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A Data-Driven Clustering Recommendation Method for
Single-Cell RNA-Sequencing Data

Yu Tian, Ruiqing Zheng, Zhenlan Liang, Suning Li, Fang-Xiang Wu, and Min Li�

Abstract: Recently, the emergence of single-cell RNA-sequencing (scRNA-seq) technology makes it possible to

solve biological problems at the single-cell resolution. One of the critical steps in cellular heterogeneity analysis is

the cell type identification. Diverse scRNA-seq clustering methods have been proposed to partition cells into clusters.

Among all the methods, hierarchical clustering and spectral clustering are the most popular approaches in the

downstream clustering analysis with different preprocessing strategies such as similarity learning, dropout imputation,

and dimensionality reduction. In this study, we carry out a comprehensive analysis by combining different strategies

with these two categories of clustering methods on scRNA-seq datasets under different biological conditions. The

analysis results show that the methods with spectral clustering tend to perform better on datasets with continuous

shapes in two-dimension, while those with hierarchical clustering achieve better results on datasets with obvious

boundaries between clusters in two-dimension. Motivated by this finding, a new strategy, called QRS, is developed to

quantitatively evaluate the latent representative shape of a dataset to distinguish whether it has clear boundaries or

not. Finally, a data-driven clustering recommendation method, called DDCR, is proposed to recommend hierarchical

clustering or spectral clustering for scRNA-seq data. We perform DDCR on two typical single cell clustering methods,

SC3 and RAFSIL, and the results show that DDCR recommends a more suitable downstream clustering method for

different scRNA-seq datasets and obtains more robust and accurate results.

Key words: single-cell RNA-sequencing (scRNA-seq); cellular heterogeneity; cell type identification; data latent shape;

clustering

1 Introduction

Cells can be considered as the fundamental units of
living organisms[1]. The construction of a comprehensive
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cell atlas would help researchers list all cell types in
human bodies, identify where the cells are located and
distinguish different states and developmental stages
of cells. The atlas would further help to identify
biological markers and signatures for diseases and
provide a better understanding on the basis of system
biology. To achieve this goal, the Human Cell Atlas
Project[2, 3] is proposed, which focuses on constructing
a reference map of all human cell types. Furthermore,
cellular heterogeneity is a prerequisite for maintaining
the development of a biological system, regulating
homeostasis and responding to external perturbations[4].
In the process of analyzing cellular heterogeneity[5], the
single-cell RNA-sequencing (scRNA-seq) has become
one of the most powerful techniques[6–8].
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Recently, a lot of scRNA-seq clustering methods have
been proposed to identify cell types. These methods
apply different preprocessing strategies such as similarity
learning[9], dropout imputation[10], and dimensionality
reduction[11]. Specifically, dropout events caused by
failures in amplification in the RNA-seq experiment
have become a prominent problem in scRNA-seq
data analysis. To deal with this phenomenon, Lin
et al.[10] incorporated the dropout imputation with a
robust weighted distance calculation strategy. Instead
of treating all the zero counts as dropout entries,
scImpute[12] only imputed the one with a high dropout
probability by referring to the expression levels in other
similar cells. Additionally, dimensionality reduction[13]

plays an important role as one of the characteristics
of scRNA-seq data is of high dimensionality. Becht et
al.[14] proposed UMAP, which is based on the manifold
theory and topological data analysis. It can preserve the
global structure in a superior runtime. ZIFA[11] built a
latent variable model by incorporating the presence of
zero-inflation with a factor analysis framework. These
two dimensionality reduction methods can be applied
with a classic clustering algorithm to partition cells,
and the performances have been proved to be good
on scRNA-seq data. Gene selection is also significant,
and Guo et al.[15] designed SINCERA to solve this
problem. The method selected genes in the expression
matrix based on the abundancy and selectivity of gene
expression. Moreover, a critical step in clustering is to
learn an accurate cell-to-cell similarity matrix. Jiang et
al.[16] obtained a dissimilarity matrix by using the gene
differential pattern among all cell pairs to construct the
differentiability correlation between cells. TCC-based
clustering[17] adopted the Jensen–Shannon distance to
build an affinity matrix according to the transcript-
compatibility count quantification. RAFSIL[18] defined
the similarity by counting the frequency of two
cells falling into the same leaf in a random forest
classifier. In addition, subspace clustering[19, 20] has
also been successfully applied in cell type identification.
SinNLRR[21] and AdaptiveSSC[22] both used subspaces
to learn the similarity between cells. Butler et al.[23]

identified the highly variable features and constructed
a KNN graph based on the Euclidean distance in latent
spaces, and the edge weights between any two cells were
defined based on the Jaccard similarity. Furthermore,
in order to improve the robustness and generalization
ability of clustering, a series of ensembled methods have
been proposed. A multi-kernel based similarity learning
strategy named SIMLR[9] was proved to have

good performance on cell partitions. Based on SIMLR,
MPSSC[24] learned a new similarity matrix by imposing
a sparse structure on the doubly stochastic affinity matrix.
SC3[25] assembled multiple clustering results obtained
based on different (dis)similarity measurements and
dimensionality reductions, and the results were used
to calculate a consensus matrix. SAME-clustering[26]

combined a maximally diverse subset of four clustering
solutions obtained from five individual clustering
methods, then the subset was combined with the
expectation-maximization (EM) algorithm to build an
ensemble clustering solution. Among all these methods,
we find that hierarchical clustering[10, 15, 16, 18, 25, 27–29]

and graph-based clustering[30–34] such as spectral
clustering and Louvain community detection algorithm
are the most popular approaches in the downstream
clustering analysis[9, 12, 21–24, 35]. Additionally, density-
based clustering is also widely used in scRNA-seq
data analysis for the identification of outlier cells[36, 37].
Here, we choose several classic clustering methods that
are popularly applied in scRNA-seq clustering for a
correlation analysis. Based on the result, hierarchical
clustering and spectral clustering are selected for the
follow-up experiments.

In this study, we carry out a comprehensive analysis
and combine visualization to compare hierarchical
clustering and spectral clustering on scRNA-seq datasets
under different biological conditions. Results show that
the preprocessing strategies with spectral clustering
tend to perform better on datasets with continuous
shapes in two-dimension (we would use continuous
shapes as the simplified representation), while those
with hierarchical clustering achieve better results on
datasets with obvious boundaries between clusters in
two-dimension (we would use classification structures
as the simplified representation). Based on this finding,
a new strategy is developed to quantitatively evaluate the
latent representative shape (we use QRS as the simplified
representation) of an scRNA-seq dataset to distinguish
whether it has clear boundaries or not. A data-driven
clustering recommendation method, called DDCR,
is proposed to recommend hierarchical clustering or
spectral clustering for scRNA-seq data. We perform
DDCR on two typical single cell clustering methods,
SC3 and RAFSIL. The results show that DDCR
recommends a more suitable downstream clustering
method for different scRNA-seq datasets, and the
recommendation improves the overall results of cell type
identification.
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2 Method

2.1 Datasets

In this study, we collect 12 well-annotated scRNA-seq
datasets from AarryExpress[38] and GEO database[39]

and carry out a comparative analysis on the collected
datasets. The 12 scRNA-seq datasets range from
hundreds to thousands in size and are classified into two
categories according to their biological backgrounds.
Specifically, datasets like T cells and B cells in
lymphocytes[40] would be identified as cells containing
specific functional subsets, while datasets with a
dynamic development process from individual stem
cells to multiple lineages[41] would be identified as
cells undergoing differentiation. Here, we collect six
datasets with cells undergoing differentiation and six
datasets with cells containing specific functional subsets.
Furthermore, different units are used to compute the
gene expression values, such as fragments per kilobase
of transcript per million mapped reads (FPKM) and
transcripts per kilobase of transcript per million mapped
reads (TPM). The cell type labels of each dataset
obtained and validated from the prior biological studies
are used as pre-annotations to evaluate the performances
of the comparative analysis. Here, we consider the
cell labels as gold standards if the cells are from
different stages or lines, while the labels assigned by
other techniques such as the computational methods are
considered as silver standards[25]. Details of the datasets
are described in Table 1.

2.2 Comparative analysis

2.2.1 Correlation analysis of classic clustering
methods

Clustering is a key step in scRNA-seq downstream

analysis. Many classic clustering techniques have been
applied in scRNA-seq data clustering, such as the
hierarchical clustering, graph-based clustering, and
density-based clustering. Among them, density-based
clustering[53] is mainly used for the identification
of rare cells, and several parameters need to
be tuned in this algorithm to obtain a specified
clustering result. Therefore, we choose three other
popular clustering methods, hierarchical clustering[54],
spectral clustering[30], and Louvain algorithm[31], for
the correlation analysis experiment. The experiment
compares the performances of these methods by
combining them with the similarity matrix calculated
based on the correlation distance. Results show that
hierarchical clustering and graph-based clustering (i.e.,
spectral clustering and Louvain algorithm) perform
obviously different on scRNA-seq datasets under
different biological conditions, which means these two
methods are the least relevant. For spectral clustering
and Louvain algorithm which are both graph-based and
have similar performances, since the results of spectral
clustering are relatively better and parameters need to
be tuned in Louvain to obtain a specified clustering
result, we finally choose spectral clustering in these two
methods.

2.2.2 Hierarchical clustering and spectral
clustering

Based on the results of the correlation analysis, we select
hierarchical clustering and spectral clustering, which
both are the most popular approaches in single cell
clustering analysis, for the comparative experiments.
These two methods cluster data points based on different
strategies and theories. In hierarchical clustering, each
point starts as a cluster, then these clusters are
merged recursively. We would get a dendrogram and

Table 1 Details of 12 published datasets analyzed.
Datasets Cells Genes Number of groups Label standard Units Species

Ting 114 14405 5 Sliver RPM Mus musculus[42]

Buettner 182 8989 3 Gold FPKM Mus musculus[43]

Pollen 249 14805 11 Gold TPM Mus musculus[44]

Ginhoux 251 11834 3 Sliver RPKM Mus musculus[45]

LaManno 337 14703 13 Sliver UMI Homo sapiens[46]

Darmanis 420 22085 8 Sliver CPM Homo sapiens[47]

Leng 460 19084 4 Gold TPM Homo sapiens[48]

Camp 465 18999 6 Sliver FPKM Homo sapiens[49]

Gokce 1208 16379 10 Sliver TPM Mus musculus[50]

Nestorowa 1645 3991 3 Sliver UMI Mus musculus[51]

Close 1733 23045 4 Sliver TPM Homo sapiens[52]

Zeisel 3005 4412 9 Sliver UMI Mus musculus[27]
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branches of the hierarchical tree represent the clustering
result. Spectral clustering utilizes the spectrum of the
constructed similarity matrix to partition data points.
Based on different partition rules, these two methods
have their own characteristics. For example, hierarchical
clustering can get different clustering results by manually
cutting the dendrogram, however, there is no perfect
definition of a cluster boundary in this algorithm, which
would result in the failure of complex tasks. In contrast,
spectral clustering can handle complex distributions of
data points, but its performance heavily depends on the
reliability of the similarity matrix. In this study, we
would compare these two clustering methods in the cell
type identification task based on scRNA-seq data.
2.2.3 Preprocessing strategies in single cell

heterogeneity analysis
The comparative analysis experiments apply hierarchical
clustering and spectral clustering to substitute the
downstream clustering analysis of original methods.
Here, we select 10 typical different preprocessing
strategies in scRNA-seq heterogeneity analysis
including similarity learning, dropout imputation,
and dimensionality reduction. Specifically, CIDR and
SINCERA are selected as the dropout imputation and
the gene selection strategy. Also, two dimensionality
reduction strategies, UMAP and ZIFA, and six
similarity learning strategies including spearman
correlation coefficient, SC3, RAFSIL, SIMLR, MPSSC,
and SEURAT are selected. Then we incorporate
the preprocessing strategies of these methods with
hierarchical clustering and spectral clustering. The
parameter settings of each method are based on their
initial default values. Additionally, spectral clustering
needs to be applied on the basis of a similarity matrix,
which the strategies of gene selection and dimensionality
reduction cannot get. To solve this problem and ensure
that the comparison is completed under same conditions,
similarity matrices are calculated by applying the
correlation distance on the processed matrices obtained
from SINCERA, UMAP, and ZIFA.
2.2.4 Evaluation metrics
We use two common metrics in clustering methods
evaluation on scRNA-seq data, normalized mutual
information (NMI)[55] and adjusted rand index (ARI)[56],
to evaluate the performances of hierarchical clustering
and spectral clustering with different preprocessing
strategies. NMI and ARI are defined as follows:
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where F1 and F2 represent the true labels of cells and
the predicted labels calculated by clustering methods,
respectively. I .F1; F2/ denotes the mutual information
between F1 and F2, and H .F / is the entropy of those
two elements. nij represents the number of cells that
belong to both F1i and F2j , ai is the number of cells in
F1i , and bj is the number of cells in F2j . Based on the
theories of these two metrics, a larger value of NMI or
ARI indicates a better clustering performance.

In addition to NMI and ARI, we define a new metric
called fake neighbor rate (FNR) to evaluate the accuracy
of the similarity matrix computed by each preprocessing
strategy. Given a similarity matrix S , the k nearest
neighbors of each cell are obtained by sorting each
row of S in descending order. For each cell i and its
k nearest neighbors, they are labeled the same class
for we assume that both of them should belong to a
same cluster. Then FNR is defined by calculating the
proportion of cells that belong to the same class as their k

nearest neighbors in the assigned labels but do not belong
to the same class in the true labels. Here, we set the
nearest neighbor k D f1; 5; 10; 15; 20g to evaluate the
accuracy and robustness of each similarity matrix. Based
on the theory of FNR, a smaller value indicates a better
similarity learning performance.

2.2.5 Comparison results of two clustering
methods

We apply the 10 preprocessing strategies with both
hierarchical clustering (the linkage criteria is unified
as the ward linkage) and spectral clustering on the 12
collected datasets under different biological conditions,
and Figs. 1 and 2 show the corresponding results
of the comparative analysis upon NMI. We also use
FNR to evaluate the accuracy of the similarity matrix
computed by each strategy. The results of ARI and FNR
are given in the supplementary materials. From the
comparison results, we find that, overall, the methods on
datasets with cells containing specific functional subsets
generally obtain better results than those on datasets with
cells undergoing differentiation. We speculate that the
mature cells with specific functions may have significant
biological signals to differentiate the subgroups, which
makes it easier to obtain more accurate partitions. As
shown in Fig. 1, for cells undergoing differentiation
that belong to a continuous process and have fuzzy
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Fig. 1 Comparison results of hierarchical clustering and spectral clustering combined with 10 preprocessing strategies on cells
undergoing differentiation.

Fig. 2 Comparison results of hierarchical clustering and spectral clustering combined with 10 preprocessing strategies on cells
containing specific functional subsets.

boundaries, we find that the methods with spectral
clustering generally performs better than hierarchical
clustering among most of the 10 preprocessing strategies.
For cells containing specific functional subsets, we find
in Fig. 2 that the methods with hierarchical clustering
perform better among seven or nine strategies on all
six datasets. Based on the general differences between
these two kinds of data, we intuitively suppose that

the latent shapes of cells undergoing differentiation and
cells containing specific functional subsets may affect
the performances of hierarchical clustering and spectral
clustering. In order to verify our hypotheses, we conduct
further experiments to visualize the latent shapes of
scRNA-seq data in two-dimension.

Visualization is a significant tool to reflect the
distributions of cells in low dimension[57]. In this study,
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we visualize each dataset to reveal its latent shape and
analyze the relationships between the data shape and the
performances of different clustering methods. We choose
two commonly used methods, UMAP and t-SNE[58], to
visualize datasets in two-dimension with pre-annotations.
Figures 3 and 4 show the visualization results on two
types of cells (i.e., cells undergoing differentiation
and cells containing specific functional subsets). As
expected, datasets with cells undergoing differentiation
shown in Fig. 3 tend to display a continuous shape,
which indicates the dynamic process of differentiation
and development. On the contrary, Fig. 4 shows
that datasets with cells containing specific functional
subsets have clear classification structures and obvious
boundaries between clusters. Based on the comparison
and visualization results, we can draw two conclusions:
(1) Generally, datasets with obvious classification
structures in two-dimension can be clustered better than
other datasets. (2) The methods with spectral clustering
tend to perform better on datasets with continuous
shapes, while those with hierarchical clustering achieve
better results on datasets with obvious classification
structures.

2.3 QRS

According to the conclusions, a quantitative
measurement called QRS is developed to determine
whether the latent representative shape of the
scRNA-seq dataset has clear boundaries or not.
Firstly, given a scRNA-seq data denoted as matrix
X D Œx1; x2; : : : ; xn� with m genes and n cells, where
xi D Œxi1; xi2; : : : ; xim�T represents the expressions of
m genes in cell i , QRS reduces the dimension of the
expression matrix X into two-dimension by UMAP to
construct a matrix Y . Compared to t-SNE, UMAP is
faster and more suitable for scRNA-seq data[12, 59]. For
UMAP, we use the implementation provided by the
uwot R package with default values for all datasets.
In order to identify the data latent shape on a unified
scale, min-max normalization is applied to map the data
into the range from 0 to 1. The equation is defined as
follows:

Y
0

D
Y � Ymin

Ymax � Ymin
(3)

where Ymin and Ymax are the minimum and maximum
values of the expression respectively. Then, we use
the minimum spanning tree[60] algorithm to construct
the overall skeleton of the data distribution in two-
dimension, and distinguish the latent shape of the data

by cutting the tree. To build the tree, QRS defines the
distance matrix by calculating the Euclidean distance
between cells. After getting the distance matrix, QRS
builds the Euclidean minimum spanning tree by applying
the fast EMST Dual-Tree Boruvka algorithm[61, 62], and
the emstreeR R package is used to implement this
algorithm. The constructed minimum spanning tree can
connect all cells in each dataset together, without any
cycles and with the minimum possible total edge value.
Based on this principle, we suppose that edges in the tree
with larger values than a certain threshold are most likely
to be the inter-cluster edges. Here, QRS defines the
threshold to qualitatively distinguish whether a dataset
has clear boundaries between clusters or not. We assume
that each cell is evenly dropped on a 1 � 1 plane, and
per cell resolution (pCR) is defined by the side length
of each cell square. The equation of pCR is defined as
follows:

pCR D 1=
p

N (4)

where N is the numbers of cells. Then according to pCR,
the threshold is defined as follows:

Threshold D � � pCR (5)

In QRS, we set � D 5 as the default in the following
experiments. If all the edge values in the tree are smaller
than the threshold, we consider the boundaries between
clusters are not clear and the datasets have continuous
shapes. Otherwise, QRS would consider whether the
dataset really has an obvious classification structure by
cutting the edges with values that are larger than the
threshold and rejudging the balance of the cluster sizes
after cutting. We use the ratio of 2 to 8 as the standard
for measuring cluster balance. For the clusters formed
after cutting, if the proportion of the largest cluster to the
second largest cluster exceeds the standard, we consider
the dataset has continuous shapes, otherwise the dataset
would be classified as having an obvious classification
structure.

2.4 DDCR

Based on the latent shape identified by QRS, a data-
driven clustering recommendation method called DDCR
is proposed to select suitable downstream clustering
methods from hierarchical clustering and spectral
clustering. A brief workflow of DDCR is shown in
Fig. 5.

Taking the expression matrix as input, DDCR firstly
performs gene filtering. Specifically, if the expression
values of a gene in all cells are zero, it will be removed.
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Fig. 3 Visualizations of cells undergoing differentiation based on t-SNE (a) and UMAP (b).
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Fig. 4 Visualizations of cells containing specific functional subsets based on t-SNE (a) and UMAP (b).
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Fig. 5 Framework of DDCR. DDCR takes the expression matrix as input and applies gene filtering and normalization. Next,
QRS is applied by performing dimensionality reduction and the minimum spanning tree algorithm to distinguish whether the
dataset has clear boundaries or not. Based on the identified data latent shape, DDCR recommends hierarchical clustering or
spectral clustering as the downstream clustering method for the dataset.

For further analysis, normalization is performed to
prevent the highly expressed genes from affecting
the study. Next, QRS is applied by performing
dimensionality reduction and the minimum spanning
tree algorithm on the filtered matrix. The algorithm
builds a tree to connect cells in each dataset with the
minimum possible total edge values, and the edges in
the tree with larger values than the threshold are cut.
By comparing the numbers of edges to cut and the
cluster balance after cutting, QRS would distinguish
whether the dataset has clear boundaries or not. Finally,
based on the identified data latent shape, for datasets
with continuous shapes, DDCR recommends spectral
clustering as the downstream clustering method, while
hierarchical clustering is recommended for datasets with
obvious classification structures.

3 Result

Combined with the biological backgrounds and
visualization results, we find that, in general, the
methods with spectral clustering tend to perform better
on datasets with continuous shapes, while those with
hierarchical clustering achieve better results on datasets
with obvious classification structures. Though cells
undergoing differentiation tend to display a continuous
shape, there are still some datasets displaying obvious

classification structures. In order to prove that QRS
can accurately identify the data latent shapes, and
furthermore, to validate the effectiveness of DDCR
comprehensively, in addition to the 12 datasets collected
for the comparative analysis, we select another eight
scRNA-seq datasets as validation sets for the further
performance evaluation. The eight datasets including
four datasets with cells undergoing differentiation and
four datasets with cells containing specific functional
subsets. All these datasets are downloaded from the same
source as before, and the details are described in Table 2.
For the four counts datasets with cells undergoing
differentiation, the expression values are computed by
using the preprocessing pipeline of the scran[71] and
scater[72] Bioconductor packages[73].

3.1 Data latent shape identification by QRS

We integrate the total 20 scRNA-seq datasets under
different biological backgrouds to differentiate data
latent shapes by QRS. As the results of identifications
described in Table 3, most latent shapes identified by
QRS are consistent with the types of datasets except
for Nakamura, Horns, Petropoulos, and Park. These
four datasets with cells undergoing differentiation are
classified as having obvious classification structures, and
the correctness of the identifications would be further
verified by the results of DDCR.
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Table 2 Details of eight added validation datasets analyzed.
Datasets Cells Genes Number of groups Label standard Units Species

Nakamura 182 4320 7 Sliver Counts Mus musculus[63]

Lin 402 9438 16 Gold TPM Mus musculus[64]

Horns 454 2621 14 Sliver Counts Drosophila[65]

Usoskin 622 17 772 4 Sliver RPM Mus musculus[66]

Chu 1018 19 072 7 Gold TPM Homo sapiens[67]

Petropoulos 1289 8772 5 Gold Counts Homo sapiens[68]

Baron 1866 14 878 13 Sliver UMI Mus musculus[69]

Park 2701 2441 3 Sliver Counts Mus musculus[70]

Table 3 Results of the data latent shapes identified by QRS
Datasets Cells Threshold Number of edges to cut Balance of clusters Data latent shape Cell type

Ting 114 0.4683 1 Balanced Classification Subtypes
Buennter 182 0.3706 0 – Continuous Differentiation
Nakamura 182 0.3706 2 Balanced Classification Differentiation

Pollen 249 0.3169 2 Balanced Classification Subtypes
Ginhoux 251 0.3156 0 – Continuous Differentiation
LaManno 337 0.2724 0 – Continuous Differentiation

Lin 402 0.2494 5 Balanced Classification Subtypes
Darmanis 420 0.2440 2 Balanced Classification Subtypes

Horns 454 0.2347 1 Balanced Classification Differentiation
Leng 460 0.2331 0 – Continuous Differentiation
Camp 465 0.2319 2 Balanced Classification Subtypes

Usoskin 622 0.2005 1 Balanced Classification Subtypes
Chu 1018 0.1567 2 Balanced Classification Subtypes

Gokce 1208 0.1439 4 Balanced Classification Subtypes
Petropoulos 1289 0.1393 2 Balanced Classification Differentiation
Nestorowa 1645 0.1233 1 Unbalanced Continuous Differentiation

Close 1733 0.1201 1 Unbalanced Continuous Differentiation
Baron 1866 0.1151 2 Balanced Classification Subtypes
Park 2701 0.0962 1 Balanced Classification Differentiation

Zeisel 3005 0.0912 3 Balanced Classification Subtypes

3.2 Recommendation of DDCR
In current single cell clustering methods, computing an
accurate cell-to-cell similarity matrix is one of the most
critical steps and many approaches have been proposed
to solve this problem. According to the FNR results in
the comparative analysis, we obtain the performances
of the similarity matrices computed by 10 different
preprocessing strategies. As the results of FNR given in
the supplementary materials shown, with the increasing
numbers of nearest neighbors k, the similarity matrices
learned by RAFSIL generally obtain more accurate
and robust performances. Additionally, although the
similarity matrices learned by SC3 perform not well
when k D 1, the values of FNR do not increase sharply
like other methods with the change of k. Basically,
the similarity matrices learned by SC3 can achieve the
same superior performances as the matrices learned by

RAFSIL, overall. Therefore, in this section, we firstly
apply SC3 and RAFSIL with both hierarchical clustering
and spectral clustering to assess the correctness of
QRS. Furthermore, to validate the effectiveness of
DDCR, we apply DDCR to recommend hierarchical
clustering or spectral clustering as the downstream
clustering method for SC3 and RAFSIL, and then
compare the corresponding results of the modified
methods with the original ones. In the original clustering
methods, both of them use different ensemble strategies
to construct a robust (dis)similarity matrix, and apply the
hierarchical clustering to partition cells into clusters. All
the comparison results including the evaluation of QRS
and the NMI and ARI of these four comparison methods
(i.e., SC3, SC3-DDCR, RAFSIL, and RAFSIL-DDCR)
are given in the Appendix.

In the experimental results of the evaluation on QRS,
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both SC3 and RAFSIL with spectral clustering perform
better on datasets identified as having continuous shapes
by QRS, while those with hierarchical clustering achieve
better results on datasets identified as having obvious
classification structures. It should be noted that the four
datasets, Nakamura, Guo, Petropoulos, and Park, whose
types are cells undergoing differentiation but identified
as classification by QRS, achieve better performances
with hierarchical clustering. These results further verify
the correctness of QRS and the rationality of our
recommendation. Furthermore, as original SC3 and
RAFSIL use hierarchical clustering as the downstream
clustering method, we find that these two methods with
DDCR achieve better performances than the original
ones on datasets with continuous shapes. Moreover, in
order to show more intuitively that DDCR improves
the clustering performances of datasets with continuous
shapes, we draw the comparison results of these six
datasets in the form of histograms in Figs. 6 and 7. Based
on these results, we validate that DDCR can recommend
a more suitable downstream clustering method for
different scRNA-seq datasets and obtain more robust
and accurate results.

4 Conclusion

Hierarchical clustering and spectral clustering are the
most popular downstream clustering approaches in the
scRNA-seq clustering analysis. However, due to the
complex backgrounds of scRNA-seq data, like the cells
undergoing differentiation and cells containing specific
functional subsets, it is not trivial to select the best
clustering method for different kinds of data.

In this study, we carry out a comprehensive
analysis to evaluate the performances of hierarchical
clustering and spectral clustering on scRNA-seq datasets
under different biological conditions by using 10
different preprocessing strategies. The experimental
results show that the methods with spectral clustering
tend to perform better on datasets with continuous
shapes in two-dimension, while those with hierarchical
clustering achieve better results on datasets with obvious
boundaries between clusters in two-dimension. Based on
this finding, a new strategy, called QRS, is developed to
quantitatively evaluate the latent representative shape
of a dataset and to distinguish whether it has clear
boundaries or not. Finally, a data-driven clustering

Fig. 6 NMI of SC3, SC3-DDCR, RAFSIL, and RAFSIL-DDCR on the datasets with continuous shapes in two-dimension.

Fig. 7 ARI of SC3, SC3-DDCR, RAFSIL, and RAFSIL-DDCR on the datasets with continuous shapes in two-dimension.
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recommendation method, called DDCR, is proposed to
recommend hierarchical clustering or spectral clustering
as the downstream clustering method for scRNA-seq
data. We perform DDCR on two typical single cell
clustering methods, SC3 and RAFSIL, to evaluate its
performance, results show the accuracy of QRS on
identifying data latent shapes, and further verify that
DDCR can recommend a more suitable downstream
clustering method for different scRNA-seq datasets
which improves the overall results of clustering analysis.
However, noise in gene expressions may affect the
accuracy of the data latent shapes identification. In
the future, we can introduce some prior biological
information such as marker genes and gene regulatory
relationship[74, 75] to assist in a more accurate extraction
of informative features from scRNA-seq data under
different biological backgrounds. Furthermore, the
increasing scale of scRNA-seq data brings a challenge
to the efficiency of current methods, and approaches
such as data partitioning or sampling[76, 77] may provide
a possible way to solve this problem.

Appendix
We apply the 10 preprocessing strategies with both
hierarchical clustering (the linkage criteria is unified
as the ward linkage) and spectral clustering on the 12
collected datasets under different biological conditions,
and use FNR to evaluate the accuracy of the similarity
matrix computed by each strategy. The results of FNR
are given in Fig. A1. Next, we collect another eight
datasets for validation and integrate the total 20 scRNA-
seq datasets to prove that QRS can accurately identify
the data latent shapes, and furthermore, validate the
correctness of DDCR comprehensively. The results are
shown in Tables A1–A4.
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