and the
actual label, a gradient descent algorithm is used. The
prediction results are used in the inference phase, in
which the model only propagates the input forward and
treats the output as a prediction.

Convolutional Neural Networks (CNN) are widely
used in the field of image recognition and classification.
CNNs have four main operations, namely, convolution,
nonlinear transformation, pooling or subsampling,
and classification (fully connected layers). The CNN
structure is illustrated in Fig. 2.

An example of a Recurrent Neural Network (RNN) is
presented in Fig. 3. Unlike traditional forward feedback
neural networks, RNNs introduce directional loops that
can handle contextual correlations among inputs. The
purpose of RNNs is to process time sequence data.

A Generating Adversarial Network (GAN) framework
consists of a discriminator (D) and a generator (G). The
G generates false data, and the D determines whether the
generated data are true. GANs are actively researched
in the field of image/speech synthesis and domain
adaptation. Figure 4 displays the GAN structure.
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Fig. 1 General DNN training process. Here x represents the neural network input data, y represents labels for input data, w
represents the weight of neural networks, M and N represent dimensions of weights, J represents the loss function, ��� represents
the activation function, and l represents prediction results of neural network.

Fig. 2 CNN structure. Here FC stands for fully connected.

Fig. 3 RNN structure. Here o represents the output of RNN
structure, U, and v are parameters of RNN, and Ot and St

represent the output of the layer t. The difference between Ot

and St is that Ot is output directly as a result, and St needs to
be input to the next layer for calculation.

Table 1 shows the differences between neural network
models.

3 Security Issue in Deep Learning
Frameworks

Deep learning security problems can occur when an
attacker either uses the DNN implementation principle

Fig. 4 GAN structure.

Table 1 Differences between neural network models.
Model Advantage Limitation
DNN Simple architecture Too many layers will lead

to overfitting
CNN Extract local features, such

as image recognition
Cannot process time series
data

RNN Deal with time series
features

Gradient disappearance

GAN Generate new training data Experience difficulties
reaching Nash equilibrium

to reversely generate adversarial samples or exploits the
vulnerabilities of third-party libraries that are dependent
on the underlying DNN.

3.1 Adversarial example generation

Goodfellow et al.[9] proposed the FGSM algorithm
implementation process, which analyzes the reasons
for the existence of adversarial samples, and presented
a method for generating the samples based on
such analyses. The method involves adding a small
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disturbance not easily perceived by the human eye
to a picture that exerts maximal influence on the
classifier through the action of the activation function.
Figure 5 describes the addition of the disturbance and
the influence process.

As shown in Fig. 5, the input sample is assumed to be
x, and the adversarial sample is Qx, where � and ! are
the parameters of the deep learning algorithm model.

In a linear model, given that the feature of the
sample input is limited, the classifier will not be able
to distinguish between the sample x and the adversarial
sample Qx when the perturbation value � added to each
element value in the sample is less than the input
feature accuracy of the sample. Formally, for problems
with well-separated classes, we expect the classifier to
assign the same class to x and Qx as long as k�k1 < ",
where " is adequately small to be discarded by the
sensor or data storage apparatus associated with the
problem. Consider the product of the weight vector
! and the adversarial sample Qx W !T Qx D !Tx C !T�.
The adversarial perturbation increases the output of
the neuron with !T�. If the dimension of the weight
vector is n and the mean of the weight vector is m,
then the maximum value is " � n �m, and at this time,
� D sign.!/. Thus, in a high-dimensional space, even
small disturbances can have a large impact on the output
of the final neural network. Therefore, linear models can
also produce adversarial samples.

In a nonlinear model, the linear perturbation is
a process of a nonlinear differential equation. The
parameters of the model are assumed to be � , x is the
input of the model, y is the target associated with x

(the result of the classification), and J.�; x; y/ is the
loss function. We can linearize the loss function near
� , thereby obtaining the best max-norm constrained
perturbation of � D " � sign.rxJ.�; x; y//. Next, when
we directly add the linear perturbation to the original
sample, Qx D x C �, and the misclassification rate of the
neural network is high. This method is the adversarial
example generation process of the white-box attack
FGSM algorithm. The calculation of � in the FGSM
algorithm is shown in Fig. 6, where the green points
represent the original sample and corresponding loss
function values, and the red points represent the
adversarial sample and corresponding loss function
values.

The FGSM and DeepFool[16] are methods for
generating adversarial samples, and both are white-box
attacks. In a neural network, back propagation is used
to minimize the loss function. An FGSM attack goes
the opposite direction, adding the disturbance along the

Fig. 6 Calculation of ��� in the FGSM algorithm.

Fig. 5 FGSM algorithm process diagram.
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gradient direction to generate the adversarial sample to
maximize the loss function, which will fool the neural
network model.

Figure 7 presents the results of different " selections
in the FGSM algorithm.

The FGSM can determine the direction of the
disturbance addition but not the size of the disturbance.
The size of the disturbance is generally artificially
determined. Figure 7 shows that the disturbance direction
is opposite the direction of x axis, and "1 and "2

are two disturbance sizes. The classification function
can be misclassified by adversarial sample x1 that is
generated by disturbance "1, but the purpose of the
misclassification cannot be achieved by adversarial
sample x2 that is generated by disturbance "2.

The DeepFool method improves the shortcomings of
the FGSM, which can determine not only the direction
of the disturbance addition but also its distance.

Figure 8 shows the use of the DeepFool algorithm
to generate an adversarial sample in a linear binary
classification.

In Fig. 8, f .x/ D !Tx C b is a classifier. The
formula is used for parameter optimization, where
! is the direction of the gradient for the decision
function, and the previous scalar corresponds to the
optimal perturbation coefficient ". The optimal solution

Fig. 7 Results of different """ selections in the FGSM
algorithm.

Fig. 8 Adversarial examples for a linear binary classifier[16].

r satisfies f .x0 C r/ D 0. Thus, the adversarial sample
is Qx D x0 C r C � , where � is a small deviation that
gives f .x0 C r C �/ > 0. The calculation formula of r
is as follows:

r D arg min krk2 D �
f .x0/

k!k22
!:

3.2 Vulnerabilities of deep learning frameworks

Common Vulnerabilities and Exposures (CVE) in deep
learning frameworks are shown in Table 2[17].

Deep learning faces adversarial sample attacks, and
its frameworks have several security issues. The use of
deep learning frameworks, such as TensorFlow, Caffe,
and Torch, allows application developers to not pay
attention to underlying implementation details, thereby
substantially improving the development efficiency of
AI applications. However, the efficiency of these deep
learning frameworks is doomed by the complexity of
the framework, and the more complex the system,
the more likely the security risks. Specifically, these
three frameworks are built on numerous third-party
open-source basic libraries. After analyzing a large
number of such libraries used by the three deep
learning frameworks (i.e., TensorFlow, Caffe, and
Torch), researchers found that they have many network
security vulnerabilities that are prone to denial of service,
escape, and system damage attacks[17]. Vulnerabilities,
like memory access cross-border vulnerabilities, can be
used by hackers to execute the three types of network
attacks mentioned above and tamper with data streams
to deceive AI applications.

Table 2 shows that security vulnerabilities from the
general security framework used in a series of deep
learning systems involve nearly all mainstream deep
learning platforms.

4 Attack Classification in Deep Learning
Frameworks

We classify deep learning attacks by attack type,

Table 2 CVE in deep learning frameworks.
Deep learning

framework CVE-ID Type

Caffe CVE-2017-9782 Heap overflow
Caffe/Torch CVE-2017-12600 Denial of service
Caffe/Torch CVE-2017-12604 Software crash
TensorFlow CVE-2017-12852 Out of bounds
TensorFlow CVE-2018-7577 Memcpy param overlap
TensorFlow CVE-2018-10055 Heap buffer overflow
TensorFlow CVE-2019-9635 Denial of service
TensorFlow CVE-2020-5215 Denial of service
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adversarial knowledge, attack phase, attack frequency,
adversarial specificity, and attack method, as shown in
Fig. 9.

According to its phase, attacks can be divided into
poisoning and evasion attacks. Poisoning attacks add
adversarial data to the training sample to influence the
training of the classifier and obtain the wrong classifier.
Evasion attacks use adversarial examples in the inference
stage to make the classifier produce an error output. In
terms of adversarial knowledge, attacks can be classified
into white-box attacks, black-box attacks, and semi-
white-box attacks. If an attacker fully masters the content
of the deep learning system, such as the dataset and
algorithm used, the structure of each layer of the network,
and so on, then an attack based on this realization is
called a white-box attack. An attack that knows only a
part of this knowledge is called a semi-white-box attack.
A completely ignorant attack is called a black-box attack.

Generally, white-box attacks cannot be implemented
in real life. Black-box attacks can be classified as
transfer-based, score-based, and decision-based attacks.
Transfer-based attacks train a local model, then use the
adversarial samples generated by the model to attack the
target model. Score-based attacks obtain information
inside a model by obtaining the classification confidence
of the target model to the input. Decision-based
attacks can only obtain the classification result of a
model on the input. This type of attack is practical
but the most difficult to complete. With regard to
attack frequency, attacks can be classified as one-time
and iterative attacks. One-time attacks only need one
time to generate adversarial samples, whereas iterative
attacks need several times to update the adversarial
samples. Compared with iterative attacks, one-time

Fig. 9 Attack classification in deep learning frameworks.

attacks require less time, but the added disturbance is
relatively larger. Moreover, compared with one-time
attacks, iterative attacks can produce better results but
require vast computing resources. According to attack
target, attacks can be classified as targeted and non-
targeted attacks. An attack is a targeted attack if the
opponent’s goal is to change the output of the classifier
to a prospective target label. In the case of a non-
targeted attack, the opponent’s goal is for the classifier
to select any incorrect label. Generally, non-targeted
attacks demonstrate higher success rates than targeted
attacks. Non-targeted attacks can be divided into only
misclassification attacks and least likely attacks. Only
misclassification attacks require a model to classify
adversarial samples differently from the original class,
whereas least likely attacks require a model to classify
adversarial samples differently from the original class
and with the least confidence. Regarding attack scope,
they can be classified as individual and universal
attacks. Individual attacks only need to modify a few
features, whereas universal attacks need to modify every
feature. Therefore, adversarial disturbances generated
by individual attacks are more imperceptible than those
generated by universal ones.

The timeline of white- and black-box attacks is shown
in Tables 3 and 4. In the two tables, we list some
algorithms and research schedules for black- and white-
box attacks in deep learning.

In a white-box attack, an attacker can destroy the
learning process by injecting designed samples and
adjust it with the gradient method. An attack approach
and security model for a wireless sensor network and
cloud computing are proposed[29, 30], which can serve
as references for the deep learning security model. A
white-box attack is easy to realize, as attackers have
considerable knowledge. By contrast, implementing a
black-box attack is difficult owing to model knowledge
limitations.

5 Defensive Approach in Deep Learning
Frameworks

Many defensive measures have been taken against
deep learning security problems to better apply deep
learning. The relationship between attacks and defensive
approaches in deep learning is shown in Fig. 10.

In Fig. 10, we enumerate measures corresponding
to common attack methods. Poisoning attacks are
used to generate adversarial samples, and the defense



Hongsong Chen et al.: Security Issues and Defensive Approaches in Deep Learning Frameworks 901

Table 3 Historical timeline of white-box attacks in deep learning frameworks.
Timeline Year Algorithm Main contribution

Szegedy et al.[6] 2013 L-BFGS First proposed the concept of adversarial sample and designed an optimized-
based method to generate adversarial samples deliberately.

Goodfellow et al.[9] 2014 FGSM Designed a method using the gradient of loss function, which can generate
adversarial samples quickly.

Papernot et al.[18] 2016 JSMA Designed a novel method that only needs to modify a few pixels.
Kurakin et al.[19] 2016 iFGSM Designed the iterative FGSM, which can generate smaller disturbances than the

FGSM, and showed that machine learning systems are vulnerable to adversarial
examples in physical-world scenarios.

Huang et al.[20] 2017 Attacks on RL Showed that adversarial attacks are also effective when targeting neural network
policies in RL.

Athalye et al.[7] 2018 BPDA Described the characteristic behaviors of defenses exhibiting effects,
discovered three types of obfuscated gradients, and developed attack techniques
to overcome them.

Xiao et al.[8] 2019 RMSG Proposed an adversarial method generating perturbations based on root mean
square gradient, which formulates the adversarial perturbation size in the root
mean square level and updates gradient direction.

Zhang et al.[21] 2019 Boundary projection Studied manifold optimization for the classification boundary of an adversarial
attack and proposed the boundary projection method to generate adversarial
examples that reduce the number of iterations for iterative attacks.

Table 4 Historical timeline of black-box attacks in deep learning frameworks.
Timeline Year Algorithm Main contribution

Nelson et al.[22] 2012 Evading convex-inducing classifiers First proposed existing black-box attacks that do not use a local
model for convex-inducing two-class classifiers.

Ateniese et al.[23] 2013 Hacking smart machines (1) Proposed that releasing trained classifiers is unsafe; (2)
defined a model for a metaclassifier; (3) described several attacks
against existing ML classifiers.

Narodytska et al.[24] 2016 Greedy local search Proposed the Greedy Local Search algorithm to generate
adversarial samples by perturbing randomly selected pixels with
considerable influence on output probabilities.

Chen et al.[25] 2017 ZOO (1) Showed that a zero-order oracle (without gradient
information) can attack black-box DNNs; (2) proposed
several techniques, including attack-space dimension reduction,
hierarchical attacks, and importance sampling.

Ye et al.[26] 2018 Hessian-aware zeroth-order optimization (1) Integrated Hessian information into gradient estimation
while keeping the algorithmic form similar to the zeroth-order-
based gradient descent method; (2) proposed several novel
structured Hessian approximation methods; (3) proposed a
descent-checking trick for black-box adversarial attacks.

Li et al.[27] 2019 Attack on cloud-based detectors Designed four types of methods by incorporating semantic
segmentation to achieve a high bypass rate with a very limited
number of queries to fool cloud-based detectors.

Saxena[28] 2020 TextDecepter Proposed a novel approach for formulating natural adversarial
examples against Natural Language Processing (NLP) classifiers
in the hard-label black-box setting.

measure for such attack is to eliminate outliers with
large samples[31–34]. Evasion attacks can be prevented
by enhancing the robustness of classifiers[7, 9, 35].
Meanwhile, encryption algorithms[36, 37] are used to
guard against privacy leakage. Attacks against software
vulnerabilities can be defended by writing high-quality

codes and selecting highly secure third-party libraries.

6 Case Study—Deep Learning Security
Scenario Research

We analyzed a deep learning software that identifies
traffic signs to describe the types of attacks and threats
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Fig. 10 Relationship between attacks and defensive approaches in deep learning.

that deep learning frameworks may be exposed to in
practical applications. By simulating real physical
scenarios, we analyzed potential problems in the
implementation of algorithms.

The case of an attack in deep learning is shown
in Fig. 11. We choose road signs as our research
sample, because road signs are relatively simple, thereby
making hidden disturbances challenging. In addition,
road signs exist in noisy and changeable environments,
such as the distance and angle of the observation
camera used as well as lighting conditions. Moreover,
this case has high research value. Traffic signs, as
important elements affecting vehicle safety, should be
accurately recognized by algorithms despite the presence
of adversarial physical disturbances.

For a deep learning algorithm to realize the correct
identification of road traffic signs, various forms of attacks
against it may exist. Figure 11 shows an adversarial
example that applies algorithms to construct robust
perturbations against the deep learning implementation.

Fig. 11 Case of attack in deep learning[38].

In the article on robust physical-world disturbances[38],
designers adopted standard physical science techniques
and proposed a two-stage experimental design to verify
the robustness of the above physical-world attack
algorithm. The first stage was a lab test in which
the viewing camera was set to various distance/angle
configurations. The second stage was a field test in which
a car was driven toward an intersection in uncontrolled
conditions to simulate an autonomous vehicle. The test
used two datasets, that is, Laboratory for Intelligent
& Safe Automobiles (LISA), which is a US traffic
sign dataset containing 47 different road signs, and the
German Traffic Sign Recognition Benchmark (GTSRB).
Two classifiers were built. The LISA-CNN used
LISA, and the second classifier, namely, the GTSRB-
CNN, was trained on the GTSRB. Both classifiers
demonstrated high recognition accuracy. Using two
types of introduced attacks (i.e., object-constrained
poster and sticker attacks), the developers showed that
this method produced robust perturbations for real road
signs. The poster attacks were successful in 100% of
the stationary and drive-by tests against the LISA-CNN,
and the sticker attacks were successful in 80% of the
stationary testing conditions and 87.5% of the extracted
video frames against the GTSRB-CNN.

Several examples of adversarial AI competitions
are shown in Table 5. Numerous machine learning
competitions have emerged, and confrontation learning
projects have become very important. Competitions
discuss the security of real-world AI models and
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Table 5 Adversarial AI competitions.
Competition title Sponsor Competition content Dataset Champion team

NIPS 2017 Adversarial
Attacks and Defenses

Kaggle and
NIPS

Targeted attacks, untargeted
attacks, and defense against
attacks

A new dataset compatible
with ImageNet

TSAIL team won all three
competitions

ASVspoof 2019
EURECOM,
NEC, and
so on

Automatic speaker verification
spoofing and countermeasures

ASVspoof 2019 dataset
contributed by an institution
or school, such as Google,
USTC, and so on

Tsinghua University

NIPS Adversarial
Vision Challenge 2018

NIPS and
AWS

To facilitate measurable
progress toward robust machine
vision models and generally
applicable adversarial attacks

NIPS Adversarial Vision
Challenge 2018 dataset

Robust Model Track and
Targeted Attack Track:
Petuum-CMU; Untargeted
Attack Track: LIVIA

IJCAI-19
Alibaba
Security

To explore the security of AI
models; participants can either
generate adversarial samples or
construct a robust model

Product pictures from
the Alibaba e-commerce
platform

University of Science
and Technology of China
(USTC) and so on

demonstrate substantial progress in attack and defense
methods, which advance theoretical research on practical
applications.

7 Conclusion and Future Research
Direction

7.1 Conclusion

Starting from the basic composition structure and
principles of deep learning, this study describes security
problems behind the application of deep learning and
summarizes classic attack algorithms for deep learning
technologies and development processes. Moreover, it
also confirms that adversarial samples against deep
learning are widespread. Studying confrontational
algorithms can help us better understand and learn
deep learning principles and its training and prediction
processes.

In this study, algorithm cases of deep learning attacks
in recent years are summarized and analyzed; and
defense techniques against countermeasure technologies
are listed. Furthermore, examples of software flaws in
specific implementations are provided. Deep learning
prediction is susceptible to slight disturbances, thereby
indicating that the deep learning structure has large
defects, which is one of the factors hindering its further
development. Deep learning can achieve very high
prediction accuracy in fixed problems, such as image
classification. However, in dynamic real-time scenes
with complex interactions with the environment, making
mistakes and misjudging emerging scenes are easy. This
situation is also an AI technology bottleneck. Therefore,

studying the security issues behind deep learning
architecture algorithms has far-reaching significance.

7.2 Future research direction

(1) Attacks and defensive approaches in deep learning
are continuously being developed. The two elements
involve a long-term development process, from the
discovery of the poor robustness of deep learning to
the emergence of various defensive approaches. Along
with this process, both are constantly being developed
and improved.

(2) The widespread existence of adversarial samples
is helpful for improving the robustness of deep learning
algorithms. Deep learning prediction results have
considerable deviations in slight disturbances, thereby
indicating that deep learning algorithms require a
long period of time. Progress is ongoing, and current
developments remain incomplete and immature.

(3) In deep learning technologies, computers require
relatively high parallel computing power owing to
large amounts of training data. Therefore, the industry
moved from CPUs to GPUs with numerous nodes.
However, underlying software architecture support may
also demonstrate various problems, such as data privacy
and security.

(4) Although some neural networks perform well
in the experimental stage, deep learning systems
constructed by neural networks do not perform well
in the application stage. The physical world is complex
and dynamic, with hidden unknown influencing factors.
Therefore, we must fully consider various influencing
factors and add them to the training process to construct
deep learning systems.
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