
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 11/15 pp724–735
DOI: 10 .26599 /TST.2020 .9010035
Volume 26, Number 5, October 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Efficient Scheduling Mapping Algorithm for Row Parallel
Coarse-Grained Reconfigurable Architecture

Naijin Chen, Zhen Wang�, Ruixiang He, Jianhui Jiang, Fei Cheng, and Chenghao Han

Abstract: Row Parallel Coarse-Grained Reconfigurable Architecture (RPCGRA) has the advantages of maximum

parallelism and programmable flexibility. Designing an efficient algorithm to map the diverse applications onto

RPCGRA is difficult due to a number of RPCGRA hardware constraints. To solve this problem, the nodes of the

data flow graph must be partitioned and scheduled onto the RPCGRA. In this paper, we present a Depth-First

Greedy Mapping (DFGM) algorithm that simultaneously considers the communication costs and the use times

of the Reconfigurable Cell Array (RCA). Compared with level breadth mapping, the performance of DFGM is

better. The percentage of maximum improvement in the use times of RCA is 33% and the percentage of maximum

improvement in non-original input and output times is 64.4% (Given Discrete Cosine Transfor 8 (DCT8), and the area

of reconfigurable processing unit is 56). Compared with level-based depth mapping, DFGM also obtains the lowest

averages of use times of RCA, non-original input and output times, and the reconfigurable time.

Key words: temporal mapping; Reconfigurable Cell Array (RCA); listed scheduling; communication costs

1 Introduction

Reconfigurable Hardware (RH) has become a hot
topic as it can be configured in the spatial domain
and programmed in the time domain. In the past
20 years, RH has been widely associated with Field
Programmable Gate Arrays (FPGAs), which have
distinct advantages in bit-width operations, but are
inefficient in word-width operations. To overcome
the limitations of FPGAs, various Coarse-Grained
Reconfigurable Architectures (CGRAs) have been

� Naijin Chen, Ruixiang He, Fei Cheng, and Chenghao Han
are with School of Computer and Information Science,
Anhui Polytechnic University, Wuhu 241000, China. E-mail:
chennaijin@ict.ac.cn; f809031856, 957189105, 1048551181g@
qq.com.

� Zhen Wang is with School of Computer Science and Technology,
Shanghai University of Electric Power, Shanghai 200090, China.
E-mail: wangzhenqq@hotmail.com.

� Jianhui Jiang is with School of Software Engineering,
Tongji University, Shanghai 201804, China. E-mail:
jhjiang@tongji.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2020-07-30; accepted: 2020-09-08

proposed in recent years[1]. In terms of their low power
requirements, high performance, and flexibility, CGRAs
have obvious advantages and can deal with many
kinds of word-level and logic operations[1, 2]. However,
it is not easy to map a computation-intensive Data
Flow Graph (DFG) onto a Reconfigurable Cell
Array (RCA), because there are many constraints. In
previous studies, researchers have presented a wide
range of mapping algorithms based on a variety of
CGRAs[2–14]. Yoon et al.[2] proposed the spatial mapping
algorithm, known as Split-Push Kernel Mapping
(SPKM), to map several applications onto resource
sharing and pipelining architecture. However, SPKM
is not applicable to time-division-multiplexing mapping
and the benchmarks used by SPKM have fewer nodes.
Several multimedia applications are mapped to the
Architecture for Dynamically Reconfigurable Embedded
Systems (ADRES) processor by the dynamically
reconfigurable embedded system compiler framework,
and have obtained good speedup. However, this
mapping method is only applicable to ADRES[3]. Some
researchers have focused on extending CGRAs with
Omega networks, but data transmission by Omega



Naijin Chen et al.: Efficient Scheduling Mapping Algorithm for Row Parallel Coarse-Grained Reconfigurable : : : 725

networks generates very long interconnect delays,
which significantly reduce the CGRAs’ acceleration
performance[4]. Krishnamoorthy et al.[5] presented an
interconnect-topology independent mapping algorithm
to map applications onto a REDEFINE architecture,
but failed to fully utilize the resources of CGRAs
by exploiting operation-level parallelism. Ahn et al.[6]

proposed a mapping algorithm that includes three sub-
problems: covering, partitioning, and layout. However,
this spatial mapping algorithm is not applicable to
temporal partitioning and mapping. Ansaloni et al.[7]

used a novel scheduling strategy that considers both
registered and unregistered communication among tiles.
Lee et al.[8] and Jo et al.[9] introduced approaches for
supporting floating-point operations for CGRAs. Kim
et al.[10] proposed a fast modulo routing scheduling
technique for mapping 3D graphics benchmarks onto
CGRAs, which improved the compilation speed. Level-
Breadth-Mapping (LBM) partitions the nodes by level.
Level-Breadth and Depth Mapping (LBDM) considers
both breadth and depth[11]. However, both LBM and
LBDM have higher communication costs. Existing
approaches do not sufficiently consider the use times
of the RCA or the non-original input or output times.
Xiao et al.[15] and Ouyang et al.[16] discussed gates and
fault tolerant design.

The remainder of the paper is organized as follows.
In Section 2, we define the problems associated with
temporal mapping and provide the target architecture.
In Section 3, we design and develop a Depth-First
Greedy Mapping (DFGM) algorithm. In Section 4, we
demonstrate the efficiency of our approach on several
indexes and analyze our experimental results. Finally,
we draw our conclusions in Section 5.

2 Target Architecture and Problem
Definition

2.1 Target architecture

A Row Parallel Coarse-Grained Reconfigurable
Architecture (RPCGRA) (e.g., REMUSs[12]) is a typical
coarse reconfigurable processor consisting of a main
processor, a Direct Memory Access (DMA) controller, a
main memory, one or several Reconfigurable Processing
Units (RPUs), an advanced high-performance bus,
and other elements. An RPU contains one or several
RCAs, which is a 2-D mesh array connected via an
interconnect network, a global controller, a configuration
controller, an instruction/data memory controller, local

data memory, and local instruction memory. Each
Reconfigurable Cell (RC) can be configured to realize
many different kinds of operations. Each RC can
communicate with its up-row RCs or down-row RCs
by a router, such that each RC reads inputs from the
up-row RCs, local memory, or the above RCA, and
writes to the down-row RCs or local memory. Local
memory can supply operands to the RCs and store the
computing results from the RCs. The configuration
controller can dynamically change the context register
sets, which provide configuration information to the
multiplexer, RCs, and router module. The configuration
memory of the RPCGRA can store multiple sets of
configuration words. One of the context registers is
applied to control, and the rest registers are used to
configure the buffer data. RPCGRA based on an RPU is
shown in Fig. 1.

In this paper, we discuss the mapping problem with
respect to RPCGRAs (e.g., REMUS, MorphoSys[13], and
the other similar architectures). A fully interconnected
RPCGRA makes operation easier, but our objective is
to develop a temporal mapping algorithm that can be
applied to a low-cost RPCGRA.

2.2 Problem definition

Here, we only consider a fixed-point integer operation.
The relevant definitions of the mapping problem are as
follows.

Definition 1. Row Parallel Execution RCA
(RPER): A loop sub-DFG is partitioned and mapped
onto an RCA. Each row of mapped nodes has the
following properties: (1) Mapped nodes in the same
row are non-dependent and can execute concurrently.
(2) Each row of mapped nodes can be configured
and executed simultaneously. An array having these
properties is called an RPER. A reconfigurable
computing architecture having these RPER properties is
called an RPCGRA.

Definition 2. Use times of the RCA: Supposing an
RPU contains one RCA, where the number of nodes
for a loop sub-DFG is larger than the number of RCs
on one RCA. The loop sub-DFG is divided into several
sub-tasks, which are mapped onto the RCA under the
hardware resource constraints. Based on an RCA, these
sub-tasks are executed and scheduled regarding their
repeated configuration and use. The number of times
they are repeatedly configured and used is called the use
times of the RCA.

Definition 3. Loop kernel DFG[14]: The loop kernel



726 Tsinghua Science and Technology, October 2021, 26(5): 724–735

Fig. 1 General RPCGRA architecture.

DFGs of computation-intensive tasks or programs can
be expressed as a four-tuple G D .V; E; W; D/, where
V is the set of vertexes. V D fvi j where each vi is
an ordered operation, 1 6 i 6 ng, and jV j D n is the
number of operations. E is the set of data-dependent
edges. E D feij jeij D hvi ; vj i; 1 6 i; j 6 ng, where
each eij denotes a directed edge from vi to vj , vi is
the direct predecessor node of vj , and vj is the direct
successor node of vi . In other words, each eij indicates
the dependency relationship between vi and vj , i.e., the
execution of vj depends on vi . jEj D m indicates the
number of edges. W D fwi j each wi indicates the
hardware resource area of each operation node vi , 1 6
i 6 ng. D represents the set of delays or latencies,
and di 2 D represents the delay of the i-th operation
execution time.

Definition 4. Reconfigurable Cell Array Model
(RCAM): Let Rrow � Ccol denotes the size of a two-
dimensional RCAM D .R; L; IN; OUT/, where R D

fr1;1; r1;2, : : : ;rk;hg is a finite set of reconfigurable
processor units, and the basic unit is ALU. In multimedia
applications, each rk;h .1 6 k 6 Rrow and 1 6 h 6
Lcol/ unit can perform either general arithmetic, logical
operations, or special operations, such as computing
the absolute value, shift addition, comparison, and so
on. IN D IN.r1;1/ [ IN.r1;2/ [ � � � [ IN.rk;h/, where

IN.rk;h/.1 6 k 6 Rrow and 1 6 h 6 Lcol/ is the set of
rk;h input ports. OUTDOUT.r1;1/[ OUT.r1;2/ [ � � � [

OUT.rk;h/, where OUT.rk;h/ is the set of ri;j output
ports; L � OUT � IN D fho; iijo 2 OUT; i 2 INg,
where L is a finite set, in which each element represents
the data-dependency connection relation between the
output port of one RC and the input port of another RC.

Definition 5. DFG temporal mapping: In general,
the number of vi 2 V in a DFG is greater than
the number of RCAs. Therefore, a DFG should be
partitioned and mapped onto the RCA with several
constraints. DFG temporal mapping is the process of
executing a DFG by an RCA in the time domain and
collecting the calculation results, which is denoted as the
function: G�! RCAM.

Definition 6. RCA successful scheduling mapping:
After mapping, an operation node vi .1 6 i 6 n/

occupies an RC. A 2-D RCA can be represented by
the array graph RCAM D .R; L; IN; OUT/: For any
two units ri1;j1; ri2;j 2 2 R, 9 l1 D .ri1;j1; ri2;j 2/ 2 L;

and a given G D .V; E; W; D/, if a mapping DFG of
RCAM is found with a correct interconnection between
ri1;j1 and ri2;j 2, an RCA successful scheduling mapping
is obtained. Otherwise, it is called invalid scheduling
mapping.

Definition 7. DFG non-original input and output



Naijin Chen et al.: Efficient Scheduling Mapping Algorithm for Row Parallel Coarse-Grained Reconfigurable : : : 727

times: A DFG is partitioned according to many RCA
constraints (i.e., area, interconnect modes, etc.). As the
area of the RCA is finite, a DFG can be partitioned
into several blocks. In this situation, the input times
between one RCA and the other RCAs are called the
DFG non-original input times, and the output times
between one RCA and the other RCAs are called the
DFG non-original output times.

Definition 8. RCA communication costs: The RCA
communication costs include original input times, non-
original input times, original output times, and non-
original output times. Generally speaking, the area of
the RCA in one RPU is a constant value, which can be
represented by ARPU. Several sub-graphs are partitioned
according to the size of the RCA and the interconnect
mode of the RCA. From top to bottom and from left to
right, each partitioned sub-graph is mapped to an RCAM
in the proper scheduled order. The objective of mapping

is to minimize the total execution delay.
Definition 9. Cross-level data transmission: With

respect to the RPCGRA row pipeline framework, the
computing result of the above row operation can only
be sent to any node in the next row by the router, or
the computing result of the above row operation can be
saved to local data memory. Because the RC is used as
a transitional node for data transmission, the cost of its
configuration would increase greatly, and this situation
is not considered in this article. The category of cross-
level data transmissions includes misplacement, direct
cross-level, and interlaced (see Fig. 2).

Definition 10. RC: An RC is a processing element,
which is an important part of the CGRA arithmetic array.
Its functions include arithmetic logic operations, data
transmission, and configuration. An array of RCs is
referred to as an RCA or Processing Element Array
(PEA).

…

× 86

88

Level 8 

Level 9

× 87× 83 84 85

…

83

88

Mapping

84 85 86

87

× ×

(a) Misplacement

…

× 66

×
106

Level 6

Level 9

66

106

Mapping

…

(b) Direct cross-level

…

× 93
Level 16

Level 17

× 94× 90 × 91 × 92

…

90

101

Mapping

91 92 93

94

× 95 × 96 × 97

× × × ×
98 99 100 101

95 96 97

98 99 100

(c) Interlaced

Fig. 2 Illustration of misplacement, direct cross-level, and interlaced modes mapped in one RCA.



728 Tsinghua Science and Technology, October 2021, 26(5): 724–735

3 Proposed Approach

In this section, we propose and design a DFGM
algorithm for a reconfigurable system comprising a main
processor and an RPU with several hardware resource
constraints.

3.1 Temporal mapping quantitative indexes for
delays of the CGRA

Based on our analysis and research, we identified six
temporal mapping quantitative indexes for the delays of a
CGRA: N1; N2; M; SSD; CCON; and IID, where N1 is the
non-original input times, N2 is the non-original output
times, M is the use times of the RCA, SSD is the sum of
a DFG execution delay, CCON is the reconfigurable time,
and IID is the cross-level data transmission interconnect
delay.

3.2 Two premise conditions

(1) Row parallelism: Dependency among row nodes
does not occur after an operation node has been
mapped. As such, operations in the same row can be
executed simultaneously, by which parallelism degree
maximization can be obtained, thereby reducing the
execution delays of the computing nodes of the inner
RCA.

(2) Operation execution time and configuration
time: The time of each mod operation is 4 clock cycles,
the time of each multiplication operation is 2 clock
cycles, the time of other operations is 1 clock cycle,
and the configuration time of each operation is 1 clock
cycle.

3.3 Optimization objective

Given: ŒRCA�row�col

s.t.,
.1/1 6 i 6 rowI

(2) 1 6 j 6 colI
(3) ARPU D row � col;
(4) TTOTAL D ˛ � .N1 C Norg1 C N2 C Norg2/ C ˇ �

M C CCON C SSD,
where ˛ is an adjustment factor determined by different
CGRAs. We obtained ˛ D 0:5 in an actual test of the
REconfigurable MUltimedia System (REMUS) compiler.
ˇ represents the number of control registers. Taking
REMUS as example, ˇ D 17: Norg1 is the original input
times and Norg2 is the original output times.

Optimization objective: Minimize N1; N2; M; and
CCON.

3.4 Three mapping strategies

Strategy 1: Adoption of point-to-point mapping
method.

Cross-level data transmission involves three modes:
misplacement, direct cross-level, and interlaced (see
Fig. 2).

Cross-level data transmission interconnection can
directly increase IID. Taking Fig. 2a as an example,
because the mapping nodes in an RCA are executed
by rows from top to bottom, the rows level of v86 is
lower than that of v87, so v86 is calculated first and
the data sources of v88 are not synchronized, which
results in a great increase of IID. Based on the above,
cross-level mappings are not permitted and operation
nodes are mapped successfully. Thus IID is zero and is
not considered. To reduce the configuration time, the
addition of bypass node mapping is also not permitted.

Strategy 2: Consideration of the communication
costs of different RCAs.

Communication costs mainly depend on non-original
input times and non-original output times after
partitioning and mapping a DFG onto an RCA, whereby
mapping methods with fewer input and output times
have lower communication costs. Communication costs
can be reduced using the following method.

Example 1. As shown in Fig. 3a, a loop sub-
DFG (from the assessment program h264 h loop
filter luma intra c (HHLFLIC)) contains 20 original
inputs, 8 original outputs, 48 operation nodes, 76 non-
original edges, 32 addition operations, 10 subtraction
operations, and 6 multiplication operations. Based on the
RPCGRA architecture, starting from the first row of the
upper left corner in the RCA, the DFGM finds v1 and
maps it onto the RCA. As its immediate successor v11

is not ready, in order to reduce N1 and N2, v11 is placed
in advance. Under the hardware resources constraints,
we try to schedule and map its immediate predecessor
v2 onto the RCA. If v2 is mapped successfully, the
scheduling sequence is v1 !v2 !v11. Otherwise, we
look for the next starting point, and so on. Iterative
mappings by depth are executed first. Based on RCA4�4

of the RPCGRA, as shown in Fig. 3b1, the scheduling
sequence of the first M is v1 ! v2 ! v11 ! v12 !

v21!v22!v30!v3!v4!v13!v14!v23!v24!

v29 !v31 !v32. M2 and M3 are shown in Figs. 3b2
and 3b3. Based on the same loop sub-DFG, the mapping
results of the LBDM[11] are shown in Fig. 3c, and those



Naijin Chen et al.: Efficient Scheduling Mapping Algorithm for Row Parallel Coarse-Grained Reconfigurable : : : 729

i15

+
i1 i2

1 +
i4i3

2 +
i5 i6

3 +
i7 i8

4 +
i9 i10

+
i11 i12

5 6 +
i13 i14

7 × ×+ 1098

i16 i17 i18 i19 i20

+ 11 + 12 + 13 + 14 + +15 16 17 + + 201918

+ 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28

29 30 31 32 33 34 35 36

× 37 × 38 × 39 × 40 + 41 + 42 + 43 + 44

+ 45 + 46 + 47 + 48

OUT1 OUT2 OUT3 OUT4

OUT5 OUT6 OUT7 OUT8

(a) Loop sub-DFG of benchmark HHLFLIC

+ 1 + 2 + 3 + 4

+ 11 + 12 + 13 + 14

+ 21 + 22 + 23 + 24

29 30 31 32

out2

(b3) (b1) 

out1

out3

out6
out7

out4

out5

(b2) 

+ +5 6 + 7

× ×

+

109

8

17 18

× 37 × 38 × 39 × 40

+ 45 + 46 + 47 + 48

+ +15 16 + + 2019

+ 25 + 26 + 27 + 28

33 34 35 36

+ 41 + 42 + 43 + 44

in14

in15

in16out8

out9

out10

out11

out13

out12

out14

out15

in1 in2 in3 in4 in5 in6 in7 in8 in9 in10

in11

in12

in13

(b) DFGM mapping result

+ 1 + 2 + 3 + 4

+ 11 + 12 + 13 + 14

21 22 23 24

29 30 31

out1

(c1)

+ + ++

32

out2

out3

out4

out5
out7

out6

+ 5 + 6 + 7 + 8

17 18 × 9 × 10

+ 25 × 37 × 38 × 39

+ 45 + 41

out16

in1

in2
in3

in5
in4

in6
in7

out15

out14

out13

out17

out18

out12

out11

out10

out9

out8

(c2)

+ 15 + 16 + 19 + 20

+ 26 + 27 + 28 × 40

33 34 35 36

+ 42 + 43 + 44

out19

in8 in9 in10 in11 in12

in15

in16

in13

in14

in17

in18

(c3)

+ 46 + 47 + 48

in19 in20 in21 in22

(c4)

(c) LBDM mapping result

+ 1 + 2 + 3 + 4

+ 5 + 6 + 7 + 8

× 9 × 10 17 18

out7
out8

out9
out10

out11
out12

out1

out2

out3

out4

out5
out6

(d1)

+ 11 + 12 + 13 + 14

+ 15 16 + 19 + 20

+ 26 + 27 + 28

36

+

out13

out14

out15

out16

out17

out18
out19

out20

in1 in2 in3 in4

in5

in6 in7 in8 in9

in10

in11

(d2)

× 37 × 38

+ 43 + 44

+ 21 + 22 + 23 + 24

+ 25

34 35

+ 45

29 30 31

out22

out23

out24

out25

out26

out21

in12
in13 in14 in15

in16

in17

in18

in19

(d3)

32 33

× 39 + 41 + 42×

+ 46 ++ 48

40

47

in20

in21 in22

in23

in24

in25

in26

in27

(d4)

(d) LBM mapping result

Fig. 3 Comparison of DFGs.

of the LBM[11] are shown in Fig. 3d. A comparison
of LBDM and LBM reveals that DFGM can decrease
the communication costs of one RCA and other RCAs,
i.e., N1 D 16 and N2 D 15, whereas the communication
costs of the LBDM are N1 D 22 and N2 D 19, and those
of the LBM are N1 D 27 and N2 D 26.

Strategy 3: Decreasing M by greedy mapping.
When using this method, deadlock does not occur and

the interconnect delay is minimized (i.e., no direct cross-
level, interlaced, or misplacement mapping occurs). In
this case, DFGM adopts a greedy mode (e.g., as shown
in Fig. 3b, greedy mapping v9 and v10) to fill in each



730 Tsinghua Science and Technology, October 2021, 26(5): 724–735

RCA in the mapping scheduling process. By doing so,
the number of M can be decreased. In Fig. 3, we can
see that M D 3 (DFGM), whereas M D 4 (LBM
or LBDM). More importantly, fewer M can result in
less configuration time and less execution time, which
reduces the total delays. Table 1 shows a comparison of
the mapping results of LBM, LBDM, and DFGM, from
which we can see that DFGM performs better than LBM
and LBDM.

3.5 DFGM algorithm design

In this section, we present the DFGM algorithm, which
satisfies both the above premised conditions and the
related mapping strategies. The pseudo code is shown in
Algorithm 1 as follows.

Supposing the 2-D RPCGRA is as shown in Fig. 1.
In Algorithm 1, Step 2 applies Strategy 1 to filter illegal
nodes and Strategy 2 to complete a recursive depth first
search in DFS (node[i ].id, matrix level). Step 3 applies
Strategy 3.

The time complexity of reading the data table
is O.n/, where n is the number of DFGs. The
time complexity of DFS(node[i]. id, matrix level) is
O.succ/. Scanning the Max graph level and mapping
by DFS(node[i]. id, matrix level) have a total time
complexity of O.n2 � succ/. The time complexity
of SSD() is O.Rrow � Ccol/. The time complexity of
N1 edges() and N2 edges() is O.M � n � succ/ and
O.n � succ/, respectively, where succ is the nodes of the
successors in a DFG. From the above, the average time
complexity of DFGM is O.n2 � succ/.

4 Experimental Result and Discussion

4.1 Benchmark

The ARPU values selected at random are 42 .RCA6�7/

and 56 .RCA7�8/. For different ARPU values, several
benchmarks are adopted to verify the effectiveness of
DFGM. Five indexes (i.e., M; N1; N2; SSD, and CCON)
are considered in this paper, and ten benchmarks are
used, including FEAL, DCT8, FFT8, EWF6, MATRIX4,
put h264 luma mc c 4�4(PHLMC4), HHLFLIC,

Table 1 Mapping parameter comparison of LBM, LBDM,
and DFGM.

Algorithm
Parameter

M N1 N2
SSD

(clock cycle)
CCON

(clock cycle)
TTOTAL

(clock cycle)
LBM 4 27 26 17 116 159.5

LBDM 4 22 19 16 116 152.5
DFGM 3 16 15 14 99 128.5

Algorithm 1 DFGM
Input: DFG
Output: Configuration information, M; N1; N2; SSD; CCON; and
TTOTAL

Constraint: RPCGRA architecture; ARPU D 42 or 56; illegal
dependencies are not happened; misplacement, direct cross level,
and interlaced are not happened; nodes in each row can be
executed in parallel, RCAi�j .1 6 i 6 RrowI 1 6 j 6 Ccol/

Objective: obtaining optimization M; N1; N2; SSD, CCON; and
TTOTAL

Step 1:
Initializating array schedule [Rrow � Ccol� D f0g & reading data
table; sorting by level and node-number; M D0I matrix level D 0I

n D 0I nodenumberD0

Step 2:
for1 (graph level D 1 to max graph level)
for2 (i D 1 to nodenumber)

if (the indegree of node is 0 & & node[i ].flag D 0 & &
node[i].levelDgraph level)
Call misplacement./; direct-crossing-level./; and interlaced./

to filter illegal nodes in DFS (node[i].id, matrix level);
// matrix level indicates the level of RCA
end if

for (j=1 to ARPU)
Mapping Matrix[schedule [j].x][schedule [j].y]=schedule [j];

n++;
// mapping satisfied constraint nodes onto RCA
end for
Step 3:
if ((num[matrix level]=Ccol)jj(graph level = max graph level

&& matrix level < row && flag last node=0))
if (num[matrix level]= Ccol)

while (matrix level<Rrow)
if (num[matrix level]= Ccol)
matrix level++;
// Column is mapped completely

else break;
end while
Finding the starting row of the next sub-graph and greedy

mapping;
else matrix level = Rrow;

end if
Step 4:

if (the current RCA is mapped completely jj the current
RCA is not mapped completely, but the nodes do not
satisfy the constraints), M ++; matrix levelD0; graph levelD0;
schedule[Rrow � Ccol]=f0g;

Mapping Matrix[schedule[j].x][schedule [j].y]=f0g;
end if
end for2

end for1
Step 5: if (n Dnodenumber) break; M is obtained. N1, N2, and
SSD are got by N1 edges(), N2 edges(), and SSD(), respectively;
CCON and TTOTAL are got by delays();
Step 6: end DFGM



Naijin Chen et al.: Efficient Scheduling Mapping Algorithm for Row Parallel Coarse-Grained Reconfigurable : : : 731

put h264 luma mc c 8�8(PHLMC8), h264 h loop
filter luma c(HHLFLC), and DCT32. The number
of operands is listed in Table 2 (add represents
addition; sub represents subtraction; mul represents
multiplication; log represents logical comparison; less
represents less than; le represents less than or equal;
lsr represents logical shift right; lsl represents logical
shift left; asr represents arithmetic shift right; mod
represents modulus operator; and xor represents XOR
operator). We implemented LBM, LBDM, and DFGM
in C++.

4.2 Grid PEA and row router PEA

Most recent mapping and related research has been
based on grid PEA[17–19], which has the advantage of
easy interconnection (see Fig. 4). However, for a DFG
with multi-outputs or multi-inputs, grid PEA has the
disadvantage of low throughput compared with row

(a) Grid PEA

(b) Row router PEA

Fig. 4 Two kinds of PEA interconnection.

router PEA. Here we take a sub-DFG of DCT32 as an
example (Fig. 5).

The benchmarks of most DFGs (Table 2) are
characterized by multi-outputs or multi-inputs. However,
as we can see in Table 3, based on a sub-DFG of
DCT32, row router PEA has a more comprehensive
optimization performance than grid PEA. So in this
paper, we primarily study the mapping of row router
PEA. At present, there are more optimized algorithms,
such as LBM and LBDM based on row router PEA,
but in-depth study and comparison reveal that LBM has
high communication cost and LBDM must make a trade-
off between communication costs and parallelism, its
overall performance is still poor. Comparisons of the
performances of LBM, LBDM, and DFGM are presented
above.

4.3 Comparison of DFGM and LBM based on
RPCGRA

In Table 2, ten benchmarks are mapped onto CGRAs
based on several constraints of DFGM and LBM,
seperately, the experimental results are shown in Tables
4 and 5 for ARPU = 42 (RCA6�7) and ARPU = 56
(RCA7�8). The results and improved percentages (4%)
are listed in the corresponding columns. In the M

column, taking DCT8 as an example, when ARPU D 42,

Fig. 5 Sub-DFG of DCT32.

Table 2 Set of benchmarks.

Benchmark
Number of operations

Total add sub mul log less le lsr lsl asr mod xor
FEAL 34 6 0 0 0 0 0 0 4 0 4 20
DCT8 90 40 16 34 0 0 0 0 0 0 0 0
FFT8 36 12 12 12 0 0 0 0 0 0 0 0
EWF6 204 168 0 36 0 0 0 0 0 0 0 0

MATRIX4 112 48 0 64 0 0 0 0 0 0 0 0
PHLMC4 336 128 48 80 32 0 16 0 32 0 0 0
HHLFLIC 596 172 132 212 0 20 0 0 36 24 0 0
PHLMC8 624 224 96 160 0 0 32 0 48 64 0 0
HHLFLC 648 152 212 136 0 24 0 12 60 52 0 0
DCT32 562 192 129 129 0 0 0 112 0 0 0 0



732 Tsinghua Science and Technology, October 2021, 26(5): 724–735

Table 3 Mapping parameter comparison of grid PEA and
row router PEA.

Structure
Parameter

M N1 N2
SSD

(clock cycle)
CCON

(clock cycle)
TTOTAL

(clock cycle)
Grid PEA 2 2 2 3 39 49

Row router PEA 1 0 0 2 22 29

M D 4, which is obtained by LBM, where M D 3 is
obtained by DFGM, thus 4% D �25:0% (the negative
value indicates improvement), and the rest can be
performed in the same manner. Compared with LBM,
the values of the five indicators, M; N1; N2; SSD, and
CCON, are improved overall by DFGM. DFGM also
obtains the lowest average execution delay (i.e., SSD)
with an increase in the RCA area.

4.4 Comparison of DFGM and LBDM based on
RPCGRA

We adopted the ten benchmarks shown in Table 2.

Merging breadth-first partitioning with depth-first
partitioning, LBDM considers M; N1; N2; SSD; and
CCON comprehensively and obtains a good result, but
DFGM (ARPU D 42 and 56/ still obtains certain degree
of optimization for M; N1; N2; SSD, and CCON. DFGM
also obtains the lowest average of the five key indicators
and the lowest total average. Details of the results are
listed in Tables 6 and 7.

5 Conclusion

In this paper, we present a DFGM mapping algorithm
for CGRAs. A comparison of the experimental results
obtained by LBDM and LBM in the same pipelining
RCA structure reveals that DFGM obtains better
results. DFGM exhibits advantages with respect to
M; N1; N2; SSD; CCON, and SSD, especially with respect
to reducing M; N1; N2, and CCON. As such, we conclude
that the proposed DFGM is reasonable and feasible.

Table 5 Comparison of DFGM and LBM (M, N1, and N2/.

Benchmark
M N1 N2

LBM DFGM 4% LBM DFGM 4% LBM DFGM 4%
RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8

FEAL 3 2 3 2 0 0 11 10 11 10 0 0 11 10 11 10 0 0
DCT8 4 3 3 2 –25.0 –33.3 57 45 23 16 –59.6 –64.4 57 45 23 16 –59.6 –64.4
FFT8 4 3 4 3 0 0 17 16 17 16 0 0 17 16 17 16 0 0
EWF6 7 6 6 5 –14.3 –16.7 141 121 116 104 –17.7 –14.0 116 108 94 94 –19.0 –13.0

MATRIX4 4 3 3 3 –25.0 0 80 70 50 51 –37.5 –27.1 80 70 50 51 –37.5 –27.0
PHLMC4 9 8 8 7 –11.1 –12.5 209 177 142 145 –32.1 –18.1 201 167 140 140 –30.3 –16.2
HHLFLIC 16 13 15 12 –6.3 –7.7 547 517 314 309 –42.6 –40.0 537 506 301 300 –43.9 –40.7
PHLMC8 16 13 15 12 –6.3 –7.7 578 516 293 298 –49.3 –42.2 529 484 286 296 –45.9 –38.8
HHLFLC 19 15 19 14 0 –6.7 560 547 345 340 –38.4 –37.8 558 545 341 340 –38.9 –37.6
DCT32 17 14 15 12 –11.8 –14.3 352 276 204 181 –42.0 –34.4 334 266 194 179 –41.9 –32.7

Average 4% 0 0 0 0 –14.3 –14.1 0 0 0 0 –39.9 –34.8 0 0 0 0 –39.6 –33.8

Table 6 Comparison of DFGM and LBM (SSD, CCON, and TTOTAL).

Benchmark
SSD CCON TTOTAL

LBM DFGM 4% LBM DFGM 4% LBM DFGM 4%
RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8

FEAL 29 24 29 24 0 0 85 68 85 68 0 0 142.5 119.5 142.5 119.5 0 0
DCT8 25 23 23 18 –4.0 –21.7 158 141 141 124 –10.8 –12.1 293 262 240 211 –18.1 –19.5
FFT8 10 9 10 9 0 0 104 87 104 87 0 0 145 126 145 126 0 0
EWF6 49 39 42 34 –14.3 –12.8 323 306 306 289 –5.3 –5.6 575.5 534.5 528 497 –8.3 –7.0

MATRIX4 27 23 27 26 0 13.0 180 163 163 163 –9.4 0 359 328 312 312 –13.1 –4.9
PHLMC4 69 60 70 65 1.4 8.3 489 472 472 455 –3.5 –3.6 931 872 851 830.5 –8.6 –4.8
HHLFLIC 138 129 144 127 4.3 –1.6 868 817 851 800 –2.0 –2.1 1808.5 1718 1563 1492 –13.6 –13.2
PHLMC8 123 105 134 117 8.9 11.4 896 845 879 828 –1.9 –2.0 1868.5 1746 1598 1538 –14.5 –11.9
HHLFLC 148 139 152 133 2.7 –4.3 971 903 971 886 0 –1.9 1972 1882 1745.5 1653 –11.5 –12.2
DCT32 153 142 149 133 –2.6 –6.3 851 800 817 766 –4 –4.3 1660 1526 1478 1392 –11.0 –8.8

Average 4% 0 0 0 0 –0.5 –1.8 0 0 0 0 –5.7 –4.5 0 0 0 0 –12.3 –10.3



Naijin Chen et al.: Efficient Scheduling Mapping Algorithm for Row Parallel Coarse-Grained Reconfigurable : : : 733

Table 7 Comparison of DFGM and LBDM (M, N1, and N2/.

Benchmark
M N1 N2

LBDM DFGM 4% LBDM DFGM 4% LBDM DFGM 4%
RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8

FEAL 3 2 3 2 0 0 11 10 11 10 0 0 11 4 11 4 0 0
DCT8 3 3 3 2 0 –33.0 28 20 23 16 –18.0 –20.0 28 20 23 16 –18.0 –20.0
FFT8 4 3 4 3 0 0 17 16 17 16 0 0 17 16 17 16 0 0
EWF6 6 5 6 5 0 0 116 108 116 104 0 –3.7 94 96 94 94 0 –2.1

MATRIX4 3 3 3 3 0 0 57 53 50 51 –12.0 –3.8 57 53 50 51 –12 –3.8
PHLMC4 9 7 8 7 –11.0 0 148 147 142 145 –4.1 –1.4 146 145 140 140 –4.1 –3.4
HHLFLIC 15 12 15 12 0 0 310 305 314 309 1.3 1.3 309 308 301 300 –2.6 –2.6
PHLMC8 15 12 15 12 0 0 293 296 293 298 0 0.7 295 294 286 296 –3.1 0.7
HHLFLC 18 15 19 14 5.6 –6.7 354 353 345 340 –2.5 –3.7 349 352 341 340 –2.3 –3.4
DCT32 16 13 15 12 –6.3 –7.7 209 190 204 181 –2.4 –4.7 202 183 194 179 –4.0 –2.2

Average 4% 0 0 0 0 –3.9 –16.0 0 0 0 0 –6.3 –4.4 0 0 0 0 –6.6 –4.6

Table 8 Comparison of DFGM and LBDM (SSD, CCON, and TTOTAL).

Benchmark
SSD CCON TTOTAL

LBDM DFGM 4% LBDM DFGM 4% LBDM DFGM 4%
RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8 RCA6�7 RCA7�8

FEAL 29 24 29 24 0 0 85 68 85 68 0 0 142.5 119.5 142.5 119.5 0 0
DCT8 23 22 23 18 0 –18.2 141 141 141 124 0 –12.1 245 236 240 211 –2.0 –10.1
FFT8 10 8 10 9 0 12.5 104 87 104 87 0 0 145 125 145 126 0 0.8
EWF6 45 39 42 34 –6.7 –12.8 306 289 306 289 0 0 531 505 528 497 –0.6 –1.6

MATRIX4 23 27 27 26 17.4 –3.7 163 163 163 163 0 0 315 315 312 312 –1.0 –1.0
PHLMC4 74 62 70 65 –5.7 4.8 489 455 472 455 –3.5 0 878 831 851 830.5 –3.1 –0.1
HHLFLIC 142 128 144 127 1.4 –0.8 851 800 851 800 0 0 1563 1495 1563 1492 0 –0.2
PHLMC8 128 116 134 117 4.7 0.9 879 828 879 828 0 0 1597 1535 1598 1538 0.1 0.2
HHLFLC 146 143 152 133 4.1 –7.0 954 903 971 886 1.8 –1.9 1760 1692.5 1745.5 1653 –0.8 –2.3
DCT32 153 141 149 133 –2.6 –5.7 834 783 817 766 –2.0 –2.2 1505.5 1423.5 1478 1392 –1.8 –2.2

Average 4% 0 0 0 0 1.8 –3.3 0 0 0 0 –1.2 –5.4 0 0 0 0 –1.3 –1.8

Acknowledgment

This research was supported by the Natural Science
Foundation of Anhui Province (No. 1808085MF203) and
the National Natural Science Foundation of China (No.
61432017).

References

[1] J. M. P. Cardoso, P. C. Diniz, and M. Weinhardt, Compiling
for reconfigurable computing: A survey, ACM Computing
Surveys, vol. 42, no. 4, pp. 1301–1365, 2010.

[2] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, and Y. Paek,
A graph drawing based spatial algorithm for coarse-grained
reconfigurable architectures, IEEE Transactions on Very
Large Scale Integration Systems, vol. 17, no. 11, pp. 1565–
1578, 2009.

[3] M. Berekovic, A. Kanstein, B. Mei, and B. D. Sutter,
Mapping of nomadic multimedia applications on the
ADRES reconfigurable array processor, Microprocessors
and Microsystems, vol. 33, no. 4, pp. 290–294, 2009.

[4] R. S. Ferreira, J. M. P. Cardoso, A. Damiany, J. Vendramini,
and T. Teixeira, Fast placement and routing by extending

coarse grained reconfigurable arrays with Omega networks,
Journal of Systems Architecture, vol. 57, no. 8, pp. 761–777,
2011.

[5] R. Krishnamoorthy, K. Varadarajan, and S. K. Nandy,
Interconnect-topology independent mapping algorithm for
a coarse grained reconfigurable architecture, in Proc. of
2011 International Conference on Field Programmable
Technology, New Delhi, India, 2011, pp. 1–5.

[6] M. Ahn, J. W. Yoon, Y. Paek, Y. Kim, M. Kiemb, and
K. Choi, A spatial mapping algorithm for heterogeneous
coarse grained reconfigurable architectures, in Proc. of the
Conference on Design, Automation and Test in Europe,
Munich, Germany, 2006, pp. 363–368.

[7] G. Ansaloni, K. Tanimura, L. Pozzi, and N. Dutt, Integrated
kernel partitioning and scheduling for coarse grained
reconfigurable arrays, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 31,
no. 12, pp. 1803–1816, 2012.

[8] G. Lee, K. Choi, and N. D. Dutt, Mapping multi-
domain applications onto coarse grained reconfigurable
architectures, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 5,



734 Tsinghua Science and Technology, October 2021, 26(5): 724–735

pp. 637–650, 2011.

[9] M. Jo, D. Lee, K. Han, and K. Choi, Design of a
coarse-grained reconfigurable architecture with floating-
point support and comparative study, Integration, the VLSI
Journal, vol. 47, no. 2, pp. 232–241, 2014.

[10] W. Kim, Y. Choi, and H. park, Fast modulo scheduler
utilizing patternized routes for coarse-grained
reconfigurable architectures, ACM Transactions on
Architecture and Code Optimization, vol. 10, no. 4, pp.
1–24, 2013.

[11] N. J. Chen and J. H. Jiang, Mapping algorithm for coarse-
grained reconfigurable multimedia architectures, in Proc. of
19th IEEE International Parallel & Distributed Processing
Symposium (IPDPS) Workshop, Shanghai, China, 2012, pp.
281–286.

[12] S. D. Yu, Research on the software/hardware co-design
for reconfigurable processor, PhD dissertation, School of
Information Science and Technology, Tsinghua University,
Beijing, China, 2009.

[13] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, and E. M. C.
Filho, MorphoSys: An integrated reconfigurable system for
data parallel and computation intensive applications, IEEE
Transactions on Computers, vol. 49, no. 5, pp. 465–481,
2000.

[14] N. J. Chen, J. H. Jiang, X. Chen, Z. Zhou, and Y. Xu, An
improved level partitioning algorithm considering minimum
execution delay and resource restraints, Acta Electronica
Sinica, vol. 40, no. 5, pp. 1055–1066, 2012.

[15] J. Xiao, Z. H. Shi, W. D. Zhu, J. H. Jiang, Q. W. Zhou, J.
Lou, Y. Huang, Q. Ji, and Z. Sun, Uniform non-Bernoulli
sequences oriented locating method for reliability-critical
gates, Tsinghua Science and Technology, vol. 26, no. 1, pp.
24–35, 2021.

[16] Y. M. Ouyang, Q. Wang, Z. Li, H. G. Liang, and J. Li, Fault-
tolerant design for data efficient retransmission in WiNoC,
Tsinghua Science and Technology, vol. 26, no.1, pp. 85–94,
2021.

[17] O. Sangyun, L. Hongsik, and L. Jongeun, Efficient
execution of stream graphs on coarse-grained reconfigurable
architectures, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 36, no. 12,
pp. 1978–1988, 2017.

[18] I. Bae, B. Harris, H. Min, and B. Egger, Auto-tuning CNNs
for coarse-grained reconfigurable array-based accelerators,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2301–2310, 2018.

[19] J. Y. Gu, S. Y. Yin, L. B. liu, and S. J. Wei, Stress-
aware loops mapping on CGRAs with dynamic multi-
map reconfiguration, IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 9, pp. 2105–2120, 2018.

Naijin Chen received the PhD degree in
computer science and technology from
Tongji University, Shanghai, China in
2013. He obtained postdoctoral certificate
from Tianjin University, Tianjin, China in
2016. He is a member of China Computer
Federation. He is currently a professor in
Anhui Polytechnic University, Wuhu, China.

His current research interests include reconfigurable computing
and compiling, fault tolerant computing, reliability evaluation of
high-level circuits, approximate computing, formal verification,
semantic big data representation and reasoning, and pattern
recognition and image processing.

Ruixiang He received the MS degree from
Anhui Polytechnic University, Wuhu, China
in 2018. He is currently an engineer in
Paneng Electric Power Technology Co.
Ltd, Nanjing, China. His current research
interests include reconfigurable computing
and compiling, fault tolerant computing,
reliability evaluation of high-level circuits,

and approximate computing.

Zhen Wang received the PhD degree in
computer science and technology from
Tongji University in 2008. She ever worked
as a senior engineer in Synopsys from
2008 to 2013. She is a member of
China Computer Federation. She is now
working in Shanghai University of Electric
Power. Her main research interests include

fault tolerant computing, reliability evaluation of high-level
circuits, and approximate computing.

Jianhui Jiang received the PhD degree in
traffic information engineering and control
from Shanghai Tiedao University (in April
2000, it was merged to Tongji University)
in 1999. Since 2011, he has been the
associate dean of the School of Software
Engineering, Tongji University. He is a
professor and PhD supervisor in Tongji

University. He is a senior member of China Computer Federation.
His main research interests include reconfigurable computing and
compiling, dependable systems and networks, software reliability
engineering, and VLSI test and fault tolerance.



Naijin Chen et al.: Efficient Scheduling Mapping Algorithm for Row Parallel Coarse-Grained Reconfigurable : : : 735

Fei Cheng received the BS degree from
Anhui Polytechnic University, Wuhu, China
in 2019. He is now a master student
at School of Computer and Information
Science, Anhui Polytechnic University,
Wuhu, China. His current research interests
include reconfigurable computing and
compiling, formal verification, fault tolerant

computing, semantic big data representation and reasoning, and
pattern recognition and image processing.

Chenghao Han received the BS degree
from Suzhou University, Suzhou, China
in 2020. He is now a master student
at School of Computer and Information
Science, Anhui Polytechnic University,
Wuhu, China. His current research interests
include reconfigurable computing and
compiling, formal verification, and fault

tolerant computing.


