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Anomaly Detection of Industrial Control Systems
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Abstract: Industrial Control Systems (ICSs) are the lifeline of a country. Therefore, the anomaly detection of ICS

traffic is an important endeavor. This paper proposes a model based on a deep residual Convolution Neural Network

(CNN) to prevent gradient explosion or gradient disappearance and guarantee accuracy. The developed methodology

addresses two limitations: most traditional machine learning methods can only detect known network attacks and

deep learning algorithms require a long time to train. The utilization of transfer learning under the modification of the

existing residual CNN structure guarantees the detection of unknown attacks. One-dimensional ICS flow data are

converted into two-dimensional grayscale images to take full advantage of the features of CNN. Results show that the

proposed method achieves a high score and solves the time problem associated with deep learning model training.

The model can give reliable predictions for unknown or differently distributed abnormal data through short-term

training. Thus, the proposed model ensures the safety of ICSs and verifies the feasibility of transfer learning for ICS

anomaly detection.
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1 Introduction

Modern Industrial Control Systems (ICSs) have higher
production efficiency than traditional industrial systems
and can well process big data.

However, increases in the type and frequency of
network attacks and hacking incidents threaten the
security of ICSs based on data transmission. The
National Institute of Standards and Technology has
proposed the main sources of security issues for modern
ICSs[1], which include nonsecure communication
protocols, poor network isolation and access controls[2],
and the lack of an ICS anomaly detection system[3].
Intrusion detection technology is an important research
direction in the field of network security. The original
flows of network equipment and servers have been
comprehensively analyzed[4]. When industrial control
networks are invaded or traffic data are abnormal,
intrusion detection technology can effectively predict
and take active defensive measures in a timely manner.
Deep learning has shown great research significance
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in intrusion detection technology. Feature values are
extracted through a great amount of data training,
parameters are constantly changed, and a system that
can identify abnormal traffic data is constructed.

Deep learning and traditional machine learning show
certain similarities. The core aim of traditional machine
learning is to map features to the target space. In
traditional machine learning algorithms, the recognition
rate increases with increasing data size; however,
because a bottleneck period is often encountered
during processing, these models cannot handle massive
amounts of data. Machine learning performs well in
intrusion detection in closed environments. However,
machine learning will be exposed when entering an
open-world scenario with various random traffic or
noise, which could adversely affect its availability[4].
Therefore, traditional machine learning algorithms are
unsuitable for detecting abnormal traffic in ICSs, and
finding abnormal data quickly and implementing active
measures with high accuracy are quite challenging.

Compared with traditional machine learning, deep
learning has a strong generalizability for extracting high-
dimensional data. Deep learning uses back-propagation
algorithms to change and adjust parameters continuously
to achieve optimal results. This learning method can
handle large amounts of data; indeed, the larger the
data size, the better the resulting effect. Unfortunately,
although deep learning has good generalizability in
processing images, it relies on labeled data and cannot
handle unknown abnormal data types[5]. In this article,
we solve some of the problems of traditional machine
learning by using a residual Convolution Neural Network
(CNN) structure to model the source dataset and modify
the relevant parameters by transfer learning. We then
apply the transfer learning algorithm using the relevant
information of the source domain and predicting the
target domain[6]. Transfer learning is finally employed to
train the model quickly and detect differently distributed
or unknown datasets.

ICS flow data can usually be processed with one-
dimensional data sequences through preprocessing; in
this work, however, we use mapping to convert ICS flow
data to an image format suitable for CNNs to take full
advantage of the features of the latter. Fine-tuning is
utilized during transfer learning to ensure timeliness.
After building an eight-layer residual neural network,
only the three deepest layers of the neural network are
fine-tuned.

The residual structure, which effectively prevents
gradient explosion or gradient disappearance while
ensuring the depth of the model effect, is introduced.
The detection ability of the model in unknown domain
datasets is excellent. After training the source domain,
that is the KDDCUP99 dataset, the model is used on
a gas pipeline dataset through transfer learning. The
model shows good anomaly detection effects on the gas
pipeline dataset[7], and its precision, recall, and F1-score
are fairly high.

This article is organized as follows. Section 2
introduces the background of this study and the related
work. Section 3 describes the method. Section 4
introduces the evaluation index. Section 5 describes
the experimental process and results. Section 6 provides
the conclusions and directions for future work.

2 Background and Related Work

2.1 Research status of industrial control system
anomaly detection

Given rapid developments in informatization and
industrialization, ICS has been widely used in
national infrastructures. However, platform hardware
and software vulnerabilities and the openness of the
network environment render ICSs vulnerable to security
attacks. Therefore, ICS anomaly detection is very
important. Anomaly detection has a significant effect
on the active defense process of ICSs[8]. The anomaly
detection approaches of ICSs mainly include three types,
namely, knowledge-based, statistics-based, and machine
learning-based. Reference [9] proposed an anomaly
detection method based on state recognition to detect
attacks in ICSs by using a data-driven clustering method
to identify the normal and critical states of a system.
A statistical model for traffic detection in the time
domain has also been introduced to detect network
anomalies and evaluate the performance of the method
in different scenarios[10]. Results show that the model
can detect network anomalies in all scenarios faster
than other methods. Considering their consequences,
network attacks aimed at ICSs are very serious. More
importantly, they are difficult to detect[11]. In the context
of industrial control environments, anomaly detection
based on machine learning does well in improving
the accuracy of finding abnormal behavior and is of
great importance in the establishment of efficient and
intelligent intrusion detection models[8].
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2.2 Anomaly detection based on machine learning

2.2.1 Traditional machine learning algorithms
Decision tree, random forest, Support Vector Machine
(SVM), and logistic regression are traditional machine
learning methods. An earlier study used an intelligent
Markov model based on statistical learning to establish
a multimodel intrusion detection system for industrial
process automation that could effectively detect actual
attack operations[12]. Other researchers used SVM to
establish a data detection model utilized in an industrial
control communication protocol[13].

Decision tree is a machine learning method with a tree
structure and high efficiency. It is easy to understand
and highly effective for processing discrete data. SVM
is based on the principle of structural risk minimization.
In this method, the optimal classification is found by
learning the classification model of data samples in the
feature space.

2.2.2 Deep learning model
Traditional machine learning methods have a number
of disadvantages, such as low efficiency in processing
large-scale data and inability to solve samples with
uneven distributions. Compared with traditional machine
learning methods, deep learning models have more
complex architectures and multiple layers. The most
important advantages of deep learning over traditional
machine learning are that it can learn features directly
and automatically from the original data and has good
performance[14].

Deep learning models are quite effective in the field
of detecting industrial process anomalies. Almalawi
et al.[15] proposed two novel techniques that are
an automatic identification of inconsistent states
of SCADA data and an automatic extraction of
proximity detection rules from identified states. Gao[16]

developed an anomaly-based intrusion detection
system for the SCADA network and found a combined
Intrusion Detection System (IDS) which includes
signature-based IDS and anomaly-based IDS. These
studies show that deep learning methods have
good performance in anomaly detection and attack
classification.

CNNs are suitable for image classification[17].
Compared with other image recognition algorithms,
CNN uses not only deep learning methods but also some
special structures for feedforward neural networks and
has relatively little data to preprocess.

2.2.3 Transfer learning based on model fine-tuning
Transfer learning is an effective approach to exploit
deep neural networks on small datasets. The essence
of transfer learning is to transfer and reuse knowledge in
other fields. Mathematically, transfer learning includes
two concepts, namely, domain and learning task. Model-
based transfer learning methods are usually combined
with deep learning models to transfer the structure and
parameters of models that have been trained on large-
scale datasets (e.g., AlexNet, VGGNet, and ResNet) to
new tasks and use the weights trained on the large dataset
as the initial weights for the new task[18]. In contrast
to deep learning, transfer learning can detect unknown
information. Fine-tuning pretrained CNNs on images is
an effective strategy to achieve transfer learning. This
technique is widely used in the field of image recognition
and provides new insights into the recognition of small-
scale datasets. In transfer learning, the deep network
structure is trained on a large natural image dataset, after
which the model is transferred to a small dataset by
fine-tuning its parameters. The features extracted from
the pretrained deep neural network are universal and
applicable to other datasets. Figure 1 shows a schematic
of the model.

2.2.4 Fine-tune based on residual neural network
Kaiming He, a researcher at Microsoft Research Asia,
designed residual neural networks with a deeper network
structure and a simpler network structure[19]. The
residual network consists of multiple residual blocks,
and each residual block comprises a convolutional layer
and a pooling layer. The blocks of the convolutional
layer are skipped by using shortcut connections. The
use of identity shortcuts requires the same input and
output sizes[20]. In this case, the problem of model
attenuation caused by the disappearance of gradients
is avoided by the superposition of gradients. This deep
residual neural network won five championships in two
major technical competitions, namely, ImageNet and
MS COCO. A unique feature of this network is that it
includes a network depth greater than 152 layers, which

Source  Target

Copy Fine-tuned modelModel

Fig. 1 Transfer learning by model fine-tuning.
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had never been achieved before. In previous experiments,
the gradient disappeared as the number of network layers
increased and the error rate of such a network was higher
than that of a neural network with a lower number of
layers. The emergence of the residual neural network
solves these issues well. Experiments showed that higher
accuracy could be obtained as the number of network
layers trained by the residual network increased, which
means the residual network can allow deeper network
layer training, and the performance of the model was
greatly enhanced[21].

Because traditional machine learning algorithms
have poor generalizability, deep learning algorithms
present greater time costs and may be prone to
gradient disappearance or explosion. Although fine-
tuning technology based on deep neural networks can
solve the problem of high time cost and detect unknown
attacks, model pretraining remains subject to gradient
disappearance or explosion during deep learning. Fine-
tuning based on a deep residual neural network can solve
these problems simultaneously.

3 Method

In this section, we will describe the processing flow in
detail. Because of the correlations among the features
of industrial control flow data, we convert the one-
dimensional data stream into a two-dimensional matrix
and then convert this matrix into a Mahalanobis Distance
(MD) matrix. The obtained matrix is converted into
one-dimensional data, saved, normalized, and then
mapped into a black-and-white image. After building
an eight-layer CNN with a residual structure, we use the
KDDCUP99 dataset for pretraining and then train the
obtained model on the gas pipeline dataset by fine-tuning
through the transfer learning method.

3.1 Data preprocessing

This experiment uses a deep migration learning model
and the KDDCUP99 dataset as the source domain to
perform migration learning on the gas pipeline dataset.
Because the data may be disturbed by noise, missing
values, and inconsistent data, the presence of low-
quality data is inevitable. We improve the credibility
of the data by preprocessing them and then improve
the performance of model recognition. A preliminary
exploration of the data reveals the presence of attributes
with exactly the same feature values in the training data;
these attributes are not beneficial to the establishment of
the model and affect its construction[8]. Therefore, the

redundant features are removed. Some normalization
methods are used to process the training data, improve
the convergence speed of deep learning, and complete
the task of anomaly detection.

3.1.1 Target domain: Gas pipeline dataset
The steps are as follows:

(1) Data cleaning: A large amount of abnormal
data will greatly affect the normalized results by
affecting the data distribution. Data cleaning is used
to clean duplicates, erroneous data, and useless features,
thus improving the reliability and integrity of the
data as well as the accuracy of the analysis results.
The gas pipeline dataset includes some negative and
unreasonably large values of key measurement data,
which means cleaning is necessary. Next, the attributes
“commandlength”, “commwritefun”, “reset”, “gain”,
“deadband”, “cycletime”, “rate”, and “crcrate” are
redundant attributes in the dataset[22]. We delete these
attributes from the dataset because they interfere with
data classification.

(2) Feature mapping: This experiment uses MD
to perform feature mapping on the data. MD was
proposed by Mahalanobis[23] as a distance measurement
method and refers to the covariance distance of the
data. In contrast to the Euclidean distance, MD
ignores differences in measurement units and considers
the relationship between features, thus aligning the
relationship between features with the actual situation[24].
Therefore, MD is not affected by the measurement scale
and the interference of correlations between variables
can be eliminated. Figure 2 shows the pseudo code for
feature mapping of data using MD.

3.1.2 Source domain: KDDCUP99 dataset
We standardize the source domain, that is the
KDDCUP99 dataset. Standardized data are subtracted
from the mean and then divided by the variance (or
standard deviation). When this data standardization

Main code of feature mapping method based on MD

Input: industrial control network data stream 

Output:  transformed feature matrix   

Do while Xi:

Diag = convert_to_diag(Xi)

# The  function  is  responsible  for  converting the data  stream  into a diagonal 

   matrix, and the mapped matrix is Map_Matrix=map_matrix(diag)

# The  function  is responsible  for  converting the diagonal matrix into a matrix

   Save_matrix(Map_Matrix) 
# The function  saves the transformed matrix

Xi =Xi+1

End while

Fig. 2 Pseudo code for feature mapping of data using the
MD.
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method is completed, the data are converted into a
standard normal distribution. In general, the standard
deviation is 1 and the mean is 0. The conversion function
is in the following:

x D
x � ��

x
(1)

where x is the data, � is the mean, and � is the variance.
Standardizing the dataset can accelerate the search

for optimal solutions. Standardization is conducive to
process initialization, avoids numerical problems when
updating the gradient value, and helps adjust the learning
rate. It can also ensure that small values in the output
data are utilized.

3.2 Data visualization

3.2.1 Gas pipeline dataset
One-dimensional industrial flow data are transformed
into a two-dimensional matrix via the feature-mapping
method. This section introduces the feature matrix
visualization method employed in this article. In this
paper, every element in the MapMatrix matrix is
regarded as a pixel, and the element value corresponds
to the gray value of the pixel.

3.2.2 KDDCUP99 dataset
The 41-dimensional feature samples are converted into
8-bit-depth grayscale images measuring 7 pixel� 7 pixel
in size, the pixels number is from 0 to 255, and each
feature corresponds to a pixel.

3.3 Eight-layer residual convolution neural
network

The existing residual CNN (layers 6 34) is shown in
Fig. 3.

Although the residual neural network increases the
accuracy of predicting labels as the network deepens[18],
it also leads to a longer training time, which is
unfavorable for anomaly detection in ICS. Compared
with colored pictures, the data flow has fewer features
and does not require a deep network structure for feature

7×7

conv, 64, 2
Basicblock×n

(3×3 conv, 64, 1)×2

Basicblock×n
(3×3 conv, 128, 2)×2

Basicblock×n
(3×3 conv, 256, 2)×2

Full 

connection 

layer

Basicblock×n
(3×3 conv, 512, 2)×2

Fig. 3 Original residual convolutional neural network
model structure.

extraction. Thus, we constructed an eight-layer CNN
with a residual structure.
3.3.1 Input layer
After data visualization, the data stream from the
KDDCUP99 dataset is processed into a 7 � 7 grayscale
image, and the data stream from the gas pipeline dataset
is processed into an 18 � 18 grayscale image. These
two input sizes are relatively small. The stride of the
input layer is set to 1, the kernel size is set to 3 � 3, and
the number of input channels is set to 3 (the algorithm
automatically converts the grayscale image into the RGB
model) to utilize the data completely.
3.3.2 Residual blocks
Three residual blocks are utilized in the model. Each
residual module is composed of two weight layers
and two Relu activation functions. The weight layer
is composed of a convolutional layer and a batch-
normalization layer.

The batch-normalization layer transforms the input
value distribution of any neuron in each layer of
neural network into a standard normal distribution via
a certain normalization method. Therefore, the batch-
normalization layer prevents the model from gradient
vanishing and greatly accelerates its training speed[25].

The Relu function performs a nonlinear
transformation on the input. The input is not a
linear combination of the outputs of the previous layer
but can be approximated to any function, thus ensuring
the significance of the deep neural network[26].

The size of the kernel of the convolutional layer is
3 � 3, and the stride is 1. As the network deepens, the
number of kernels varies from 64 to 256. A schematic of
each residual module is shown in Fig. 4. The equation
of the module is in the following:

y D F.x/C x (2)
where x is the input matrix and F(x) is the output after
the two-layer convolution operation. y is the input of the
next residual module.

Fig. 4 Residual block structure.
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3.3.3 Pooling layer
Commonly used pooling operations include maximum
down-sampling, average down-sampling, and spatial
down-sampling. Down-sampling is used in CNN
to reduce model parameters. Among these pooling
operations, maximum down-sampling has been proven
to have the best information retention capability.

Because the number of data features in ICSs is small,
we only add a maximum pooling layer prior to the fully
connected layer to reduce information loss. The stride is
2, the kernel size is 3� 3, and the number of in-channels
is 256.

3.3.4 Fully connected layer
The fully connected layer is implemented by using a
linear transformation function, which acts as a classifier
for the entire neural network. Assuming that the
output image size of the previous layer is M � N, the
number of kernels is K. Because we are studying a two-
class problem, the fully connected layer transforms the
M � N � K-dimensional data into two-dimensional data,
that is the predicted probability of each label. The
algorithm outputs the predicted label by finding the
greatest possibility of the label being obtained.

Figure 5 shows the structure of the entire model.

3.4 Fine-tuning

Fine-tuning is performed according to the neural
network. As the network deepens, the extracted features
become more abstract. For two similar domains, the
previous layer for extracting common features can be
retained after source domain training, and the target
domain only needs to train the deepest several layers of
the network.

In this study, because the KDDCUP99 and gas
pipeline datasets are anomaly detection datasets with
fixed-dimensional data features and certain correlations
between features, we can use transfer learning on the
basis of the data features of the datasets described
above. The KDDCUP99 dataset has a sufficient sample

cv

Normal

Attack

cv

Fully 
Connected

Batch 
Normalization+Relu

Max 
Pooling

c

Fig. 5 Model structure used in this article.

number and contains over 490 000 datasets, while the
gas pipeline dataset is relatively small and contains only
over 90 000 datasets. Employing the premise initially
introduced in this subsection, we use the KDDCUP99
dataset to pretrain the model completely, retain the
parameters of the convolutional layer that could extract
low-dimensional features, and then train and adjust the
last three layers of the neural network through fine-
tuning.

4 Evaluation Index

We utilize recall, precision, F1-score, False Positive Rate
(FPR), and accuracy to evaluate the experimental results.
The percentage of positive samples in the data predicted
by the model to be positive is reflected by precision,
recall reflects the proportion of real positive samples that
are predicted to be positive, F1-score combines precision
and recall, and FPR reflects the proportion of negative
samples that are incorrectly classified as positive[27].

precision D
TP

TPC TN
I

recall D
TP

TPC FN
I

FPR D
FP

FPC TN
I

F1-score D
2TP

2TPC FPC FN
I

accuracy D
TPC TN

TPC TNC FPC FN
(3)

We assume that normal samples in the actual samples
are positive samples and that abnormal attack samples
are negative samples. The total number of positive
samples predicted to be correct is True Positive (TP),
and the total number of errors is False Negative (FN).
The total of negative samples predicted to be correct
is True Negative (TN), and the total of errors is False
Positive (FP).

5 Experiment

5.1 Dataset description

The datasets used in this experiment are the gas pipeline
and KDDCUP99 datasets. The gas pipeline dataset is an
industrial control network laboratory-scale ICS dataset
based on Modbus application layer protocol published by
Professor T. Morris of Mississippi State University[28].
The KDDCUP99 dataset is a network connection dataset
obtained from a simulated US Air Force LAN costing 9
weeks[28].

The KDDCUP99 dataset is a public dataset used
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to verify network anomaly detection algorithms. This
dataset is employed in the present work to verify
the effectiveness of the proposed anomaly detection
algorithm. The dataset contains 41-dimensional data
samples and includes 22 attack types divided into four
categories, namely, Denial of Service attack (DoS),
probing, R2L, and U2R[29]. The gas pipeline dataset
contains 26 features and a category label. The number
of attack categories in the training and test sets is
equal, and no unknown attack category is present. This
dataset contains seven types of attacks, namely Original
Malicious Response Injection (OMRI), Malicious
Status Command Injection (MSCI), Complex Malicious
Response Injection (CMRI), Malicious Parameter
Command Injection (MPCI), DoS, Malicious Function
Command Injection (MFCI), and Reconnaissance Attack
(RA)[27].

Because the KDDCUP99 dataset has a total of 5
million items, which is massive, we take only 10 % of
these items for experimentation. The experimental data
include approximately 100 000 items, which accounts
for approximately 20% of this dataset. The gas pipeline
dataset has a total of 97 019 items, of which 61 156 are
normal samples.

5.2 Experimental settings

In view of the different sample sizes of the source and
target domain data, we divide the datasets randomly as
follows: 90% of the KDDCUP99 dataset is used for the
training set, and 10% is used for the test set. Moreover,
80% of the gas pipeline dataset is used for the training
set, and 20% is used for the test set.

We use PyTorch to construct the Resnet8 model,
multiply the cross-entropy loss function by 1.5–5 and
use the result as a loss indicator, and apply the stochastic
gradient optimizer. The learning rate of the source
domain training is set to 0.001, the batch size is set
to 128, the duration is set to 4 epochs. The learning rate
of the target domain is set to 0.0003, the batch size is set
to 64, and the duration is set to 5 epochs.

The experimental procedure is as follows.
(1) Read the dataset samples of the target and source

domains and then digitize, standardize, and normalize
the source domain data. Next, digitize the target domain
data, remove redundant features, delete the outliers of
individual sites, perform MD calculations, and then
normalize the data column by column. After processing
into new samples, randomly divide the test and training
set by percentage. The test set of KDDCUP99 dataset

accounts for 10%, and the test set of gas pipeline dataset
accounts for 20%.

(2) Visualize the new data samples obtained.
(3) Use KDDCUP99 to pretrain the Resnet8 model.

Then, save the model and model parameters after testing
the model performance.

(4) Load the pretrained model and model parameters,
use the gas pipeline dataset to fine-tune the last three
layers of the neural network of Resnet8, and obtain the
model test indicators.

The experiments were performed on a computer with
an i7-8550U CPU processor, 1.8 GHz frequency, and 8
GB RAM.

5.3 Experimental results and analysis

This section introduces the results of the pretraining
model, describes the effects of fine-tuning different
numbers of layers, and discusses the effects of model
fine-tuning and random initialization parameter training
with the target domain. After obtaining the results, we
explain the benefits of using transfer learning and why
the three-layer method of fine-tuning is used. We also
demonstrate the superiority of the proposed algorithm
by comparing the results with those of other existing
algorithms.

5.3.1 Data preprocessing and visualization
Every data stream in the target is processed into 324
pieces of data and source domains are processed into 41
pieces of data by preprocessing each set of traffic data.
Figure 6 shows the results of data visualization. Each
dataset in the source domain is processed into a grayscale
image of 7 pixel � 7 pixel by a 6-bit 0 supplement, and
each dataset in the target domain is processed into a
grayscale image of 18 pixel�18 pixel pixels. Processing
samples in this form to the residual CNN is clearly

(a) Normal-type samples in

the source domain

(b) Attack-type samples in

the source domain

(c) Normal-type samples in the

target domain

(d) Attack-type samples in the

target domain

Fig. 6 Data visualization results.
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feasible.

5.3.2 Model pretraining
Figure 7 shows the change curve of the evaluation index
on the training and test sets during model pretraining.

The graph shows that the loss and FPR of the source
domain continuously decrease during model pretraining
until the values stabilize. F1-score, recall, precision,
and accuracy steadily rise until values of 100% are
obtained. This result means the model converges well on
the source domain, and the evaluation index indicates
that the model can be used for training in the target
domain.

5.3.3 Model fine-tuning and deep learning
In this experiment, all eight layers of the model are
fine-tuned by utilizing transfer learning. The deep
learning method used in this article initializes the model
randomly and then optimizes all model parameters
without transfer learning. The result in Fig. 8 shows
that the pretrained model using fine-tuning converges
faster and has a smaller loss and higher accuracy than
the model using deep learning when the gas pipeline
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Fig. 7 Pretraining process index change curves.
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Fig. 8 Fine-tuning and training of the model using deep
learning convergence comparison curves.

dataset is used for training. This finding indicates that
transfer learning is significant in this environment. Both
training methods are completed in approximately 81
minutes. The comparison shown in Table 1 reveals that
the score of the method of fine-tuning three layers in the
ICS flow anomaly detection index is close to the first two
methods, which also greatly reduces the training time of
the model.

5.3.4 Fine-tuning of the different layers of the
model

Figure 9 shows the changes in loss and accuracy

Table 1 Transfer learning effect verification form.

Recall Precision F1-
score FPR Accuracy Training

time
Deep

learning 0.9915 0.9955 0.9935 0.0085 0.9915 80 min 44 s

Fine-tuning
the model 0.9929 0.9953 0.9941 0.0088 0.9923 81 min 13 s

Fine-tuning
three layers 0.9906 0.9955 0.9931 0.0085 0.9909 51 min 58 s
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(a) Accuracy observed during the fine-tuning of different numbers of layers
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(b) Loss observed during the fine-tuning of different numbers of layers

Fig. 9 Index change curves obtained during the fine-tuning
of different numbers of layers.

observed during training. Other indicators are listed in
Table 2. Figure 10 shows a visualization of the prediction
results.

The results show that the indicators improve as the
number of fine-tuning layers increases. In terms of
model convergence, the effects of fine-tuning three and
five layers are not much different, but the effect of
fine-tuning one layer is relatively unsatisfactory. In the

Table 2 Effect of fine-tuning of different numbers of layers.
Number
of layers Recall Precision F1-score FPR Training

time
1 0.9902 0.9940 0.9921 0.0113 37 min 5 s
3 0.9906 0.9949 0.9929 0.0087 51 min 58 s
5 0.9915 0.9954 0.9934 0.0087 65 min 56 s

(a) (b)

Fig. 10 Visualization of the prediction results.

anomaly detection of ICS flow data, the model training
time and FPR are subject to stringent requirements.
Given comprehensive consideration, the method of fine-
tuning three layers appears to be the most appropriate.
Such fine-tuning results in the precision and other
indicators exceeding 99% and FPR decreasing to 0.85%,
which indicates that the abnormal attack types OMRI,
MSCI, CMRI, MPCI, DoS, MFCI, and RA, have been
effectively detected.

5.3.5 Algorithm comparison
The comparison results in Table 3 show that the
precision indicators of reciprocal data and AutoEncoder
(AE)COne Class Support Vector Machine (OCSVM)
are higher than those of other machine learning
algorithms. However, the recall indicator of these
algorithms is low, which means the detected positive
samples are actually not all positive. The recall index
of Generative Adversarial Networks (GAN) is high
but its other indices are low, thus indicating that its
comprehensive performance is poor. Although the F1-
score of AE+OCSVM is high, which indicates that it
has good overall performance, its recall value is quite
low, which means some negative samples (abnormal
types) may be misclassified as positive samples. These
indicators are unsuitable for abnormal detection in
ICSs. The algorithms proposed in this paper are clearly
superior to those algorithms in terms of the indicators of
interest.

6 Conclusion and Future Work

Network security is a popular and important topic.
The network security of ICSs is of great importance
for a country. This paper uses data visualization to
convert flow data into images. Specifically, we build an
eight-layer residual neural network and use fine-tuning
technology for transfer learning to detect abnormal
datasets of ICSs.

Experimental results show that transfer learning for
residual CNNs is effective in this field. The depth of the
model also ensures that it has a certain generalizability.
The residual structure effectively prevents gradient

Table 3 Performance comparison of different algorithms.
Algorithm Recall Precision F1-score

GAN 0.9973 0.7498 0.8621
AE+OCSVM 0.8747 0.9907 0.9284

DEC 0.8821 0.8893 0.8909
RDA 0.7301 0.9913 0.8411

Fine-tune+Resnet8 0.9906 0.9955 0.9931
Note: DEC means deep embedded clustering.
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explosion or gradient disappearance. The model can
provide reliable predictions for unknown or differently
distributed abnormal data through short-term training
by transfer learning. Compared with other anomaly
detection algorithms, the algorithm proposed in this
paper results in superior indicators. The method we
proposed not only solves the problem associated with
training time for deep learning models by transfer
learning, but also meets the requirements of ICSs in
terms of evaluation indicators.

At present, the model we constructed solves the two-
classification problem, but a refined classification of
abnormal traffic data is still desirable. In the future work,
we will perform multiclassification of abnormal traffic
data, track the characteristics of different abnormal data
types, and then reliably classify them to further ensure
network security in ICSs.
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