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Parallel-Data-Based Social Evolution Modeling

Weishan Zhang�, Zhaoxiang Hou, Xiao Wang, Zhidong Xu, Xin Liu, and Fei-Yue Wang

Abstract: Abnormal or drastic changes in the natural environment may lead to unexpected events, such as tsunamis

and earthquakes, which are becoming a major threat to national economy. Currently, no effective assessment

approach can deduce a situation and determine the optimal response strategy when a natural disaster occurs.

In this study, we propose a social evolution modeling approach and construct a deduction model for self-playing,

self-learning, and self-upgrading on the basis of the idea of parallel data and reinforcement learning. The proposed

approach can evaluate the impact of an event, deduce the situation, and provide optimal strategies for decision-

making. Taking the breakage of a submarine cable caused by earthquake as an example, we find that the proposed

modeling approach can obtain a higher reward compared with other existing methods.
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1 Introduction

Social life is related not only to economic development
but also with social harmony and stability. Furthermore,
the security of economic and social activities is
threatened by the occurrence of extreme natural disasters.
Thus, making wise decisions during disasters occurs is
crucial; that is, the situation must be analyzed as soon as
possible, the development trend must be deduced, and
reasonable maintenance must be performed on the basis
of the objective of total loss reduction.
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Some research on the use of big data or artificial
intelligence has been conducted to analyze society and
nature (e.g., automatic detection of smart cities[1] and
natural disaster detection[2, 3]). Most existing machine
and deep learning models are trained on the basis of
labeled data. However, big data of social evolution are
difficult to format. Reinforcement Learning (RL) can
achieve unsupervised learning by interacting with the
environment. At present, many RL algorithms, including
Deep Q-Network (DQN)[4], deep deterministic policy
gradient[5], and Monte Carlo tree search[6], can be used
for games[7] and automatic control of unmanned aerial
vehicles[8]. However, no general method has been
effective in combining social data with RL to solve social
problems and in analyzing virtual data to evolve and
make decisions.

The idea of parallel data provides a new solution
for simulating the normal operation and evolution of
the society[9]. Therefore, this study presents a parallel-
data-based social evolution model to achieve social
assessment, evolution, and decision-making. The social
evolution model involves (1) an overall evolution
framework combining parallel data and RL, (2) an
economic and social value model, and (3) an RL-based
resource allocation and evolution strategy.

The remainder of this paper is organized as follows:
In Section 2, we analyze the current situation of related
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research. Then, we show our overall architecture and
propose a set of models and methods for abnormal event
evolution and decision-making in Section 3. We then
evaluate the method through experiments in Section 4.
Conclusions and future work are presented in Section 5.

2 Related Work

Digital twins form a digital image that can be
disassembled, copied, transferred, modified, and
repeated. They are now redefined as digital replications
of living and nonliving entities[10]. Considerable research
on digital twins for economic systems has been
conducted; such research includes the use of blockchains
and digital twins to study cluster economic systems[11]

and the use of digital twins and robots as assistants
to improve the quality, productivity, and efficiency of
economic development[12]. In the risk assessment of
chemical plants, Song et al.[13] proposed a method to
evaluate the probability of abnormal events dynamically;
this method can analyze the probability of abnormal
events and causal factors. Data-driven digital twins
will become the core of simulation-based development
processes, because they can simplify the development
process, solve the problem of diagnosing and predicting
the status of production system components[14], and
realize intelligent systems[15].

As an important branch of machine learning, RL
has been widely used in war games, robot control,
Unmanned Air Vehicle (UAV) cooperative scheduling,
and other fields due to its unique unsupervised
mechanism. RL mainly includes methods based on
value function, strategy gradient, as well as search and
supervision. DQN[4] represents the value-based deep RL
algorithm. Many improved algorithms exist, including
double DQN[16] and dueling DQN[17]; however, most
DQNs can only handle discrete action sets and cannot
express continuous actions. Policy-based[18] RL makes
up for the shortcomings of DQN. By modeling strategy
functions, the distribution of actions, including actor-
critic, Deep Deterministic Policy Gradient (DDPG)[5],
A3C[19], and PPO2[20] algorithms, can be output. In
2017, AlphaGo Zero made international headlines with
their incredible success, which was achieved from
scratch. Learning from the blank state, AlphaGo Zero
can quickly perform self-study without any human
input. In addition to no sample and self-training,
AlphaGo Zero used the Monte Carlo tree search
algorithm and brought new development[6].

Parallel data and digital twins can model the social
state, provide data support, and achieve parallel
evolution. RL can make improved decisions in a
complex environment. Currently, RL is not combined
with parallel data or digital twins to achieve social
state assessment, evolution, and decision-making. For
the state interpretation and resource redistribution
after the occurrence of social abnormal events, we
must comprehensively consider various factors to
analyze the development trend of the event and obtain
optimal strategies to guide the execution of remedy
practices. Therefore, we propose a parallel-data-based
social evolution modeling approach to solve the above
problems.

3 Overview of Parallel-Data-Based Social
Evolution

We build a data-driven social evolution approach, which
integrates social, economic, and other factors to form
a virtual society that can be simulated and evolved. On
the one hand, the model is used to calculate the global
loss for deduction. On the other hand, it can be used
to calculate the reward of RL and evaluate the strategy.
We use RL to model the current environment through
the continuous exploration and optimization of agents to
find solution; in this manner, the global loss caused by
abnormal events is minimized. In turn, the final decision
affects the social model. The overall architecture is
shown in Fig. 1.

3.1 Social and economic value model

Economic value refers to the proportion of economic
benefits between input and output in production
activities. In enterprises, the economic benefits constitute
the economic value and directly affect the development.
The economic value and social responsibility of

Fig. 1 Architecture of parallel-data-based social evolution.
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enterprises exist simultaneously, interact, and influence
each other. In the real world, the evaluation of an
enterprise should be based on its economic and social
value. Based on parallel data theory[9], we establish
the economic and social value model by improving the
LM3[21] and SROI[22] models.

The economic value model is as follows:

VE D

yX
tD1

.Rt � Ct /

.1C d/t
(1)

where y represents the year, Rt represents the income
in the year t, Ct represents the cost in the year t, and d
represents the discount rate.

The social value model is as follows:

VS D

yX
tD1

.Gt C Tt CEt C Pt COt /

.1C d/t
(2)

where Gt represents the promoting local GDP growth
value in the year t, Tt represents the tax value in the year
t, Et represents the saving energy value in the year t, Pt
represents the value of environmental pollution control
in the year t, and Ot represents other social values in the
year t.

The social and economic value of the enterprise is as
follows:

V D VE C VS (3)

3.2 RL-based resource allocation

RL is a mapping that agent learns from environment
to behavior. Through continuous interaction with the
environment, RL can obtain the optimal behavior
sequence under the stimulation of reward or punishment
given by the environment, thus obtaining the maximum
reward.

When an abnormal event occurs, some social
resources may be destroyed. How to allocate the
remaining resources in accordance with the current
state to make the loss as small as possible is a crucial
issue. Traditional machine and deep learning methods
require substantial labeled data for training, but the
social distribution problem is difficult to train due to data
with uncertain dimensions. RL can solve the problem
of social distribution by using its unique interaction
mechanism with the environment.

3.2.1 Problem modeling
RL modeling problems must consider the environment,
action space, and reward. We describe the problem from
the following three aspects.

(1) Observation space. For the resource allocation
task, all data that interact with agents are called

environment. Different types of environments can be
divided into the following categories: completely
observable, partially observable, continuous, and
discrete environments. In the process of resource
allocation, the resource status information of each node,
the economic and social value of each enterprise, and
other factors, such as distance, are regarded as the
environment’s responding to the agent’s action. The
agent perceives the current environmental state,

Si D (Demandi ;Valuei ;Resource1i ; : : : ;

Resourceni ;Otheri ) (4)

Si D (Demand1i ;Value1i ; : : : ;Demandmi ;Valuemi ;

Resource1i ; : : : ;Resourceni ;Otheri ) (5)

Equations (4) and (5) represent the state space of
partially and fully observable states, respectively, where
m represents the number of enterprises that need resource
allocation, and n represents the number of resource
nodes. Demandj i and Valuej i (1 6 j 6 m) represent
the resource demand and value of the enterprise j,
respectively, Resourcej i (1 6 j 6 n) represents the
resource surplus of the j node, and Otheri represents
other factors that can be considered (e.g., distance).

(2) Action space. The action space can be divided
into continuous and discrete action spaces. The length
of policy or Q.s; a/[4] output by a neural network is
consistent with the number of actions that can be taken
in the discrete space. However, in a resource allocation
problem, resources can also be expressed as continuous
variables. For multinode resource allocation, the number
of resources is determined after selecting nodes. A stands
for action space,
ADNumber.1; 2; : : : ; n/CQuantity.1; 2; : : : ; m/ (6)

A D Number.1; 2; : : : ; n/C QuantityŒ0; 1� (7)

Equations (6) and (7) represent discrete and
continuous action spaces, respectively. Number ( ) is the
number of the resource node, Quantity ( ) is the discrete
allocation scheme, and [0, 1] represents continuous
space, in which each value can represent an allocation
scheme.

(3) Reward. The reward function is the most
important factor in RL, because it can measure the
quality of model prediction and decision-making.
Through the reward function, RL can make improved
decisions to define and optimize loss function.

Through the investigation, we found that each entity
has a minimum resource guarantee, and the required
resource is not linear with the value created. Therefore,
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we designed a value function that considers not only the
economic and social value of each entity, but also the
different resource needs of each entity,

value.x/ D Vi � �.x/ (8)

�.x/ D
1

1C ˇ � e�˛�.x�Max.r// (9)

where i represents the entity node, x represents the
amount of resource allocated by the current node, Vi
represents the economic and social value of current
enterprises (see Section 3.1), ˛ and ˇ is the coefficient of
the curve, and Max(r) represents the maximum resource
required by the current entity.

Function curve � is shown in Fig. 2.
Therefore, in state s, the reward of action (a1j , a2k)

can be expressed as
reward.s; a1j ; a2k/ D8̂̂̂̂

<̂̂
ˆ̂̂̂:

�2; nodeŒj ��a2k<0I
0; a2k D 0I

value .maxi /�0:8�distanceij ; a2k > maxi I
value .maxi / � distanceij ; a2k D maxi I
value .a2k/ � distanceij ; other

(10)
where a1j , and a2k represent a1 takes action j , and a2
takes action k, respectively, they are different action
types. nodeŒj � represents the resource of node j , maxi
represents the maximum number of resources required
by node i , and distanceij represents the influence of the
distance factor.

3.2.2 Model design
In the allocation scenario, the allocation strategy is a
continuous sequence, and each sequence can be regarded
as an action of the agent. The action can be divided into
continuous and discrete actions.

For the single resource allocation node and discrete

Fig. 2 Resource allocation curve ���. (For example, in
bandwidth resource allocation, Max(r) is 100 Mbps, ˛̨̨ is 0.12,
and ˇ̌̌ is 0.01.)

action, we design a Parallel-Data-based DQN (PD-DQN)
model by combining DQN[4] with parallel data[9] to select
aQvalue by � greedy policy,with the mapped action as the
allocated quantity, which is shown in Fig. 3. On the basis
of DQN, the problem of overestimation is eliminated by
decoupling the selection of target Qvalue action and the
calculation of target Qvalue. The Q-network is updated
by calculating the loss, as shown in Eq. (11), and the
Q0 network updates parameters through soft updates, as
shown in Formula (12),

LossD.rC
max.Q.s0; a0; � 0)/�Q.s; a; �//2 (11)

� 0  �� C .1 � �/� 0 (12)
where 
 is the attenuation coefficient and � is the renewal
coefficient.

In PD-DQN network, parallel data environment is
used as the input state s. When action a is taken in
state s, the environment transfers to the new state s0,
and the reward r is obtained. In state s0, max.Q. // is
selected as the reward, corresponding to action a0. � and
� 0 are the DQN network and target network parameters,
respectively.

The output of the DQN network is the value of each
action; thus, extending to a multiresource node problem
is difficult. In this situation, we use the Parallel-Data-
based DDPG (PD-DDPG) model by combining DDPG[5]

with parallel data[9] to transform the multinode resource
allocation problem into a multiobjective optimization
problem with nonlinear functions; thus, the strategy is
expressed by parameterized functions. The PD-DDPG
model consists of actors and critics. In this model, the
output of an actor is a set of deterministic strategies (i.e.,
selecting a fixed resource allocation node and number
of allocation), and a critic is responsible for evaluating
the actions of the actor output. We also add a layer of
linear loss function and use Mean Square Error (MSE) to
measure the gap between the action of the model output
and the actual resource demand, and thus optimizing
the actor and completing the strategy learning. The

Fig. 3 PD-DQN model structure.
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PD-DDPG model structure is shown in Fig. 4. In Fig. 4,
DDPG includes four networks: Actor, Actor0, Critic, and
Critic0. The parameters of neural network are �; � 0; !;
and !0. Action a includes resource node and resource
quantity.

In the actor-critic structure of RL, the output of the
actor is approximated by a parameter equation (neural
network), which is used to obtain a definite action from
the current state. The critic model uses the Bellman
equation of action to measure the quality of action. The
DDPG algorithm adopts an off-policy style; thus, the
difference between behavior strategy and evaluation
strategy can increase agent exploration. At the same
time, the robustness of the model is improved by adding
noise to the deterministic behavior strategy. The goal of
model training is to maximize the Qvalue (see Eq. (13))
and minimize the loss of critic network (see Eq. (14)).
Qvalue D Q! .s; f .s; �// �MSE.size;maxdem/ (13)

LossDMSE(Q! .s; f .s; �// ; rC
Q!0.s0; f .s0; � 0//)
(14)

where size represents the number of resources allocated,
maxdem represents maximum resource demand, Q!. /
is the critic network output, and f . / represents the
nonlinear transformation of neural network..

In a complex environment, the parameters change
greatly due to the influence of learning rate, thus leading
to the instability of the model. To resolve these problems,
we use the Proximal Policy Optimization 2 (PPO2)[20]

algorithm. Based on the actor-critic structure, the PPO2
algorithm introduces the advantage function and clip
strategy to ensure the smooth updating of parameters.

4 Evaluation

As the most important means of communication in the
world, submarine optical cables are mainly used for long-
distance communication. More than 95% of international
communication is carried out through submarine optical

Fig. 4 PD-DDPG model structure.

cables.
With deep-sea emergency taken as an application

scenario, submarine cable distribution is selected as the
deduction object. When the submarine cable breaks
unexpectedly in the normal operation process, the
parallel data evolution method is used to evaluate the
effect of events, and the RL algorithm is used to model
the current state. In accordance with the model results,
the optimal bandwidth allocation strategy is selected to
guide practice.

4.1 Experimental design and results

For single-resource and multi resource nodes, as well
as continuous and discrete allocation strategies, we use
the different models proposed in Section 3.2 to simulate
bandwidth allocation and use Formula (10) to calculate
the reward. At the same time, we consider the distance
between each resource node and an enterprise. The
goal of the experiment is to maximize the reward of
all enterprises. The experimental steps are as follows:

Data preprocessing. From the National Bureau of
Statistics (http://www.stats.gov.cn/), we have collected
economic and social data on industries in recent
years (e.g., GDP, resources, employment rate, and
environment). The economic and social value of each
industry is calculated through the value model. The
economic and social model is normalized to make the
value between [1,10] due to the lack of different data
dimensions in various industries.

Data generation. We randomly simulate the missing
data. The number of bandwidth required by an
industry ranges from 20 Mbps to 100 Mbps, the number
bandwidth resources in a single resource node ranges
from 100 Mbps to 1000 Mbps, and the distance between
industries and different resource nodes is 1–10 km.

Model allocation simulation. For a single-resource
node, the allocation strategy adopts three discrete
allocation values, which are 10 Mbps, 50 Mbps, and
100 Mbps, seperately, we use the PD-DQN model to
allocate. For multiresource nodes, the allocation strategy
adopts the same method of distribution, which are
allocated by the PD-DDPG model. For multiresource
nodes, the allocation strategy adopts the continuous
value with the range of 0–100 Mbps; we allocate through
the PPO2 model. Lastly, a comparative study between
RL and other methods is conducted.

The experimental results of PD-DQN, PD-DDPG,
and PPO2 are shown in Figs. 5–7, respectively. After
multiple training, the final reward of each algorithm
tends to be stable and can reach the highest value. In
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(a) (b)

Fig. 5 PD-DQN model simulates single-node bandwidth allocation adopted discrete allocation strategies. (a) Reward change
tendency of 20 enterprise nodes, and (b) reward change tendency of 100 enterprise nodes .

(a) (b)

Fig. 6 PD-DDPG model simulates bandwidth allocation adopted discrete allocation strategies. (a) Reward change tendency of
1 resource allocation node and 100 enterprise nodes, and (b) reward change tendency of 5 resource allocation nodes and 100
enterprise nodes.

(a) (b)

Fig. 7 PPO2 model simulates bandwidth allocation. (a) Reward change tendency of 5 resource allocation nodes and 100
enterprise nodes adopted discrete allocation strategy, and (b) reward change tendency of 5 allocation nodes and 100 enterprise
nodes adopted continuous allocation strategy.

the experiment of one resource allocation node and
100 enterprise nodes, PD-DDPG reaches the stable
point faster than PD-DQN by using the actor-critic
structure. In the experiment of five resource allocation
nodes and 100 enterprise nodes, PD-DDPG has fast
update and convergence speeds, so the reward changes
smoothly. Compared with the discrete allocation
strategy, the continuous allocation strategy has a larger
action space, so the parameter update is slower and
requires more training time steps. Experimental results
show that our proposed social evolution modeling

approach can adapt to various scenarios.
As shown in Table 1, experiments on RL algorithms

(PD-DQN, PPO2), random trials, as well as genetic
algorithms are conducted, and the average values of
multiple final rewards are compared. For the allocation
algorithm that is not suitable for this scenario, the
allocation result is represented by “–”. In the discrete
scenario, at 20 and 100 enterprise nodes, the final
reward of the PD-DQN model is higher than that of the
random trail and genetic algorithms. In the continuous
scenario, with 100 enterprise nodes, the final reward

Table 1 Experimental comparison on reward.
Number of nodes Number of enterprises Distribution type PD-DQN PPO2 Random trial Genetic algorithm

1 20 Discrete 190 – 184 161
1 100 Discrete 117 – –49 93
1 100 Continuous – 49 – –101
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of the PPO2 model is higher than that of the genetic
algorithm. Experiments show that our proposed methods
based on RL and parallel data have high reward, good
robustness, and effectiveness.

4.2 Discussion

We use three different RL algorithms (i.e., PD-DQN,
PD-DDPG, and PPO2) to allocate bandwidths for single-
node, multinode, discrete, and continuous allocation
strategies. Each model can find a high reward through
continuous exploration and simulation. After many
trainings, the algorithm gradually converges, and the
reward stabilizes. By combining with social evolution
methods, the results of each step can be deduced, and the
optimal strategy for resource allocation can be found.

In the approach of social evolution modeling, we use
the economic and social value model to calculate the
reward of RL. To some extent, the reward can reflect
the social loss. We can analyze social loss through the
reward of RL. If we do not take any action or it is not
the optimal strategy, we obtain less rewards. The final
strategy obtained by RL can achieve the highest reward,
thus reducing social loss.

For the assignment problem, we also attempt to find
the optimal value through the genetic algorithm and
random trials. The genetic algorithm adopts the “survival
of the fittest” evolutionary method between successive
generations of individuals to solve the optimal problem.
Through reward or fitness, they can eventually find
a better value. The essential difference between the
genetic algorithm and RL is that RL not only finds the
optimal value, but also learns the representation from
state to action. Moreover, the genetic algorithm hardly
constructs a fitness function for complex problems.

5 Conclusion and Future Work

The occurrence of social abnormal events causes a chain
reaction that affects social stability, leading to serious
harm and loss. If no effective mechanism can be used to
deal with these events, the situation may worsen. Based
on the idea of parallel data, we propose a parallel-data-
based social evolution modeling approach to deduce
the evolution of events. Based on RL, we design
decision-making mechanisms for different situations
to provide optimal strategies for handling abnormal
events. Experiments in different scenarios show that
compared with other methods, the proposed approach
can find the optimal strategy. The evaluations also show
that our approach is versatile, robust, and efficient.

In the future, we will consider forming a more
complete digital social system to deduce the state
evolution. We commit to improving the RL algorithm
and the training speed.
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