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A Computer-Aided System for Ocular Myasthenia Gravis Diagnosis

Guanjie Liu, Yan Wei, Yunshen Xie, Jianqiang Li, Liyan Qiao, and Ji-jiang Yang�

Abstract: The current mode of clinical aided diagnosis of Ocular Myasthenia Gravis (OMG) is time-consuming and

laborious, and it lacks quantitative standards. An aided diagnostic system for OMG is proposed to solve this problem.

The values calculated by the system include three clinical indicators: eyelid distance, sclera distance, and palpebra

superior fatigability test time. For the first two indicators, the semantic segmentation method was used to extract

the pathological features of the patient’s eye image and a semantic segmentation model was constructed. The

patient eye image was divided into three regions: iris, sclera, and background. The indicators were calculated based

on the position of the pixels in the segmentation mask. For the last indicator, a calculation method based on the

Eyelid Aspect Ratio (EAR) is proposed; this method can better reflect the change of eyelid distance over time. The

system was evaluated based on the collected patient data. The results show that the segmentation model achieves

a mean Intersection-Over-Union (mIoU) value of 86.05%. The paired-sample T-test was used to compare the results

obtained by the system and doctors, and the p values were all greater than 0.05. Thus, the system can reduce the

cost of clinical diagnosis and has high application value.
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1 Introduction

Myasthenia Gravis (MG) is an autoimmune disorder
caused by autoantibodies acting against the nicotinic
acetylcholine receptor on the postsynaptic membrane
at the neuromuscular junction. It is characterized by
weakness and fatigability of the voluntary muscles[1].
It is estimated that more than 700 000 people are
affected worldwide, and the incidence ranges from
0.3 to 2.8 per 100 000[2]. According to Osserman et
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al.[3], adult patients with myasthenia can be divided
into five different classifications: Ocular Myasthenia
Gravis (OMG) is the mildest of them (i.e., only eye
muscle weakness but no muscle weakness elsewhere).
Its clinical manifestations include dropping of the eyelids
or double vision, or both. In detail, double vision
can occur in one eye or both eyes and worsen after
activity. The symptoms can be relieved after resting
or using anticholinergic drugs. Without immunotherapy,
30%�80% of OMG patients will progress to generalized
MG (GMG) within two years[4].

Some methods are used to aid diagnosis of MG,
such as the ice test, repetitive nerve stimulation, single
fiber electromyography, and the acetylcholine receptor
antibody test. The acetylcholine receptor antibody test
is the most specific diagnostic test for MG[5, 6]. The
neostigmine test is a kind of acetylcholine receptor
antibody test, demonstrating a clinical improvement in
patients affected by MG[7]. Eyelid distance, scleral
distance, and palpebra superior fatigability test time
are three important metrics in the neostigmine test, as
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illustrated in Figs. 1–3. Eyelid distance is the distance
between upper and lower eyelids when the patient is in
front view and maximum eyelid view; scleral distance is
the length, in millimeters, of the displayed red line when
the patient is gazing to the left or right; in the palpebra
superior fatigability test, the cornea is regarded as a clock
face, and the patient continues to open his eyes and look
upward for 1 min. The time from drooping eyelids to
the 9–3 point in the cornea is recorded. The left and
right eyes are scored separately. The value of these
indicators are helpful in judging the condition change of
the patients before and after using neostigmine.

Doctors often employ methods of direct visual
inspection of ptosis recovery or manual measurement
in previous neostigmine tests. The results obtained
may have certain subjective errors and lack quantitative
standards. For doctors, the neostigmine test has many
steps; some are easy to forget in the actual measurement.

Fig. 1 Eyelid distance. Distance between upper and lower
eyelids.

(a) Left view

(b) Right view

Fig. 2 Scleral distance. Distance between the edge of the
iris and the corner of the eye when the eyes are moving
horizontally.

Fig. 3 Clock point.

Meanwhile, for patients, OMG is a rare disease
and requires lifelong monitoring. Many hospitals lack
doctors who can diagnose and treat OMG.

With the development of Computer-Aided Diagnosis
(CAD), many doctors use CAD to help improve
their diagnostic decisions. CAD has a wide range of
applications in breast cancer diagnosis, lung nodule
detection in chest images, and Magnetic Resonance
Imaging (MRI) images[8, 9]. However, to the best of
our knowledge, there is little work incorporating deep
learning methods in OMG diagnosis.

The remainder of the paper is structured as follows.
Related work is discussed in Section 2. Section 3
introduces the details of our system design for OMG-
aided diagnosis. Section 4 analyzes experimental results.
Finally, conclusions are drawn in Section 5.

2 Related Work

Certain diseases can cause changes or deformities in the
patient’s face. Screening and diagnosis can be aided
by the patient’s facial image. Traditional facial-aided
diagnosis mainly comprises five parts: image acquisition,
face detection, image preprocessing, feature selection,
and classifier. There will be some differences if using
neural networks. Image acquisition is usually carried
out in a unified shooting environment set by medical
institutions. After this part is completed, the specific area
in the face image is cropped out by face detection. Based
on the needs of different methods used, it is necessary
to preprocess the obtained images, e.g., gray-scale
normalization and data augmentation. To convert facial
features caused by diseases into analyzable data, feature
extraction and selection is essential. Various facial
feature of face images have been extracted, and good
feature representation helps improve the effectiveness of
the algorithm. In the last part, the classifier analyzes the
extracted features and obtains the diagnostic result.

The method of aided diagnosis of face morphology
based on the face image of the patient has been applied
to many diseases. In 2013, Kosilek et al.[10] used a
digital camera to collect the front and side photos of
20 patients with Cushing syndrome and 40 healthy
people. After preprocessing, they imported the software
facial image diagnostic aid. The software correctly
classified 85.0% of the patients and 95.0% of the
control group, and the overall classification accuracy
was 91.7%. In 2015, Chen et al.[11] divided the face
into several regions based on the clinical observation of
the facial appearance of patients with chronic fatigue
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syndrome, and constructed mixed appearance features
based on the image features extracted from each region.
The feature extraction methods used included Gabor
wavelet filtering, threshold segmentation, and curvature
fitting. Three methods of Principal Component Analysis
(PCA), locality-preservation projection, and Manifold
Preservation Projection (MPP) were used to reduce
Gabor features. Finally, multi-modal facial feature
fusion was performed based on the two-stage Adaptive
Boosting (Adaboost) method. Among them, the MPP
method showed the best result, and the accuracy of the
test set was 88.32%. In 2018, Song et al.[12] extracted
five features of subjects with Turner syndrome based
on a trained 68 facial feature point model: forehead,
melanocytic nevus, epicanthus, nasal bridge, and ocular
distance, divided into three categories: global geometric
features, global texture features, and local features. For
global features, PCA was used to reduce dimensionality
to fuse multiple features, and Support Vector Machine
(SVM) was used for classification. For local features,
Adaboost was used for classification after fusion, and
ten-fold cross-validation was used. The best effect was
the use of the Adaboost classification method after local
feature fusion. The sensitivity and specificity were
75.6% and 91.2%, respectively. Children suffering from
adenoid hypertrophy display adenoid facial features. In
2019, Hu et al.[13] used the Dlib face key point detection
model to obtain the facial feature points of the child,
using decision trees, SVM, K-Nearest Neighbor (KNN),
and Extreme Gradient Boosting (XGBoost) to establish
adenoid face and non-adenoid face prediction models.
The reliability of prediction was evaluated by five-fold
cross-validation. The best specificity was 89.19%, and
the best sensitivity was 88.24%.

At present, many researchers focus on the use of
manual extraction of predefined features to construct
the corresponding facial disease automatic classifier,
but this is a laborious heuristic method, and the
predefined features may non-representative, incomplete,
or redundant, or may even increase interference features.
The deep learning method integrates feature learning into
the process of establishing the model, thereby reducing
the incompleteness caused by human design features.

As a powerful big data technology, deep learning has
a wide range of applications in clinical research due to
its huge advantages in feature and pattern recognition[14].
In 2017, Shukla et al.[15] proposed a new framework for
detecting developmental disorders using facial images.
This framework compares the Deep Convolutional

Neural Network (DCNN) method with a similar method
that uses predefined features with classifiers. The DCNN
method achieved a maximum accuracy of 98.80%.

Therefore, in this paper, we propose an eye
segmentation network to extract pathological features
related to OMG. Based on the segmented mask, we
calculate the values of the two evaluation indicators of
the neostigmine test, and convert them to real values
through distance conversion. For the time measurement
of the palpebra superior fatigability test, this paper
proposes a calculation method based on the key points of
the human eye. Based on the above method, the OMG-
aided diagnosis system is constructed to quantitatively
analyze the condition of OMG patients, providing a
novel idea for solving the aided diagnosis problem of
OMG.

3 Model Structure and System Design

3.1 Dataset and preprocessing method

3.1.1 Collection standard
According to the items of the neostigmine test, we
collect data from patients before and after the test (i.e.,
before injection, 30 min after injection, and 60 min after
injection). The background is uniformly blue, and the
illumination is controlled to ensure that the image is not
too bright or too dark. To convert the measured pixel
distance into the real distance, we uniformly pasted a 2
cm black bar on the forehead of patients for distance
conversion. NIKON D300S and Xiaomi MI MAX2
were used for image acquisition. When shooting, the
equipment was kept parallel to the patient’s face, the
position was fixed, and the distance was 1 m. For each of
the above three time periods, four images were collected,
namely, front view, maximum eyelid view, right view,
and left view. The subjects in this experiment were all
OMG patients. Based on the above collection criteria, a
total of 550 facial images and 60 videos of OMG patients
were collected. All photos were taken with the consent
of patients.

3.1.2 Image preprocessing
Inspired by Ref. [13], Dlib was also used in our paper to
get eye and black bar patches. Based on the key points
around the eyes, we extended a part of the pixels in
each of the four directions to ensure the integrity of
the eye in the cropped image. The black bar area was
also cropped in terms of the key points of the eyebrows.
After cropping the facial images of OMG patients, a
total of 1100 cross-resolution eye images and 550 black
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bar images were obtained. Also, to increase the number
of eye images, we used data augmentation to expand
the number of images to 4400 through image flipping,
random cropping, and the addition of Gaussian noise.
The Image Labeler of MATLAB was used to label
eye images. Then, a Myasthenia Eye Patches (MEP)
database was established.

3.2 Eye segmentation model

3.2.1 Network structure
Encoder-decoder networks such as Segnet[16] and
U-Net[17] have remarkable performance in image
segmentation. Owing to this, we designed an
encoder-decoder network for OMG patient eye image
segmentation, which we called OMG-Net. The backbone
was MobileNet[18], and the use of depth separable
convolution considerably decreased the number of
parameters and calculations, which was more conducive
to running on low-configuration machines. The decoder
part consisted of upsampling layers and a Softmax layer,
which were used to restore the image size and make
predictions of the category of each pixel. Our network is
depicted in Fig. 4.

OMG-Net is divided into the following parts:
(1) Input layer. The read image is an m�n�k matrix,

where m and n are the length and width of the input

image, and k is the number of channels of the matrix. To
process input images of different sizes, the image size is
uniformly scaled to 416 � 416 here.

(2) Depthwise separable convolution. This is made
up of two parts: depthwise convolutions and pointwise
convolutions. One convolution kernel of depthwise
convolutions is responsible for one channel, and one
channel is convolved by only one convolution kernel. If
the depthwise convolutional kernel of size is DK � DK

and M is the number of channels of input feature map.
The computational cost of depthwise convolution is
DK �DK �M . The operation of pointwise convolutions
is similar to that of standard convolution. The difference
is that the size of the convolution kernel is 1�1�M . We
assume that the channels of output feature map is N , then
the depthwise separable convolutions cost is DK �DK �

MCM�N . For standard convolutions, the input feature
map size is DK � DK � M , and the output feature map
size is DF � DF � N , where DK and DF represent
the spatial width and height of the square input and
output feature maps, respectively. The computational
cost of standard convolution is DK �DK �M �N , then
the computational cost ratio of the depthwise separable
convolution and the standard convolution is

DK � DK � M C M � N

DK � DK � M � N
D

1

N
C

1

D2
K

(1)

Fig. 4 Overview of proposed OMG-Net.
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MobileNet uses 3�3 depthwise separable
convolutions, which uses 8 to 9 times less computation
than standard convolutions.

(3) Upsampling. Common methods of upsampling
include bilinear interpolation, transposed convolution[19],
and unpooling[20]. In this paper, the bilinear interpolation
method is used. The core idea of the bilinear
interpolation method is to perform linear interpolation
in two directions separately, without learning any
parameters. The calculation speed is fast and the
operation is simple.

(4) Output layer. We calculate the probability that
each pixel belongs to each semantic category through the
Softmax classifier, and select the category corresponding
to the maximum probability as the final result output.
The form of the Softmax function is usually as follows:

pi D
exp.si /Pk

j D1 exp.sj /
(2)

where si and pi indicate the output of the last hidden
layer and the discriminative probability of category i ,
respectively. j is the category, and j = 1, 2,. . . , k.
3.2.2 Distance conversion
After obtaining the segmentation result of the eye image,
we could calculate the pixel distance of the two items
in the neostigmine test in light of the pixel position
of the segmented mask. In order to know whether our
calculation result was accurate, it needed to be contrasted
with the result manually measured by the doctor, so the
calculated pixel distance needs to be converted into the
actual distance.

We propose an algorithm to solve this problem
(Algorithm 1), i.e., the pixel side length of the black
bar is obtained by finding the smallest circumscribed
rectangle of the black bar on the patient’s forehead in
the image. The actual side length is two centimeters, so
the conversion ratio of pixel distance and actual distance
can be obtained.

3.3 OMG-aided diagnostic system

With the massive amount of data generated daily and
the development of deep learning, the framework and
system will reduce the cost of manpower[21, 22]. To assist
doctors in disease diagnosis, we developed an OMG-
aided diagnosis system based on the above methods.
First, the system processes the images of the patient front
view, maximum eyelid view, right view, left view, and
the video of the palpebra superior fatigability test in the
neostigmine test. Then, the size of the eyelid distance,
the scleral distance, and the palpebra superior fatigability
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Fig. 4 Overview of proposed OMG-Net.

bar on the patient’s forehead in the image. The actual
side length is two centimeters, so the conversion ratio
of pixel distance and actual distance can be obtained.

3.3 OMG-aided diagnostic system

With the massive amount of data generated daily and the
development of deep learning, the framework and sys-
tem will reduce the cost of manpower[21, 22]. To assist
doctors in disease diagnosis, we developed an OMG-
aided diagnosis system based on the above methods.
First, the system processes the images of the patient
front view, maximum eyelid view, right view, left view
and the video of the palpebra superior fatigability test
in the neostigmine test. Then, the size of the eyelid
distance, the scleral distance, and the palpebra supe-
rior fatigability test time can be obtained based on im-
age processing and deep learning methods. The overall
framework is shown in Fig. 5.

There are too many redundant features in the face im-
age. In order to eliminate these redundant features and
further refine the critical areas of the human eye, we
used the face key point detection model in the Dlib li-
brary to obtain the key points of the human eye. Ac-
cording to the indicators that the system needs to cal-
culate, the OMG-aided diagnosis system can be divided

Algorithm 1  Calculating the ratio of pixel distance and 
real distance

*/
*/

Input: The image with black bars, I;
Output: Conversion ratio, R;
/* C is the set of the sum of c1 and c2
/* TH is the threshold of contour
/* RCM is the set of the ratio of ca and mbra */

1 Gray ⇐ I

2 HSV ⇐ I

3 H ⇐ HSV

4 c1 ⇐ contours from Gray

5 c2 ⇐ contours from H

6 C ⇐ c1 + c2

7 for each c ∈ C do
8 if c < TH then
9 remove c from C

10 for each c ∈ C do
11 ca ⇐ contour area
12 mbra ⇐ minimum bounding rectangle area
13 RCM ⇐ ca/mbra

14 for each a ∈ RCM do
15 if a is maximum in RCM then
16 long side of rectangle ⇐ coordinate of mbra

17  R ⇐ long side of rectangle / 2 cm
18  return R

test time can be obtained based on image processing and
deep learning methods. The overall framework is shown
in Fig. 5.

There are too many redundant features in the face
image. In order to eliminate these redundant features and
further refine the critical areas of the human eye, we used
the face key point detection model in the Dlib library
to obtain the key points of the human eye. According
to the indicators that the system needs to calculate, the
OMG-aided diagnosis system can be divided into two
parts: static image analysis and dynamic video analysis.

In the static image analysis, the system first receives
the facial image uploaded by the user and extracts the left
and right eye regions of the patient based on the Dlib face
key point detection model. The left and right eye images
are sent to the pre-trained OMG-Net model to obtain
the segmentation results of the eye region, including
the iris, sclera, and background regions. According to
the results of segmentation, the following two parts
can be completed: measurement of the size of the
eyelid distance and scleral distance. The iris and sclera
constitute the main area of the palpebral fissure, and
the maximum vertical distance of this area is the eyelid
distance. Similarly, for the scleral area, the maximum
distance from the horizontal corner of the eye to the iris
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Fig. 5 OMG-aided diagnosis system framework.

in this area is the scleral distance.
For dynamic video analysis, inspired by Soukupová

and Čech[23], we added two points on the basis of the
original six key points of the eye, which are the position
where the maximum height of the blepharoplasty
intersects the upper and lower eyelids, as shown in Fig. 6,
where Fig. 6a is the normal eye and Fig. 6b is the patient
eye. The key points of the upper and lower eyelids
are fitted by the least square method to acquire two
parabolas, so that points P3 and P7 are obtained. Based

Fig. 6 Key points around the eyes.

on these eight key points around the eye, we propose the
concept of Eyelid Aspect Ratio (EAR), which is the ratio
of eye height to width. The specific calculation method
is

EAR D
k p2 � p8 k C k p3 � p7 k C k p4 � p6 k

3 k p1 � p5 k

(3)
We calculated the EAR value for each frame of the

video. If the EAR value was less than or equal to the
set threshold, the time from the beginning of the video
to this frame was returned, so that the palpebra superior
fatigability test time could be obtained.

4 Experiment and Discussion

4.1 Implementation details

The running environment of the experiment was
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Windows10, memory 16 GB, Nvidia GeForce GTX 1060
graphics card. The ratio of train set to test set was
4W1. The proposed network structure was implemented
using the Keras framework, the initial learning rate
was 1 � 10�4, ten-fold cross-validation was used, the
epoch was set to 60, the optimization algorithm was
Adam, and the loss function used was the cross-entropy
function. During the training process, if the loss of the
verification set did not decrease three consecutive times,
the learning rate was decreased to continue training. If
the loss did not decrease ten consecutive times, the
model was considered to be trained and the training
was stopped.

4.2 Performance verification of OMG-aided
diagnostic system

4.2.1 Evaluation indicators
Common evaluation indicators for semantic
segmentation included pixel accuracy, mean pixel
accuracy, and mean Intersection-Over-Union (mIoU).
To evaluate the results of the experiment more
accurately, we used mIoU as the evaluation index. For
the segmented mask, we calculated the mIoU values of
the iris, sclera, and whole image, respectively named
I-mIoU, S-mIoU, and Mean mIoU.

To verify the accuracy of the calculated results of the
OMG-aided diagnosis system, this study used SPSS24.0
statistical software and a paired-sample T-test to contrast
the differences between the system and the manual
measurement results of doctors.

4.2.2 Comparison with other segmentation
approaches

We compared OMG-Net with FCN[24], U-Net[17], and
PSPNet[25]. All methods were re-trained on the same
training set (i.e., MEP dataset) during this experiment.
The segmentation methods are trained and tested in
the same setting as OMG-Net. Visualization of eye
segmentation results of OMG patients is shown in Fig. 7.
Table 1 illustrates the mIoU scores and inference time. It
can be clearly seen that OMG-Net performed better than
FCN and U-Net. The mIoU values of OMG-Net and
PSPNet were very close, but OMG-Net was far better
than PSPNet in the inference time.

Through lateral contrast observation, it is not difficult
to find that, for the segmentation results of the two
regions of iris and sclera, the segmentation of iris is
better than that of the sclera. Combining with Fig. 7, we
can understand that segmentation errors are primarily
localized in the corner of the eye. For OMG patients,
when their eyes are in left or right view, the iris part
cannot reach the corner of the eye, and a part of the
sclera will be exposed. This area is sometimes small,
which easily divides the area into two other categories.

4.2.3 Cross-resolution comparison
The iBUG Eye Segmentation Dataset[26] is used to verify
the performance of OMG-Net on human eye images of
different resolutions. It contains 8882 annotated human
eye images, all of which are low-resolution images in
the field, with an image size of 160 � 80 (Table 2).

Fig. 7 Eye images segmentation results of patients with different methods.
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Table 1 mIoU and average inference speed achieved by
OMG-Net and other segmentation methods.

Method S-mIoU I-mIoU Mean mIoU Inference time (s)
FCN 76.28% 81.56% 78.92% 0.042

U-Net 77.04% 83.28% 80.16% 0.067
PSPNet 82.49% 89.23% 85.86% 0.113

OMG-Net 82.37% 89.73% 86.05% 0.031

Table 2 Statistical information of iBUG Eye Segmentation
Dataset.

Name Value
Total number of faces 4461

Total number of eye patches 8882
Non-frontal faces proportion 18.35%

Low-resolution eye patches proportion 57.58%
Proportion of images with any kind of occlusion 16.05%

In this part, we used OMG-Net to conduct experiments
on three different datasets. The three datasets were
the MEP dataset, the iBUG eye segmentation dataset,
and the combined dataset (Table 3). First, among the
segmentation results of OMG-Net on different datasets,
the best performance was the segmentation result based
on the MEP dataset, and the Mean mIoU was 86.05%.
The second was MEP combined with iBUG, and the
last one was iBUG. At the same time, the increase in
the number of eye images did not increase mIoU. The
results showed that OMG-Net has better segmentation
results on high-resolution images than low-resolution
images, and is more suitable for the task of segmenting

Table 3 OMG-Net segmentation results on different
datasets.

(%)
Dataset S-mIoU I-mIoU Mean mIoU
MEP 82.37 89.73 86.05
iBUG 64.85 82.00 73.43

MEP+iBUG 70.21 84.81 77.51

OMG patient eye images.
4.2.4 Calculation results comparison
In this section, we explore the closeness between the
calculated results based on the OMG-aided diagnosis
system and the results manually measured by the doctor.
We used the data of nine subjects before and after the
neostigmine test to calculate the evaluation indicators.
The difference between the two was tested by a paired-
sample T-test, and a total of 10 paired samples were
formed. The test results are shown in Table 4.

It can be seen from Table 4 that the p values
of the ten paired samples are all greater than 0.05,
and the difference is not statistically significant. The
calculated results of the OMG-aided diagnosis system
were consistent with the manual measurement results of
the doctor. To show the calculated results of the palpebra
superior fatigability test more intuitively, we calculated
the EAR value for each frame of the 1 min video and
extracted the smallest EAR value within 1 s to draw a
line chart, as shown in Fig. 8.

In Fig. 8, the EAR value of normal people fluctuates
up and down in a fixed range within 1 min and is
always above the threshold. For OMG patients, with
increasing time, their upper eyelids cannot be supported
and gradually begin to droop; the EAR value of their eyes
gradually becomes smaller and lower than the threshold.
By calculating the EAR value, we can get not only the
time of the palpebra superior fatigability test, but also
the change in EAR value, which can reflect the change
of patient palpebral fissure in 1 min, thus providing an
effective reference for doctors to assist in the diagnosis
of patient condition.

5 Conclusion and Future Work

The contributions of this paper are mainly reflected in

Table 4 Paired-sample T-test results.
Paired difference Degree

of
freedom

Significant
2-tailedNo.

Mean Std. deviation Std. error mean
95% confidence interval of the difference

t -value
Lower Upper

Pair 1 0.22852 0.61297 0.11797 –0.01396 0.47100 1.937 26 0.064
Pair 2 0.24519 0.70866 0.13638 –0.03515 0.52552 1.798 26 0.084
Pair 3 –0.09741 0.56044 0.10786 –0.31911 0.12429 –0.903 26 0.375
Pair 4 0.01667 0.70925 0.13649 –0.26390 0.29724 0.122 26 0.904
Pair 5 0.24889 0.79800 0.15358 –0.06679 0.56457 1.621 26 0.117
Pair 6 –0.41926 1.21189 0.23323 –0.89867 0.06015 –1.798 26 0.084
Pair 7 0.19630 0.56991 0.10968 –0.02915 0.42175 1.790 26 0.085
Pair 8 –0.28741 1.57595 0.30329 –0.91083 0.33602 –0.948 26 0.352
Pair 9 3.852 15.745 3.030 –2.377 10.080 1.271 26 0.215
Pair 10 3.926 22.812 4.390 –5.098 12.950 0.894 26 0.379
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Fig. 8 EAR line chart.

the following three parts: (1) Based on the semantic
segmentation method, OMG-Net for segmenting OMG
patient eye images is proposed, and the effectiveness of
OMG-Net on the collected patient eye image data set
is verified. The mean mIoU result was 86.05%; (2) A
method for calculating the palpebra superior fatigability
test time based on the EAR value is proposed. This
can directly reflect the changes of the patient eyelid
distance within 1 min; (3) For that portion of OMG-
aided diagnosis that has not yet been involved in relevant
research, an OMG-aided diagnosis system for measuring
three indicators of eyelid distance, scleral distance, and
palpebra superior fatigability test time is proposed.

This paper only designs an aided diagnosis system
for the three clinically-aided methods of OMG; more
methods can be incorporated into the system in the future.
The semantic segmentation model in this study needs to
improve the segmentation results of small target areas
such as the corners of the eyes, also providing ideas for
continued improvement of the system in the next step.
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