
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/15 pp706–723
DOI: 10 .26599 /TST.2020 .9010017
Volume 26, Number 5, October 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Game Theoretical Approach for Non-Overlapping Community
Detection

Baohua Sun, Richard Al-Bayaty, Qiuyuan Huang, and Dapeng Wu�

Abstract: Graph clustering, i.e., partitioning nodes or data points into non-overlapping clusters, can be beneficial in a

large varieties of computer vision and machine learning applications. However, main graph clustering schemes, such

as spectral clustering, cannot be applied to a large network due to prohibitive computational complexity required.

While there exist methods applicable to large networks, these methods do not offer convincing comparisons against

known ground truth. For the first time, this work conducts clustering algorithm performance evaluations on large

networks (consisting of one million nodes) with ground truth information. Ideas and concepts from game theory are

applied towards graph clustering to formulate a new proposed algorithm, Game Theoretical Approach for Clustering

(GTAC). This theoretical framework is shown to be a generalization of both the Label Propagation and Louvain

methods, offering an additional means of derivation and analysis. GTAC introduces a tuning parameter which allows

variable algorithm performance in accordance with application needs. Experimentation shows that these GTAC

algorithms offer scalability and tunability towards big data applications.

Key words: big data analytics; game theory; clustering; community detection; label propagation

1 Introduction

Graph clustering consists of constructing an adjacency
matrix from a set of nodes or data points and partitioning
them into clusters. The terms “nodes” and “data
points” will be used interchangeably throughout this
paper, as will the terms “communities” and “clusters”.
The experimentation and focus of this work are on
generalized weighted and directed graphs. These types
of graphs contain links between nodes that both carry a
weight signifying the strength of the connection and a
directionality representing correlation. The directionality

�Baohua Sun, Richard Al-Bayaty, Qiuyuan Huang, and Dapeng
Wu are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611, USA.
E-mail: bsun@ufl.edu; ralbayaty@ufl.edu; idfree@ufl.edu;
dpwu@ieee.org.
�An earlier version of this paper has been presented at

the International Conference on Big Data Computing and
Communications (BIGCOM2019).
�To whom correspondence should be addressed.

Manuscript received: 2019-12-10; revised: 2020-05-24;
accepted: 2020-05-25

does not need (and usually does not) to be characterized
by a symmetric adjacency matrix. Often, the graph
clustering problem is given without providing the
number of clusters. In many practical applications, the
graph is considered to be sparse, i.e., the number of links
among the nodes is a linear (not quadratic) function of
the number of total nodes of the graph. Partitioning
occurs such that nodes belonging to the same group
are highly connected, while nodes in different groups
maintain lesser connectivity by means of optimizing a
chosen measure of clustering effectiveness. There are
several methods available to address this problem[1],
however they all have their own limitations and use
cases.

Spectral Clustering (SC)[2] aggregates nodes by
virtue of the spectrum of the similarity matrix. The
similarity matrix is constructed from the nodes’ pairwise
distances. SC consists of two parts: (1) perform eigen-
decomposition on the similarity matrix to obtain a
user-specified number (e.g., Nc) of eigenvectors as
projections for the nodes into an Nc dimensional
subspace, (2) cluster the nodes in the Nc dimensional

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 707

subspace by using methods such as k-means. A drawback
to this technique is that it requires the number of
clusters as an input. Poorly choosing the number of
clusters to provide SC directly impacts the clustering
performance. Another drawback of SC is that the eigen-
decomposition may be infeasible if the similarity matrix
is not symmetric, as the case with many directed
graphs. The number of clusters, Nc, is application
specific and thus a methodology for selecting this
parameter should be established prior to using SC.
Another drawback of SC is that the eigenvectors for
the lower dimensional projection are all given the same
priority during the clustering portion of the algorithm.
Although Shi and Malik[3] improved the performance
of SC by normalizing the similarity matrix using
the Normalized cut (Ncut), this method still has the
drawbacks of requirement of knowledge about Nc prior
to use Ncut and issue with eigen-decomposition for
asymmetric similarity matrix.

Modularity Maximization (M-M) aims to detect
clusters within a graph by optimizing modularity,
which is a measure that can be used to determine
the connectivity strength of nodes within a cluster as
compared to those outside the cluster[4]. This method is
more versatile than SC in that it will detect the number
of clusters automatically based on the network structure
of the provided graph. M-M faces the resolution limit
issue, where multiple small clusters provide greater
modularity when combined into a single cluster[5, 6]. This
resolution limit prevents outstanding performance of
M-M on larger networks containing multiple relatively
small groups. Like in SC, M-M also suffers from
the ill-conditioned eigen-decomposition problem when
using directed graphs that are potentially asymmetric.
Scalability is also a concern with this method due to
the computational limitations of eigen-decomposition on
substantially sized graphs.

In recent years, algorithms have been developed to
address the scalability concerns for clustering within
increasingly larger graphs[7, 8]. Label Propagation (LP)[9]

is a near-linear time algorithm that is easy to implement
and applicable to large datasets. However, LP is limited
to graphs consisting of unweighted edges between nodes.
This algorithm constructs clustering results from the
underlying structure in the network without regard to
optimizing any measure of a chosen community strength.
Another technique aimed at tackling scalability issues
is the Louvain method[10]. This method attempts to
detect communities using a local modularity criterion

aiming at resolving the resolution limit discussed
earlier. Additionally, parallel implementations of the
Louvain method have also been studied[11]. Although
the Louvain method offers a performance improvement
for many applications, it still suffers similar limitations
as LP. There are also many recent works for detecting
communities with game theory[12, 13], as well as work for
model prediction and systems[14–16].

Prior work fails to show convincing experimental
results on large networks with ground truth information,
instead showing evaluations on datasets with either
ambiguous labels or none at all. To help address this
gap, we take a game theoretical approach to the graph
clustering problem on various datasets containing ground
truth information ranging from a small number of
nodes to that of over a million nodes. Game theory
is introduced and applied to community detection in
Refs. [17–22], and they concentrate more on explaining
the use of modularity as a payoff function in a game, as
well as the modification of modularity for optimizing
the payoff function. This work establishes a global
function which is a measure of clustering performance
over the entire graph. To form the foundation of Game
Theoretical Approach for Clustering (GTAC), in each
iteration we regard some of the nodes on the graph as
players in a game and enable them to change their labels
in a local fashion such that they optimize the global
function. This process is repeated until an equilibrium is
achieved for the game. In this paper, we show that LP
and the Louvain method can be derived and extended
under the framework of GTAC, offering an alternative
means of analysis, performance tuning, and scalability.

To the best of our knowledge, there does not exist
experimentation or performance evaluations using these
methods on large networks whose similarity matrix is
both weighted and asymmetric. The barrier of using
large datasets is complex, because it requires not only
obtaining datasets with high fidelity label data, but
also the time, storage, computation, and programming
resources of high performance computing machines. For
the first time, we fill this gap by using Amazon EC2 web
services to perform experiments on graphs containing
one million nodes to evaluate the performance of various
algorithms benchmarked against known truth.

The main contribution of this paper is three-folded.
Firstly, it provides a new framework for clustering in
large networks, the concept of degree of modularity is
taken as the revenue function of the algorithm, and is
generalized on this basis. An overview of the proposed

708 Tsinghua Science and Technology, October 2021, 26(5): 706–723

framework is shown in Fig. 1. Secondly, the advantages
and disadvantages of Label Propagation and Louvain
methods are analyzed, and the improvement ideas are
put forward. These methods are evolved on the proposed
GTAC model. Thirdly, variants of the GTAC model
are proposed to explain the effects of different node
sequences, function definitions, and node initializations
on the results.

The structure of this paper is organized as follows.
Section 2 presents a brief overview of select aspects
of game theory, Section 3 constructs the ties between
game theory and the GTAC algorithm, Section 4
derives and explains the proposed GTAC algorithms,
Section 5 establishes a hierarchical variant of the GTAC
framework, Section 6 outlines the experimental setup,
Section 7 details the results and intuition behind the
experimentation, and Section 8 concludes this work with
highlights and closing remarks.

2 Prerequisite: Game Theory

Game theory revolves around studying the complex
decision making involved with players in a cooperative
or competing engagement[23]. Its foundational
applications are in the area of economics, but are also
used in various other fields to include biology, artificial
intelligence, and computer networking to name a few. In
1928, Von Neumann and Morgenstern[24] formulated the
basic concepts of game theory, but it was not until 1944
that they laid the foundation with Oskar Morgenstern in
their book Theory of Games and Economic Behavior. To
bridge the gap between cooperative and non-cooperative
games, Nash[25, 26] published two influential papers
proposing the Nash Equilibrium. This equilibrium
presumes a steady state strategy set for a general class
of games where each player’s strategy is chosen to be

Fig. 1 Overview of proposed framework.

the best considering all other players’ strategies at that
point in time.

There are several essential elements in a game
including players, strategy, payoff function, and game
outcome/equilibrium. A player, x, is given as any
decision-making participant in a game, and can be
denoted as a set by

N D fx1; x2; : : : ; xng (1)
Decisions made by the player are called strategies.
The strategy set for each player is S1; S2; : : : ; Sn,
respectively. As a result, the strategy set of all the players
is given by

S D S1 � S2 � � � � � Sn (2)
where � denotes the Cartesian product of sets (i.e., for
sets A and B , the Cartesian product A � B is the set
of all ordered pairs .a; b/ where a 2 A and b 2 B).
The payoff function, which is also known as a utility
function, is a mathematical formulation to calculate the
gain and loss of the player strategies. For each player xi ,
where i 2 N ,

ui W S ! R (3)

denotes the payoff function of player xi . Each game
yields a result or outcome. This result is called an
equilibrium if it can be considered stable.

Nash Equilibrium is defined as the best strategy that
can be made by each player provided that all other
players do not change their strategies. If we denote s�

as the strategy resulting in a Nash Equilibrium[17, 26, 27],
we have

ui .si ; s�
�i / � ui .s

�/ 6 0;8si 2 Si ;8i 2 N (4)
We refer to the strategy profile obtained from s� by
replacing the strategy of player xi with sij as being
.sij ; s�

�i /, defined as
.sij ; s�

�i / D .s�
1 ; s�

2 ; : : : ; s�
i�1; sij ; s�

iC1; : : : ; s�
n/ (5)

3 Motivation from Game Theory

Here the GTAC scheme is described in detail. A
weighted graph, G, is defined by N nodes and an N �N

dimensional adjacency matrix, A, where each entry
Ai;j denotes the weight of the link between nodes i

and j , here i 2 f1; 2; : : : ; N g and j 2 f1; 2; : : : ; N g.
If A is symmetric, this graph is considered to be
undirected, otherwise it is a directed graph. The case
of the unweighted graph can be seen as a special case
of weighted graphs where Ai;j 2 f0; 1g is a binary flag
signifying whether or not there is a link between nodes i

and j .

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 709

GTAC constructs the process of clustering, also
referred to as community detection, as a game whose
objective function is given by

F D f .A; C/ (6)

C D fCk; k 2 f1; 2; : : : ; Kgg (7)
Each community, Ck , is a non-overlapping set of node
indices denoting membership to community k. The
function f depends on the input weight matrix, A,
and the community detection result shown in Eq. (6).
Different applications warrant different constructions
of f . For fixed A, we seek to optimize F by means
of varying the community detection result, C. A
well recognized optimizing criterion for F is that of
maximizing community modularity[4, 10].

The search for the optimal solution to many
formulations of f is known to be Non-deterministic
Polynomial (NP)-hard. The optimization of F is relaxed
by reformulating the problem as follows: for a given
initial community clustering, improvements to F are
made by only modifying the membership of q nodes.
For simplicity, this paper uses q D 1. Assuming node
x currently belongs to community Cl , if there exists
another community for node x, Ck .k ¤ l/, such that
the value given by Eq. (6) improves then node x will
change communities to make this improvement. When
determining new communities, it is prudent to consider
only those of the nodes connected to node x. This is
equivalent to treating x as an isolated node, meaning
that it is not initially assigned to any community, and
selecting C Ok

such that Eq. (6) is optimized. This step is
repeated sequentially for all other nodes in a prescribed
order and is iterated until a stopping criterion is met.
Reaching this stopping criterion is considered having
achieved the Nash Equilibrium of the game.

4 GTAC Algorithm

This section details the GTAC algorithm and discusses
possible GTAC variations. Algorithm 1 provides the

Algorithm 1 GTAC
1: Input: An ordered list of labeled nodes
2: Output: Updated node labels from community detection
3: while stopping condition not met do
4: for each i in ordered list do
5: x ordered list.i/ F iterate list for each i

6: k argk max=min f .A; C / F optimize f
7: labes list.x/ k F assign new label: k
8: end for
9: end while

10: return labels list F Community detection result

layout for GTAC.
A few remarks should be made regarding GTAC in its

basic form.
(1) Different community results may arise from

separate label initializations and node orderings.
(2) The function f plays a pivotal role in that it defines

“community”.
(3) Stopping criteria will influence the community

result.
The following sections provide deeper discussion in

regards to the essential elements of Algorithm 1.

4.1 Initialization and computational order of the
nodes

It may seem intuitive that different initializations of
the labels or the prioritized ordering of the nodes for
computation may yield different community results,
however as shown in Ref. [10], the computational
ordering of the nodes does not greatly influence the
outcome. Thus, in later experiments we utilize the same
initialization and computational ordering used by the
Louvain method. This method assigns unique labels and
identification numbers to nodes upon initialization. The
node IDs are then used to form a prioritized, or ordered
list.

4.2 Different payoff functions for GTAC

There are many candidate payoff functions, f , available
for application in Step 5 of Algorithm 1. The careful
selection of f helps to dictate what defines a community
amongst the nodes. The following will highlight the
different formulations of f , which will subsequently
lead to the derivation of different GTAC variants.

4.2.1 GTAC using modularity criteria
Modularity[28] is defined as

Q D
1

2m

X
i;j

�
Ai;j �

kikj

2m

�
ı.ci ; cj / (8)

where ki D

X
j

Ai;j , and ci is the community to which

node i belongs. We use the Kronecker delta function
where ı.ci ; cj / D 1 if ci D cj , and 0 otherwise. The

normalization term uses m D
1

2

X
i

X
j

Ai;j .

If modularity is chosen as the payoff function,
maximizing F can be rewritten as

F D

KX
kD1

24 X
i2Ck

X
j 2Ck

�
Ai;j �

kikj

2m

�35 (9)

710 Tsinghua Science and Technology, October 2021, 26(5): 706–723

The normalization term
1

2m
is omitted since it will not

influence the optimization solution. Here, K represents
the number of total clusters. Using the methodologies
provided earlier for GTAC and in Ref. [10], the strategy
for node x is given as
Ok D arg max

k

�Qk D

arg max
k

"P
inC2kx;in

2m
�

�P
totCkx

2m

�2
#
�"P

in

2m
�

�P
tot

2m

�2

�

�
kx

2m

�2
#
D

arg max
k

�
kx;in

m
�

P
tot �kx

2m2

�
(10)

where
kx;in D

X
x

X
j 2Ck

Ax;j (11)

X
tot
D

X
i

X
j 2Ck

Ai;j (12)

kx D

X
i

X
Ai;x (13)

where
P

in in Eq. (10) is the sum of weights inside the
cluster CK . The sum over x in Eq. (11) represents a
summation of the q nodes chosen for the game, where in
our game we chose q D 1. Equation (12) is the total talk
to CK . And Eq. (13) is the sum of talk to x. �Qk in Eq.
(10) represents the change in Qk provided a change in
player label.
4.2.2 GTAC using unnormalized most friends

criteria
In Label Propagation, network structure is the guide
by which nodes are driven into communities in lieu
of an optimization of community strength by use of
a measure[9]. We show that LP can be modeled as a
special case of GTAC. If the payoff function is chosen
to be the summation of within community talk, where F

is given by

F D

KX
kD1

24 X
i2Ck

X
j 2Ck

Ai;j

35 (14)

then the strategy for node x is resultingly

Ok D arg max
k

KX
kD1

0@ X
i2Ck ; i¤x

X
j 2Ck ; j ¤x

Ai;j

1AC
X

i2Ck ;i¤x

.Ax;i C Ai;x/ (15)

The first term in Eq. (15) signifies the F value for the

N�1 nodes excluding node x, and the second term is the
change in F value when assigning node x to community
Ck . The self-loop Ax;x is neglected because it should
not be allowed to influence the node’s strategy in this
framework. Since the first term is the same for all k, it
can be disregarded in the optimization, which reduces to
being

Ok D arg max
k

X
i2Ck ; i¤x

.Ax;i C Ai;x/ (16)

The formulation in Eq. (16) is called GTAC using
Unnormalized Most Friends criteria (GTAC-UMF). This
is the strategy group used for node x in both the weighted
and unweighted graph scenarios where the graphs may
be either directed or undirected. When using GTAC-
UMF in cases where the weight matrix A is symmetric,
Eq. (16) further reduces to

Ok D arg max
k

X
i2Ck ; i¤x

Ax;i (17)

Furthermore, if G is an unweighted graph then A will
be a binary matrix which admits the “majority vote”
strategy group for node x (i.e., join the community to
which most of its neighbors belong). This is precisely
the strategy used in LP[9].

Further analysis of Eq. (14) reveals limitations of LP.
It is trivial to see that maximizing F produces a global
optimum when all nodes merge into one conglomerate
component, or more simply letting K D 1. Because
GTAC is a local method, it is difficult for all the
nodes in one community to merge into another entirely
since the community structure is evolved sequentially
across the nodes. It is more likely that the result will
become stuck at a local optimum instead of a global,
provided that nodes are initialized as having their own
independent community. The limitation of Eq. (14) is
that it tends to merge communities together when larger
amounts of crosstalk is present, as is supported by later
experimentation (Section 7) which offers a number of
communities less than that of the ground truth.

Additionally, since
P

total D
P

inC
P

out is a
constant for a given weight matrix with a fixed
cluster arrangement, the optimization on Eq. (14)
can be changed from a maximization over

P
in to a

minimization over
P

out following the same process
as that resulting in Eq. (17).

P
out is defined as the

total crosstalk, i.e., the sum of weights across different
clusrters.

When comparing Eqs. (9) and (14), we see that the two
equations differ in only the subtracted term in Eq. (9),
which represents crosstalk. Thus the difference between

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 711

the two is that Eq. (9) considers both within and crosstalk
while Eq. (14) only considers within talk. With the
task of maximizing modularity, the local and global
approaches yield different results according to Ref.
[1], which points out that modularity-based methods
(with the exception of the method by Blondel et al.[10])
have rather poor performance. This poor performance
worsens for larger systems with smaller communities
due to the well known resolution limit of modularity[1].
It follows that modularity maximization benefits in being
implemented as a local method rather than a global
method. This reasoning transcends to other techniques
as well. As pointed out, maximizing Eq. (14) in a global
fashion results in a singular connected component graph,
but if performed in a local way (as with the GTAC
method), more realistic clusters are formed so long as
the crosstalk among communities is not proportionally
too large.

4.2.3 GTAC using normalized most friends criteria
The GTAC-UMF algorithm suffers from the “rich
become richer” problem, i.e., when a community
becomes large it attracts more nodes making the
community larger. This problem exists no matter if the
attraction is caused by dense connections between nodes
or because of the large size of the community via the
summation of a large number of small connections being
large. The drawback of GTAC-UMF is that it fails to
consider the size of the group. To address this drawback,
we propose the GTAC using Normalized Most Friends
criteria (GTAC-NMF) with the optimization function in
Eq. (18). This formulation counter-balances the false
attraction caused by large communities using the size of
the group as a normalization parameter.

F D

KX
kD1

P
i2Ck

P
j 2Ck

Ai;j

jCkj
˛ (18)

where jCkj is the cardinality of Ck , and ˛ is a tuning
parameter with non-negative real value. It can be seen
that GTAC-UMF is a special case of GTAC-NMF when
˛ D 0.

Due to the normalization parameter, it is more difficult
to derive a simplified strategy for GTAC-NMF than for
GTAC-UMF. In order to obtain an optimal strategy, let
us compare the gains from the optimization function
(Eq. (18)) when node x joins either Ck1

or Ck2
. For

simplification, let us refer to these strategies as k1 and
k2, respectively. For k1, Eq. (18) becomes

Fk1
D

0B@ X
k¤k1; k¤k2

P
i2Ck ; i¤x

P
j 2Ck ; j ¤x

Ai;j

jCkj
˛

1CAC P
k2

jCk2
j
˛C

P
k1
C

P
i2Ck1

.Ax;i C Ai;x/

.jCk1
j C 1/˛

(19)X
k1

D

X
i2Ck1

; i¤x

X
j 2Ck1

; j ¤x

Ai;j (20)

X
k2

D

X
i2Ck2

; i¤x

X
j 2Ck2

; j ¤x

Ai;j (21)

To obtain the strategy k2, one would simply interchange
k1 and k2 variables of Eq. (19). Since the first term
in Eq. (19) is the same for both strategies, it may be
neglected in the comparison. Electing a better strategy
involves determining which provides a larger F , which
is decided by

Ok D arg max
k2fk1;k2g

.Fk1
; Fk2

/ (22)

We further simplify Eq. (22) by making the
approximation:

jCkn
j
˛
� .jCkn

j C 1/˛ (23)

Using the approximation in Eq. (23) on Eq. (22) provides

OkD arg max
k2fk1;k2g

0B@
P

i2Ck1

.Ax;iCAi;x/

jCk1
j
˛ ;

P
i2Ck2

.Ax;iCAi;x/

jCk2
j
˛

1CA
(24)

which can further be generalized for pairwise
comparisons to make the GTAC-NMF strategy,

Ok D arg max
k

X
i2Ck

.Ap;i C Ai;p/

jCkj
˛ (25)

We see in Eq. (25) that if ˛ D 0, GTAC-NMF reduces
to GTAC-UMF as shown in Eq. (16). The optimization
in Eq. (18) is the generalized form of that in Eq. (14).
Also, the solution to Eq. (25) is the generalized form of
Eq. (16), provided the approximation in Formula (23).

Now let us examine the influence on community
detection by the parameter ˛. An ˛ too large (e.g., larger
than 1) makes the algorithm susceptible to crosstalk
noise between the clusters. This crosstalk noise will
reinforce small group clustering offering a solution
consisting of a much larger number of communities
than in the ground truth. Setting ˛ too small (e.g.,
close to 0) will tend the results of GTAC-NMF toward
those of GTAC-UMF. The drawback of GTAC-UMF (the
resolution limit) is that smaller clusters get absorbed into

712 Tsinghua Science and Technology, October 2021, 26(5): 706–723

the larger ones. In this instance the number of groups
will tend to be smaller than that of the ground truth. Per
application, a strategic choice of ˛ between 0 and 1 will
strike a balance between the two extremes.

4.3 Stopping criteria of GTAC

In the GTAC algorithm, and in others, there are a few
commonly used stopping criteria, which are enumerated
and detailed below. The stopping criterion used in each
experimental setup is explained in Section 7.

4.3.1 Modularity-based criteria
This method is used when it is desired for the stopping
criteria of the algorithm to correspond to a stagnation
in the modularity increase. This criterion is reached
when the difference of modularity between consecutive
iterations is less than some threshold value.

4.3.2 Bounded iteration
This method is straightforward and is further investigated
in Ref. [1]. In their experiments they found that at least
95% of labels were correctly classified by the end of
the 5th iteration, irrespective of the quantity of nodes.
The key advantages of this stopping criterion are that
it is unaffected by label loops in clustering caused by
node oscillations[1] and the run time of the algorithm for
a given iteration bound is a function of the number of
nodes and payoff function operations.

4.3.3 Unbounded iteration
In cases where a fixed number of iterations is not desired,
such as when initializations of node labels have a drastic
effect on algorithm convergence, unbounded iteration
methods are required. Typically, if all node labels do not
change between subsequent iterations, the equilibrium of
the algorithm is thought to have been achieved. Because
of the label oscillation phenomenon as mentioned in Ref.
[1], this method should not be used as the sole stopping
criteria. Instead, other stopping criteria should be used in
tandem, stopping the algorithm whenever either method
activates. Two types of unbounded iteration stopping
criteria are detailed below.

(1) Unique labels. The unique labels stopping
criterion will terminate the algorithm when the sets
(clusters) of node labels of a previous iteration are
the same as those in the current iteration. This
method can effectively avoid the oscillation problem
in many instances, however it can cause the issue of
early stopping if node labels start to exhibit transient
oscillatory behavior within a set of unique labels.

(2) Tabu list. A tabu list stopping criterion is to detect
periodic behaviors in clustering. A tabu list records the
clustering results over a finite number of iterations, such
as Nt iterations. It terminates when the clustering results
are repeated with the previous Nt iterations. Since the
tabu list is finite, adding a new entry entails removing
an existing entry, usually the oldest. Other means of
tabu list updating have been studied in Ref. [29]. To
reduce computational complexity, the recording of tabu
list does not begin until several iterations have been
completed, since it is presumed that convergence of the
node labels will not occur within the initial iterations.
A benefit of the tabu list is that it also addresses the
oscillation problem while also conquering the early stop
problem of unique labels, but at the cost of an increased
computational and storage complexity.

4.4 GTAC algorithm used in the experiments

Here, we list and explain the three GTAC algorithm
variants used within our experimentation. For every
algorithm variant, the nodes are initialized with unique
labels and IDs and subsequently processed in the order
of the node IDs.

4.4.1 GTAC-M
This variant uses Eq. (10) as the payoff function and a
modularity-based stopping criterion.

4.4.2 GTAC-UMF-UL and GTAC-UMF-TL
These variants use Eq. (16) as the payoff function, the
unique labels, and tabu list stopping criteria, respectively.

4.4.3 GTAC-NMF
This variant uses Eq. (25) as the payoff function and the
tabu list stopping criteria.

5 Hierarchical Game Theoretical Approach
to Clustering (HGTAC)

The GTAC algorithm and each variant can be extended to
a hierarchical version[30]. This version HGTAC iterates
the GTAC algorithms to form a hierarchical tree of
community detection results until a stopping criterion
for the hierarchy is met. There are two phases in each of
these iterations. Phase 1 implements the GTAC algorithm
until an equilibrium is achieved, and Phase 2 considers
each community obtained in Phase 1 as a distinct node
in the hierarchy, treating the total crosstalk between
communities as connection weights and the total within
talk as self-loops per community.

This hierarchical process iterates until a stopping

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 713

criterion is met. Some stopping criteria for the
hierarchical process include stopping if the number of
resultant communities falls below a provided threshold
or if the parameter of the community detection result
satisfies a certain bounding requirement. This process is
outlined in Algorithm 2.

The first phase applies Algorithm 1 to obtain a
community detection result. This result is then passed
to the second phase where the nodes in the same
community are merged together into what is regarded as
a node in the next iteration. Iterations terminate when a
stopping criterion is met. The second phase considers
the summation of connections between communities as
connections between nodes in the new set of hierarchical
nodes. HGTAC algorithms have the same naming
convention as GTAC.

When using GTAC-M (which uses modularity-based
stopping criteria) as the first phase of HGTAC (HGTAC-
M), this method becomes that of the Louvain method
used in Ref. [10]. Additionally, the HGTAC-UMF is
similar to the Louvain method. In our experiments
with HGTAC-UMF, where Eq. (6) is maximized, the
stopping criterion can not be made similar to that of
the Louvain method since Eq. (16) will increase for
every community merger, in turn causing Eq. (6) to
increase as well. Instead, HGTAC-UMF is stopped when
all communities have merged. Experimental results
show that the second-to-last level of the hierarchy offers
relatively good performance.

6 Data Source/Experimental Setup

For community detection, two types of data can be used:
truthed and real world. The benefit of using truthed data
is that it contains known labels, whereas real world data
may not. Experiments in the literature generally utilize
synthetic data when it is important to allow for algorithm
analysis by means of varying the synthetic data structure
and configuration, but tend to use untruthed real world
datasets to prove merit in certain application areas.

Algorithm 2 HGTAC
1: Input: An ordered list of nodes with labels
2: Output: Node labels from community detection
3: while stopping condition not met do
4: Phase 1: Apply GTAC (Algorithm 1)
5: Phase 2: Use Phase 1 results to form new node in

hierarchy then update the current set of nodes.
6: end while
7: return nodes F Community detection result

6.1 Truthed data

We use the synthetic data generated from the
Lancichinetti-Fortunato-Radicchi (LFR) benchmark
network[31] in many of our experiments. These data
are widely used for testing community detection
algorithms[1, 32–34]. It provides several parameters which
allow for tuning of a network, such as the number of
nodes, the average node degree, a topology mixing
parameter (�t), a weight mixing parameter (�w), an
exponent for controlling the degree sequence (t1), an
exponent for controlling the community size distribution
(t2), and an exponent for varying the weight distribution
(ˇ). Additionally, a Gaussian data network is utilized in
our experimentation; this type of network is also studied
in Ref. [35].

6.2 Real world data

The value in performing community detection on real
world data revolves around helping to better understand
the complex and often immense data by means of
providing potential topological structure schemes or
insight into the network. This insight is valuable for
large networks especially when human inspection can
be expensive to perform. One type of example of a large
network where insight into the topological structure may
be desirable is that of online social networks. This work
uses data from the social media network Twitter[36].

6.3 Performance measure

To evaluate the performance of the various algorithms
for community detection, different methodologies are
used for the different types of datasets.
6.3.1 Truthed data
For datasets containing ground truth, the Normalized
Mutual Information (NMI) is used from Ref. [37]. NMI
is a measure used to determine the difference between
the ground truth and the community detection results
given by an algorithm.

Let us assume that nodes are grouped into K

communities by an algorithm. Let X denote the
observation of a single node’s label output, and Y denote
the label’s ground truth. For event X , the number
of nodes in each community is NX .k/, where k D

1; 2; : : : ; K and
P

k NX .k/ D N . The corresponding
ground truth event, Y , has NY .kG/ numbers of
nodes per community, where kG D 1; 2; : : : ; KG andP

kG
NY .kG/ D N . Using

PX .x D k/ � NX .k/=N (26)
as an approximation, the entropy of the event X is given

714 Tsinghua Science and Technology, October 2021, 26(5): 706–723

as

H.X/ D

KX
kD1

�
NX .k/

N
log

�
NX .k/

N

�
(27)

with H.Y / having the same form. Additionally, if
NX;Y .k; kG/ is the number of concurrently labeled
nodes in group k for event X and group kG of event
Y , the joint entropy is given by

H.X; Y /D

KX
kD1

KGX
kGD1

�
NX;Y .k; kG/

N
log

�
NX;Y .k; kG/

N

�
(28)

This leads to the formulation of NMI:

NMI D
2I.X; Y /

H.X/CH.Y /
(29)

where the mutual information is taken to be
I.X; Y / D H.X/CH.Y / �H.X; Y / (30)

6.3.2 Real world data
In these experiments and for real world datasets in
general, measuring performance can be performed using
the value of the nodes’ within community talk[38].

6.4 Performance measure confidence intervals
under isomorphic topologies

In order to avoid bias in the evaluation of the
performances caused by various orderings of the nodes,
we test the algorithms on each dataset using different
isomorphic topologies of the original dataset. These
different topologies are also randomly given node labels,
which we refer to as randomly permuted datasets.
Essentially, each algorithm is run T times using T

random permuted datasets.
We evaluate an algorithm’s performance by estimating

the mean and confidence interval (ci) for the results
obtained from each dataset and make comparisons
using these estimated parameters. These parameters are
assumed to be normally distributed and are used as the
statistical results of the experiment.

7 Experimental Result

This section first examines the use of synthetic and real
data containing truth in experimentation, then untruthed
real world data. Experiments are conducted on six types
of truthed data and one real world dataset obtained from
the Twitter network.

7.1 Network data with truth

The following experiments consist of investigating
performance on small networks (less than 5000 nodes),
medium LFR networks (5000 nodes), large LFR

networks (1 million nodes), and the performance of
GTAC-NMF under varying ˛ values.

7.1.1 Small networks (less than 5000 nodes)
We use six small datasets with known label data: (1)
Karate club, (2) Girvan and Newman (GN) network,
(3) LFR easy, (4) LFR hard, (5) LFR harder, and (6)
Gaussian network. For each dataset, experiments are
conducted using the following GTAC algorithms:

(1) GTAC-UMF-UL (stopping criteria: unique labels);
(2) GTAC-UMF-TL (stopping criteria: tabu list);
(3) GTAC-NMF (˛ varying from 0.1 to 0.12 and

stopping criteria: tabu list);
(4) GTAC-M (using modularity criteria);
(5) HGTAC-UMF-TL (stopping criteria: tabu list);
(6) GTAC-NMF (˛ varying from 0.1 to 0.12 and

stopping criteria: tabu list); and
(7) HGTAC-M (Louvain).
Comparisons are performed against the GTAC

algorithms using M-M given in Ref. [4] and Ncut given
in Ref. [3]. Since Ncut requires the number of clusters
as an input, the ground truth value in each dataset is
provided for this particular method. Experimental results
for these methods are provided in Table 1, where the
results of 100 separate random initializations are given
in the form of a mean NMI (�NMI) performance with an
accompanying 95% confidence interval. Each column
contains bold entries which represent the three best
performance values including ties. The values range
from worst to best in the range Œ0; 1�.

Karate club. The karate club dataset given by
Ref. [39] is a small, real world dataset with 34 nodes
from two communities. This dataset is valuable to
use in experimentation due to it being both labeled
and real world, and is represented using a weighted,
symmetric matrix. Figure 2a shows the two communities
distinguished by shape. Group one is represented using
downward pointing triangles, and group two as circles.
A link between nodes represents a connection whose
width signifies the weight of the connection. The 2nd
column of Table 1 provides algorithm performances on
this dataset. It can be seen that many of the HGTAC and
some of the GTAC algorithms are not well suited for
this type of dataset. Among the methods, GTAC-UMF-
TL and HGTAC-UMF-TL rank the second and third
best. The worst performance was achieved by HGTAC-
NMF no matter the value of alpha chosen from the range.
Notice that Ncut has perfect performance, however
this is not surprising since it requires the number of
communities initially. M-M consistently clusters the

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 715

Table 1 Performace NMI (���NMI ˙̇̇ ci) on small datasets.
Algorithm Karate GN network LFR easy LFR hard LFR harder Gaussian
Ncut 1:00˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 0:98˙ 0:00 N/A
M-M 0:68˙ 0:00 1:00˙ 0:00 0:52˙ 0:00 0:28˙ 0:00 0:24˙ 0:00 N/A
GTAC-UMF-UL 0:70˙ 0:04 0:93˙ 0:02 1:00˙ 0:00 0:97˙ 0:00 0:91˙ 0:03 0:43˙ 0:00

GTAC-UMF-TL 0:73˙ 0:04 0:93˙ 0:02 1:00˙ 0:00 0:97˙ 0:00 0:90˙ 0:04 0:43˙ 0:00

GTAC-NMF-0.1 0:68˙ 0:02 0:95˙ 0:02 1:00˙ 0:00 0:99˙ 0:00 0:97˙ 0:00 0:43˙ 0:00

GTAC-NMF-0.11 0:68˙ 0:02 0:96˙ 0:02 1:00˙ 0:00 0:99˙ 0:00 0:97˙ 0:00 0:43˙ 0:00

GTAC-NMF-0.12 0:68˙ 0:02 0:96˙ 0:02 1:00˙ 0:00 0:99˙ 0:00 0:97˙ 0:00 0:43˙ 0:00

GTAC-M 0:60˙ 0:01 1:00˙ 0:00 1:00˙ 0:00 0:99˙ 0:00 0:97˙ 0:00 0:43˙ 0:00

HGTAC-UMF-TL 0:72˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 1:00˙ 0:00
HGTAC-NMF-0.1 0:23˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 0:99˙ 0:00 1:00˙ 0:00 1:00˙ 0:00
HGTAC-NMF-0.11 0:23˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 0:99˙ 0:00 0:99˙ 0:00 1:00˙ 0:00
HGTAC-NMF-0.12 0:23˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 1:00˙ 0:00 0:99˙ 0:00 1:00˙ 0:00
HGTAC-M 0:70˙ 0:01 1:00˙ 0:00 1:00˙ 0:00 0:96˙ 0:00 0:99˙ 0:00 0:37˙ 0:01

34 nodes into 4 groups in each of the 100 random
initializations.

Select community detection results are shown in
Fig. 2 to aid in visualizing the performance of the GTAC
algorithms on this dataset. Figure 2b represents the
community detection result offered by GTAC-NMF with
random initializations and ˛ D 0:1. Group two has
been split into three distinct subgroups, while group one
is split into two distinct subgroups. This subdivision
of groups one and two unsurprisingly and significantly
reduces the NMI. The subdivisions seem to stem from
the less dense connections between the groups (crosstalk)
than the within subgroup connections. In Fig. 2c, GTAC-
UMF-TL correctly clusters all of group one, but group
two is separated into two subgroups. This result is much
closer to the ground truth, which is supported by an
improvement to the NMI value compared to that of
Fig. 2b. In comparing Fig. 2b with Fig. 2c, we find
that GTAC-NMF has a tendency of splitting groups
into smaller divisions, while GTAC-UMF tends to do
this to a lesser degree. In some infrequent experiment
iterations, GTAC-UMF was seen to cluster all nodes into
one community which shows a sensitivity to node label
initialization. These phenomena are supported by earlier
discussion during the derivation of these two algorithms.
Care must be taken when selecting the parameter ˛, since
group subdivisions become more frequent by increasing
the value. The results of HGTAC-NMF are shown in Fig.
2d. By using the hierarchical variant to GTAC-NMF, we
expect to see an improvement to the subdivision problem,
however in Fig. 2b we see that adding this hierarchical
processing overcompensates by allowing group one to
absorb some of the group two nodes. While this over-
merging causes HGTAC-NMF to perform poorly on

this dataset, later we see that it helps provide better
performance than GTAC-NMF on other datasets. The
benefit of the hierarchical process is observed to be data
dependent.

GN network. This experiment aims to test the
performance of different GTAC algorithms on networks
with communities of equal size. The GN network
was proposed by Girvan and Newman[40] and contains
four communities consisting of 32 nodes each. We
use the LFR network to generate a GN network by
setting the number of nodes to 128, average and
maximum degrees to 16, minimum and maximum
cluster sizes to 32, �w D �t D 0:1, and ˇ D 1. The 3rd
column of Table 1 reveals good performance from most
of the algorithms on this dataset. HGTAC-UMF-TL,
HGTAC-NMF, Ncut, and M-M offer perfect clustering
performance with minimal variance, while GTAC-M
and HGTAC-M offer nearly perfect results with small
variances. The good overall performance on this dataset
is likely due to the symmetry and lesser amount of
crosstalk of the GN network. While GTAC-UMF and
GTAC-NMF do not perform particularly well, their
corresponding hierarchical versions have much better
performance due to the algorithms’ ability to avoid
the excessive subdivisions. The observed variance of
�NMI from GTAC-M and HGTAC-M signals that the
GTAC methods using modularity are more sensitive to
initialization than the GTAC methods using most friends
criteria.

LFR easy. The purpose of this experiment is to test
the performance of GTAC algorithms on LFR benchmark
networks, which offer configurations allowing for easy
community detection. We test the network with 1000
nodes, with an average degree equal to 15, maximum

716 Tsinghua Science and Technology, October 2021, 26(5): 706–723

(a) Ground truth

(b) Typical NMI = 0.6731: GTAC-NMF (˛ D 0:1)

(c) Typical NMI = 0.8255: GTAC-UMF-TL

(d) Typical NMI = 0.2260: HGTAC-NMF (˛ D 0:1)

Fig. 2 Karate data community detection results.

degree equal to 50, �t D 0:3, and �w D 0:2. Other
parameters are left as the defaults provided in Ref.
[40], including t1 D 2, t2 D 1, and ˇ D 1:5. The
experimental results are shown in the 4th column of
Table 1. We can see that all of the GTAC algorithms give
perfect or near-perfect clustering results. As was the case
with the GN network experiments, the non-hierarchical
GTAC algorithms appear to be slightly more sensitive to
the label initializations. In this experiment, we can see
with small network crosstalk that the GTAC algorithms’
variance from initialization is not as significant. In

comparing other methods we see that Ncut performs
nearly optimally with a negligible amount of variance,
while M-M performs rather poorly. M-M’s lacking
performance is caused by merging of the smaller groups,
as observed by the resulting 17 groups compared to
the actual 28 groups. This over-merging highlights the
resolution limit phenomenon of M-M on datasets with
many small groups.

LFR hard. This experiment shows the effects on
clustering from increasing the level of crosstalk within
an LFR network. The same configuration is used
from the previous experiment with the exceptions of
�w D �t D 0:5. In changing these parameters, we aim
to increase the difficulty of community detection by
increasing the amount of crosstalk among communities.
The experimental results are shown in the 5th column
of Table 1. As compared with the results of the last
experiment (the 4th column), there is a performance
decrease across the board for the GTAC algorithms with
the exception of HGTAC-UMF-TL and HGTAC-NMF
with ˛ D 0:12 having nearly perfect performance with
increased crosstalk. The Ncut method also reveals near
perfect results for this experiment, which is slightly
better than its result on LFR easy. As expected, the
performance of M-M decreases significantly due to
the exacerbation of the resolution limit phenomenon
caused by increased crosstalk. M-M provides a total of
6 communities when the ground truth should have been
31 communities.

LFR harder. This experiment presses the crosstalk
examination even farther. The settings are as follows:
degreeavg D 20, degreemax D 56, �t D �w D

0:5, clustersmin D 32, and clustersmax D 100. The
amount of crosstalk is increased by raising the average
and maximum degrees. The NMI performance for this
experiment is given in the 6th column of Table 1. The
results show the performance of all the non-hierarchical
GTAC algorithms decreasing yet again, some of
the HGTAC algorithms retain their performance
(such as HGTAC-UMF-TL and HGTAC-NMF with
˛ D 0:11; 0:13, 0:15), and some HGTAC methods with
slightly improved performance (such as HGTAC-NMF
with ˛ D 0:1, 0:14 and HGTAC-M). The performance
decreases for HGTAC-NMF with ˛ D 0:12 with this
dataset, while HGTAC-UMF-TL maintains perfect
performance. The performance of Ncut decreases
slightly as compared to an average NMI of 1 on previous
experiments. The performance of M-M decreases,
yielding 6 groups for a ground truth of 17.

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 717

Gaussian network. A similar method as that in Ref.
[35] is used to generate networks of clusters of two
dimensional Gaussian data, with the exception of using
k Nearest-Neighbor (kNN) to aid in creating a sparse
network. Real world network data are often subject
to sparsity conditions, and thus the Gaussian network
is modeled to reflect this property. This network is
generated by first creating four groups of nodes from
two dimensional Gaussian data with mean values (�0.3,
0), (0, 0), (0.3, 0), and (0.6, 0) and variances of 0.01
in both dimensions. Next, kNN is applied to obtain a
neighborhood for each point in this two dimensional
space (we use k D 10). It is important to note that the
sparse network obtained from kNN will most often create
an asymmetric network. The kernel

�.p1; p2/ D

(
e� 1

2 dist.p1;p2/2
; if p1 is a kNN of p2I

0; otherwise
(31)

is used to generate a similarity matrix with dist.p1; p2/

being a distance measure between p1 and p2. Euclidean
distance is used in our experiments. The rows of
the matrix are randomly permuted prior to supplying
the matrix as input to the various GTAC algorithms.
Performance results are shown in the 7th column of
Table 1. We see that HGTAC-UMF-TL and HGTAC-
NMF with varying ˛ give ideal results, but all the
non-hierarchical GTAC algorithms perform poorly, and
HGTAC-M performs the worst. GTAC-UMF and GTAC-
NMF tend to over subdivide groups, which is mitigated
with the addition of hierarchical processing. GTAC-M
and HGTAC-M perform poorly because they are not
suitable for asymmetric networks. Furthermore, Ncut

and M-M are not feasible to use on this dataset because
the similarity matrix is asymmetric.

Overall. From the experiments on the above seven
types of networks with less than 5000 nodes, we find
that HGTAC-UMF gives relatively satisfying results.
HGTAC-NMF with varying ˛ also performs well
provided the network is not too small (e.g., Karate
data). GTAC-UMF and GTAC-NMF with varying ˛

have better performance on small datasets than their
hierarchical versions but worse performance on larger
datasets. GTAC-M and HGTAC-M perform well on
symmetric networks, but their performance decreases
significantly for asymmetric networks. For networks
with an asymmetric similarity matrix, Ncut and M-M
are not capable of being implemented. Ncut performs
well with symmetric similarity matrices but requires
the number of groups be provided, and there are no
performance guarantees when this parameter is not
chosen correctly. M-M can suffer drastically from the
resolution limit on networks with many small groups.

Time complexity on small networks. To help in
comparing the various algorithms, the NMI of their
run time is listed in Table 2. Ncut and M-M results
are not listed for the Gaussian network because of the
asymmetry as mentioned previously.

Ncut consumes the least amount of time on the
first five datasets due to the fast implementation of
eigen-decomposition on symmetric matrices and k-
means clustering when implemented using MATLAB.
We notice that varying the complexity of the LFR
network does not necessarily yield an increase in the time
complexity for Ncut, however this is not the case for the

Table 2 Time complexity NMI (���NMI ˙̇̇ ci) on small datasets.
(s)

Algorithm Karate GN network LFR easy LFR hard LFR harder Gaussian
Ncut 0:0066˙ 0:004 60 0:0097˙ 0:0046 0:089˙ 0:015 0:11˙ 0:011 0:063˙ 0:005 N/A
M-M 0:0390˙ 0:000 29 0:9200˙ 0:0180 156:35˙ 2:77 156:82˙ 0:52 193:86˙ 0:49 N/A
GTAC-UMF-UL 0:0430˙ 0:003 60 0:2100˙ 0:0065 1:74˙ 0:056 2:48˙ 0:072 3:17˙ 0:097 10:31˙ 0:26

GTAC-UMF-TL 0:0410˙ 0:002 80 0:2700˙ 0:0051 2:33˙ 0:089 4:39˙ 0:17 5:08˙ 0:21 10:43˙ 0:59

GTAC-NMF-0.1 0:0460˙ 0:003 90 0:3200˙ 0:0560 3:04˙ 0:80 4:98˙ 0:75 6:89˙ 2:02 10:14˙ 0:29

GTAC-NMF-0.11 0:0450˙ 0:002 50 0:3200˙ 0:0560 3:03˙ 0:79 4:95˙ 0:73 6:87˙ 1:99 10:01˙ 0:26

GTAC-NMF-0.12 0:0450˙ 0:002 60 0:3200˙ 0:0510 3:03˙ 0:80 4:97˙ 0:74 6:97˙ 2:10 9:83˙ 0:23
GTAC-NMF-0.15 0:0440˙ 0:001 80 0:3100˙ 0:0460 3:13˙ 0:89 5:00˙ 0:78 7:20˙ 2:33 9:96˙ 0:27

GTAC-M 0:0370˙ 0:001 30 0:3000˙ 0:0028 2:67˙ 0:084 4:95˙ 0:16 6:82˙ 0:29 8:30˙ 0:22
HGTAC-UMF-TL 0:0550˙ 0:003 20 0:3300˙ 0:0073 4:48˙ 0:046 7:53˙ 0:14 10:05˙ 0:19 11:05˙ 0:15

HGTAC-NMF-0.1 0:0610˙ 0:008 00 0:3400˙ 0:0056 3:03˙ 0:055 5:31˙ 0:083 7:14˙ 2:02 11:52˙ 0:17

HGTAC-NMF-0.11 0:0560˙ 0:000 48 0:3400˙ 0:0055 3:60˙ 0:057 4:34˙ 0:068 7:74˙ 1:99 11:17˙ 0:18

HGTAC-NMF-0.12 0:0560˙ 0:000 50 0:3300˙ 0:0055 3:69˙ 0:053 4:39˙ 0:076 8:68˙ 2:10 11:32˙ 0:16

HGTAC-M 0:0460˙ 0:001 60 0:3000˙ 0:0072 2:93˙ 0:088 5:19˙ 0:16 7:31˙ 0:29 10:67˙ 0:21

718 Tsinghua Science and Technology, October 2021, 26(5): 706–723

other algorithms. For the Karate, GN, and LFR datasets,
we observe an increased time complexity as the network
size increases, which is caused by the dependency of
eigen-decomposition on the size of the similarity matrix.

M-M consumes much more time than Ncut. Its run
time on the GN network is the largest of the algorithms
used. For an LFR easy network size of 1000, the time
consumed increases to 156.35 s which is almost one
hundred times that of GTAC-UMF-UL. The results have
a similar trend for the LFR hard and harder networks.
The run time of M-M appears to grow as an exponential
function of the size of the network because of the
recursive eigen-decomposition computation.

To compare the time complexity differences between
the unique label and tabu list stopping criteria,
experiments were conducted using each with GTAC-
UMF. Except when using the Karate dataset, we found
that UL offers faster run time than TL, which is rooted
in the fact that UL suffers from the early stopping
problem. Examining all the tabulated experiment run
time data reveals the time complexity of GTAC-UMF-TL
is occasionally double that of GTAC-UMF-UL, however
for real world applications it is recommended to use TL
because of the early stopping problem of UL.

For GTAC-NMF, the run time does not differ
significantly when varying ˛ values on the same datasets.
The time complexity increases as a function of the
number of nodes and the configuration difficulty of the
networks. As compared with GTAC-UMF-TL (a special
case of GTAC-NMF when ˛ D 0), GTAC-NMF with
˛ varying from 0.1 to 0.15 consumes more time on the
first five datasets due to the computation of the group
sizes needed by GTAC-NMF. On the Gaussian dataset,
more time is needed by GTAC-UMF-TL than GTAC-
NMF due to the data normalization step which improves
the convergence of the nodes to their community results.
Even though GTAC-NMF is slightly more complicated
than GTAC-UMF by design, GTAC-NMF can still save
time when a dataset requires or has been normalized.

GTAC-M also yields a run time that increases with
the complexity of the network. For the GN network
and the three LFR networks, GTAC-M consumes more
time than GTAC-UMF-TL, but less than GTAC-NMF.
GTAC-M is faster than GTAC-NMF on the Karate and
Gaussian networks because GTAC-M stops earlier with
many smaller groups, i.e., GTAC-M provides 8 groups
on the Karate data while the ground truth is 2, and 181
groups on the 4 groups Gaussian network.

On the Karate dataset the time consumed by HGTAC-

NMF with varying ˛ (including HGTAC-UMF which is
the special case when ˛ D 0), shows a slight dependence
on ˛. This difference shows that tuning ˛ will not only
affect the performance, but also result in varying time
complexities.

HGTAC-M runs longer than GTAC-M because of the
hierarchical process, however, HGTAC-M spends less
time than HGTAC-NMF algorithms on the Karate, GN,
LFR easy, and Gaussian network. HGTAC-M consumes
more or less time than HGTAC-NMF depending on
the value of ˛’s on the LFR hard and harder networks,
signifying that tuning the value of ˛ in HGTAC-NMF
will also result in varying time complexities.

7.1.2 Medium LFR network (5000 nodes)
This experiment tests the performance of GTAC-UMF-
UL, GTAC-UMF-TL, and GTAC-M on medium sized
LFR networks with various values of the mixing
parameter �w . The number of nodes is chosen to be
5000, average degree to be 20, maximum degree to be
50, and �w D �t varying from 0 to 0.8 in increments
of 0.05. For LFR networks with �w D �t > 0:8,
the crosstalk becomes significantly large enough to
overshadow the underlying community structure, and for
this reason �w D �t > 0:8 is neglected. Figure 3 shows
the performance NMI result given by GTAC-UMF-TL,
GTAC-UMF-UL, and GTAC-M based on 100 random
initializations of the LFR network.

With �w < 0:55, all three algorithms give near perfect
performance, but with �w > 0:55 the performance drops
sharply. With �w > 0:7, the performances of GTAC-
UMF-TL and GTAC-UMF have both reached zero,
however GTAC-M performs much better in this range.
The reason for GTAC-M’s success for larger �w is that
GTAC-UMF tends to merge groups in the presence of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mixing parameter

N
M

I
va

lu
e

GTAC−UMF−TL

GTAC−UMF−UL

GTAC−M

Fig. 3 Medium LFR network (5000 nodes) performance.

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 719

larger amounts of crosstalk, while GTAC-M is more
robust to this noise from the incorporation of both the
within talk and crosstalk into its optimizing function.

7.1.3 Large LFR network (1 million nodes)
The purpose of this experiment is to compare the
performance of GTAC-UMF against the Louvain method
when utilized on big networks with ground truth
information.

In order to generate this large of an LFR network,
Amazon EC2 of type M1 extra large instance[41] was
used in order to create a one million-node network using
code from Ref. [40]. A high memory cluster eight extra
large instance[41] provided by Amazon EC2 was also
tested to generate larger networks with greater numbers
of nodes, however the LFR code was only capable of
generating a maximum of approximately one million
nodes. The parameter values used to configure the LFR
network were nodes D 106, degreeavg D 20, yielding
approximately 20 million links. Other parameters
were set to model[32]: degreemax D 2:5 � degreeavg,
clustermax D 5 � clustermin, and the exponents for the
degree sequence and community size distribution were
�2 and �1, respectively. These settings were used to
generate 17 networks with the same configuration with
the exception of varying the mixing parameter � from 0
to 0.8 with a step size of 0.05.

We utilized the MapReduce framework on Amazon
services to speed up computation. The resulting output
provided a matrix of size 2 � 105 whose first column
consisted of the node ID numbers and the second the
node labels. A matrix of this size was not able to
be processed efficiently in MATLAB, therefore the
method of comparison was changed from using a time
complexity NMI to using a storage requirement NMI.
Matrix manipulation was not used to determine the joint
label set for use in calculating the NMI, instead the data
was processed in series element-wise.

The results provided by the Louvain method from
Ref. [42] was given in *.tree file format, in which
the levels of the tree structure detected by each loop
of Louvain was separated by a row of zeros. For each
row of the tree the node IDs were renamed to represent
labels corresponding to the total number of clusters for
that level, i.e., the maximal valued node ID of the second
level of the tree was not correspondent to the number of
nodes belonging to the first level, but rather the number
of groups in the first level. In order to calculate the
NMI, the node IDs provided in the last level needed to

be matched with the node labels from the first level. The
number of communities detected by the Louvain method
was 12 630 for �w D 0:4.

Figure 4 shows the storage NMI results of GTAC-
UMF and Louvain on the Large LFR Network. The
sharp decrease up to � D 0:05 highlights the sensitivity
of Louvain to crosstalk when dealing with larger
networks. As the levels of crosstalk are increased
by varying � from 0.1 to 0.6, the NMI values of
Louvain continues to decrease nearly linearly. With
� > 0:7, the NMI sharply drops again. On the contrary,
GTAC-UMF maintains a more stable near perfect result
with 0 6 � 6 0:6. The Louvain method’s performance
is significantly less than that of GTAC-UMF due to
the hierarchical processing, but dramatically increases
nearing that of GTAC-UMF when only using the
first level of community detection offered prior to
performing the hierarchical process (which is essentially
the GTAC-M algorithm). This helps to identify the
hierarchical processing involved in the Louvain method
as a drawback. Since maximizing modularity is a global
metric, the Louvain method uses a hierarchical process
to approach a solution. Understanding that the Louvain
method is captured by the GTAC theoretical framework
helps to show that this approach can maximize
modularity locally, ultimately avoiding local optimum
solutions. Unfortunately, increasing modularity during
the hierarchical process toward a global optimal may
not necessarily offer the best solution since the global
optimum may not be achieved by the ground truth.
GTAC-UMF does not utilize a hierarchical process,
which allows for appropriate community detection
results on larger datasets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mixing parameter

N
M

I v
al

ue

Louvain
GTAC−UMF−TL

Fig. 4 Large LFR network (1 million nodes) performance
with mixing parameter in range (0 to 0.8): GTAC-UMF vs.
1st level Louvain.

720 Tsinghua Science and Technology, October 2021, 26(5): 706–723

The results of GTAC-UMF in the large LFR network
experiment outperforms those of the medium LFR
network experiment for the same � value, as can be seen
by comparing Figs. 3 and 4. This is due to the average
crosstalk between groups decreasing as the number of
nodes and clusters increases, making the possibility of
the crosstalk being more dominant than the group within
talk less likely.

Experimentation using GTAC-M reveals performance
similar to that of GTAC-UMF, with negligible drop of
NMI from 1 to 0.999 when � changes from 0 to 0.5.
Comparing GTAC-M and GTAC-UMF, Fig. 5 shows
that GTAC-UMF slightly outperforms GTAC-M when
˛ < 0:55. GTAC-UMF performs better than GTAC-M
and HGTAC-M on larger LFR networks.

Investigations on the effects of ˛ on GTAC-NMF
reveal that ˛ D 0:12 works particularly well, as shown
in Fig. 6. This choice of the parameter offers results for
GTAC-NMF which are nearly the same as GTAC-UMF.

0 0.1 0.2 0.4 0.5 0.6

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

0.3
Mixing parameter

N
M

I v
al

ue

0.9960

GTAC−UMF−TL
GTAC−M

Fig. 5 Large LFR network (1 million nodes) performance
with mixing parameter in range (0 to 0.6): GTAC-UMF vs.
GTAC-M.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mixing parameter

N
M

I
va

lu
e

Louvain

GTAC−UMF−TL

GTAC−NMF−TL (=0.12)α

Fig. 6 Large LFR network performance: GTAC-NMF
using ˛̨̨ DDD0.12.

7.1.4 Performance of GTAC-NMF under varying ˛̨̨

values
As discussed in Section 4.2.2, GTAC-UMF tends to
merge groups together while GTAC-NMF with large ˛

(e.g., ˛ > 1) provides many small groups. It is trivial to
view GTAC-UMF as a special case of GTAC-NMF when
˛ D 0. In finding the best clustering results, we consider
leveraging both algorithms by finding a parameter value
for GTAC-NMF in the range 0 6 ˛ 6 1. The following
details the experiments conducted over different values
of ˛ on the medium LFR network.

Transitioning away from GTAC-UMF (when ˛ D 0),
there is an improved performance with parameters ˛ D

0:1 and ˛ D 0:15, as visualized in Fig. 7. Although
the NMI from GTAC-NMF is still obviously below
GTAC-M for 0:6 6 �w 6 0:7, GTAC-M becomes
less appealing when �w > 0:7. While there is better
performance for ˛ D 0:15 than with ˛ D 0:1 at larger
values of �w , it should be noted that there is actually a

(a) ˛ D 0:1

(b) ˛ D 0:15

Fig. 7 Performance of GTAC-NMF under varying ˛̨̨ values
on medium LFR network.

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 721

small gain in performance for smaller values of �w for
˛ D 0:1. These phenomena demonstrate the capability
of varying the performance of GTAC-NMF algorithms
by means of tuning ˛. On using real world data, ˛ can be
tuned using training sets prior to the use of GTAC-NMF
on subsequent datasets.

While other ranges of ˛ were tested in these
experiments, good performance is only achieved by most
of the datasets when ˛ is near 0.1. For ˛ > 0:2, the
phenomenon of community over-division arises forming
many extraneous subgroups.

Time complexity on large LFR network. For a one
million-node dataset with � D 0:4 on the LFR network,
the time consumed was 46 min when implemented on
five M1.large instances consisting of two vCPUs and
four ECUs with 7.5 GB memories on EC2[41].

7.2 Real world data

This experiment aims to evaluate the performance of
different GTAC algorithms on a large, real world dataset
from the social network Twitter.

The Twitter network dataset is an unweighted and
directed graph consisting of 41.7 million nodes and 1.47
billion links. The data file “twitter rv:net” of size 25 GB
was obtained from Ref. [36]. This dataset is formatted
such that the first column contains the user and the
second column the follower. The data were preprocessed
to remove 1.5 million isolated nodes (users) who neither
followed nor was followed by any other node, leaving
40.1 million nodes remaining.

After experimentation, Map()/Reduce() was used for
performance analysis on EC2. As is the case with
most real world datasets, the Twitter network data do
not provide ground truth information for clustering,
so instead, the within talk percentage was used as a
benchmark. The within talk percentage was determined
by the ratio of the within talk to the total talk. The total
talk was the row count of the dataset (the number of
connections from non-isolated nodes), which was 1.47
billion. Counting the number of within talk is performed
by comparing the labels of the algorithm results to the
dataset node IDs and incrementing the within talk count
each time the node IDs belong to the same community
label. The total within talk was calculated to be 687
million from the experiment, resulting in a within talk
percentage of 46.8%. This reveals that GTAC-UMF can
attribute almost half of the links towards being within
the N groups and the remainder towards the crosstalk
between the N � .N � 1/ group pairs. The community
detection result given by GTAC-UMF reveals a suitable

structure for the communities of the Twitter network.
These results show the capability of the GTAC-UMF
algorithm as applied to large real world networks with
millions of nodes and billions of links.

The Louvain method was attempted on this dataset,
however due to memory constraints the code used from
Ref. [42] was not able to processed.

Time complexity on twitter network. This
experiment was performed using 10 M1.xlarge instances
consisting of 4 vCPUs and 8 ECUs with 15 GB memory
on EC2[41]. The run time for this experiment was 3
hours and 10 minutes.

8 Conclusion

Using a game theoretic approach, a novel theoretical
framework was developed to perform community
detection on various sized datasets both with and without
ground truth information. A family of algorithms, game
theoretical approach for clustering, was developed with
variations according to the payoff functions of particular
games. These algorithms focus on providing a scalable
means of performing non-overlapping clustering when
dealing with potentially unweighted and asymmetric
similarity matrices for datasets. The derived GTAC-
UMF and GTAC-NMF algorithms are shown to be near-
linear time complexity and scalable to larger datasets
in our experimentation. For the first time this work
provides meaningful performance evaluations on large
datasets (consisting of one million nodes) with ground
truth information, while other works have focused
more on unlabeled real world data. GTAC provides a
framework which includes some of current algorithms as
special cases, and also provides various cost functions as
examples to show how generalized scheme of GTAC to
fit into application scenarios. By tuning the parameter ˛

in GTAC-NMF, varying levels of clustering performance
can be achieved to satisfy various application needs.
Experimental results show the success of these proposed
schemes and their potential advantages in the area of
big data analytics as compared to other well known
algorithms.

Acknowledgment

The authors would like to thank Dong Wang for his aid
in conducting the experiments on the cloud computing
platform.

References

[1] S. Fortunato, Community detection in graphs, Phys. Rep.,

722 Tsinghua Science and Technology, October 2021, 26(5): 706–723

vol. 486, nos. 3–5, pp. 75–174, 2010.
[2] U. Von Luxburg, A tutorial on spectral clustering, Statist.

Comput., vol. 17, no. 4, pp. 395–416, 2007.
[3] J. B. Shi and J. Malik, Normalized cuts and image

segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol.
22, no. 8, pp. 888–905, 2000.

[4] M. E. J. Newman, Modularity and community structure in
networks, Proc. Natl. Acad. Sci. USA, vol. 103, no. 23, pp.
8577–8582, 2006.

[5] S. Fortunato and M. Barthélemy, Resolution limit in
community detection, Proc. Natl. Acad. Sci. USA, vol. 104,
no. 1, pp. 36–41, 2007.

[6] A. Lancichinetti and S. Fortunato, Limits of modularity
maximization in community detection, Phys. Rev.E, vol.
84, no. 6, p. 066122, 2011.

[7] M. Rosvall and C. T. Bergstrom, Multilevel compression of
random walks on networks reveals hierarchical organization
in large integrated systems, PLoS One, vol. 6, no. 4, p.
e18209, 2011.

[8] M. Rosvall and C. T. Bergstrom, Maps of random walks on
complex networks reveal community structure, Proc. Natl.
Acad. Sci. USA, vol. 105, no. 4, pp. 1118–1123, 2008.

[9] U. N. Raghavan, R. Albert, and S. Kumara, Near linear
time algorithm to detect community structures in large-scale
networks, Phys. Rev.E, vol. 76, no. 3, p. 036106, 2007.

[10] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E.
Lefebvre, Fast unfolding of communities in large networks,
J . Statist. Mech.: Theory Exp., vol. 2008, no. 10, p. P10008,
2008.

[11] A. Browet, P. Absil, and P. Van Dooren, Fast community
detection using local neighbourhood search, arXiv preprint
arXiv: 1308.6276, 2013.

[12] Z. Bu, H. J. Li, C. C. Zhang, J. Cao, A. H. Li, and Y. Shi,
Graph K-means based on leader identification, dynamic
game, and opinion dynamics, IEEE Trans. Knowledge Data
Eng., vol. 32, no. 7, pp. 1348–1361, 2019.

[13] J. Cao, Z. Bu, Y. Y. Wang, H. Yang, J. C. Jiang, and H. J.
Li, Detecting prosumer-community groups in smart grids
from the multiagent perspective, IEEE Trans. Syst., Man,
Cybernet.: Syst., vol. 49, no. 8, pp. 1652–1664, 2019.

[14] H. J. Li, Z. Bu, Z. Wang, and J. Cao, Dynamical clustering
in electronic commerce systems via optimization and
leadership expansion, IEEE Trans. Ind. Informatics, vol.
16, no. 8, pp. 5327–5334, 2019.

[15] H. J. Li, Z. Bu, Z. Wang, J. Cao, and Y. Shi, Enhance the
performance of network computation by a tunable weighting
strategy, IEEE Trans. Emerg. Topics Comput. Intell., vol. 2,
no. 3, pp. 214–223, 2018.

[16] H. J. Li, Q. Wang, S. F. Liu, and J. Hu, Exploring the
trust management mechanism in self-organizing complex
network based on game theory, Phys.A: Statist. Mech. Appl.,
vol. 524, p. 123514, 2020.

[17] P. J. McSweeney, K. Mehrotra, and J. C. Oh, A game
theoretic framework for community detection, in Proc. 2012
IEEE/ACM Int. Conf. on Advances in Social Networks
Analysis and Mining (ASONAM), Istanbul, Turkey, 2012,
pp. 227–234.

[18] R. Narayanam and Y. Narahari, A game theory inspired,

decentralized, local information based algorithm for
community detection in social graphs, in Proc. 21st Int.
Conf. on Pattern Recognition (ICPR), Tsukuba, Japan, 2012,
pp. 1072–1075.

[19] R. I. Lung, A. Gog, and C. Chira, A game theoretic
approach to community detection in social networks, in
Nature Inspired Cooperative Strategies for Optimization
(NICSO 2011), D. A. Pelta, N. Krasnogor, D. Dumitrescu,
C. Chira, and R. Lung, eds. Berlin, Germany: Springer,
2011, pp. 121–131.

[20] W. Chen, Z. M. Liu, X. R. Sun, and Y. J. Wang, A game-
theoretic framework to identify overlapping communities in
social networks, Data Min. Knowl. Disc., vol. 21, no. 2, pp.
224–240, 2010.

[21] W. Chen, Z. M. Liu, X. R. Sun, and Y. J. Wang, Community
detection in social networks through community formation
games, in Proc. Twenty-Second Int. Joint Conf. on Artificial
Intelligence-Volume Volume Three, Barcelona, Spain, 2011,
pp. 2576–2581.

[22] Y. Narahari and R. Narayanam, Game theoretic models for
social network analysis, in Proc. 20th Int. Conf. on World
Wide Web, Hyderabad, India, 2011, pp. 291–292.

[23] M. J. Osborne, An Introduction to Game Theory. New York,
NY, USA: Oxford University Press, 2004.

[24] J. Von Neumann and O. Morgenstern, Theory of Games and
Economic Behavior (Commemorative Edition). Princeton,
NJ, USA: Princeton University Press, 2007.

[25] J. Nash, Equilibrium points in n-person games, Proc. Natl.
Acad. Sci. USA, vol. 36, no. 1, pp. 48–49, 1950.

[26] J. Nash, Non-cooperative games, Ann. Math., vol. 54, no. 2,
pp. 286–295, 1951.

[27] R. D. McKelvey and A. McLennan, Computation of
equilibria in finite games, Handb. Comput. Econ., vol. 1, pp.
87–142, 1996.

[28] M. E. J. Newman, Analysis of weighted networks, Phys.
Rev.E, vol. 70, no. 5, p. 056131, 2004.

[29] K. Altisen, S. Devismes, A. Gerbaud, and P. Lafourcade,
Analysis of random walks using tabu lists, in Proc. 19th Int.
Colloquium on Structural Information and Communication
Complexity, Reykjavik, Iceland, 2012, pp. 254–266.

[30] G. Karypis, E. H. Han, and V. Kumar, Chameleon:
Hierarchical clustering using dynamic modeling, Computer,
vol. 32, no. 8, pp. 68–75, 1999.

[31] A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark
graphs for testing community detection algorithms, Phys.
Rev.E, vol. 78, no. 4, p. 046110, 2008.

[32] A. Lancichinetti and S. Fortunato, Community detection
algorithms: A comparative analysis, Phys. Rev.E, vol. 80,
no. 5, p. 056117, 2009.

[33] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S.
Fortunato, Finding statistically significant communities in
networks, PLoS One, vol. 6, no. 4, p. e18961, 2011.

[34] S. Gregory, Finding overlapping communities in networks
by label propagation, New J. Phys., vol. 12, no. 10, p.
103018, 2010.

[35] B. H. Sun and D. P. Wu, Self-organizing-queue based
clustering, IEEE Signal Process. Lett., vol. 19, no. 12, pp.
902–905, 2012.

Baohua Sun et al.: Game Theoretical Approach for Non-Overlapping Community Detection 723

[36] H. Kwak, C. Lee, H. Park, and S. Moon, What is twitter, a
social network or a news media? in Proc. 19th Int. Conf. on
World Wide Web, Raleigh, NC, USA, 2010, pp. 591–600.

[37] L. Danon, A. J. Duch, and A. Arenas, Comparing
community structure identification, J . Statist. Mech.:
Theory Exp., vol. 2005, no. 9, pp. 1–10, 2005.

[38] J. J. Whang, X. Sui, and I. S. Dhillon, Scalable and
memory-efficient clustering of large-scale social networks,
in Proc. IEEE 12th Int. Conf. on Data Mining (ICDM),
Brussels, Belgium, 2012, pp. 705–714.

[39] W. W. Zachary, An information flow model for conflict and
fission in small groups, J . Anthropol. Res., vol. 33, no. 4,
pp. 452–473, 1977.

[40] A. Lancichinetti, LFR benchmark code, https://sites.
google.com/site/andrealancichinetti/files, 2010.

[41] Amazon EC2 instance types, http://aws.amazon.com/
en/ec2/instance-types/, 2013.

[42] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre,
Louvain method: Finding communities in large networks,
https://sites.google.com/site/findcommunities/, 2008.

Baohua Sun received the BE degree
from Beijing University of Posts and
Telecommunications, Beijing, China
in 2006, the ME degree in electrical
engineering from Tsinghua University,
Beijing, China in 2010, and the PhD degree
in electrical and computer engineering
from University of Florida, Gainesville, US

in 2013. He is now the director of AI Research at Gyrfalcon
Technology, Milpitas, US. His current research interests include
Natural Language Processing (NLP), two-dimensional word
embedding, and applying deep learning to Tabular data Machine
Learning (TML).

Richard Al-Bayaty is pursuing PhD
degree at Department of Electrical and
Computer Engineering, University of
Florida. His current research interest
includes community detection and machine
learning.

Dapeng Wu received the PhD degree in
electrical and computer engineering from
Carnegie Mellon University, Pittsburgh,
PA, USA in 2003. He is a professor
at the Department of Electrical and
Computer Engineering, University of
Florida, Gainesville, FL, USA. His research
interests are in the areas of networking,

communications, signal processing, computer vision, machine
learning, smart grid, and information and network security. He
received University of Florida Term Professorship Award in
2017, University of Florida Research Foundation Professorship
Award in 2009, AFOSR Young Investigator Program (YIP) Award
in 2009, ONR Young Investigator Program (YIP) Award in
2008, NSF CAREER Award in 2007, the IEEE Circuits and
Systems for Video Technology (CSVT) Transactions Best Paper

Award for Year 2001, and the Best Paper Awards in IEEE
GLOBECOM 2011 and International Conference on Quality of
Service in Heterogeneous Wired/Wireless Networks (QShine)
2006. Currently, he serves as the editor in chief of IEEE
Transactions on Network Science and Engineering. He was
the founding editor-in-chief of Advances in Multimedia between
2006 and 2008, and an associate editor for IEEE Transactions on
Communications, IEEE Transactions on Signal and Information
Processing over Networks, IEEE Signal Processing Magazine,
IEEE Transactions on Circuits and Systems for Video Technology,
IEEE Transactions on Wireless Communications, and IEEE
Transactions on Vehicular Technology. He is also a guest-editor
for IEEE Journal on Selected Areas in Communications (J-SAC),
Special Issue on Cross-layer Optimized Wireless Multimedia
Communications, and Special Issue on Airborne Communication
Networks. He has served as Technical Program Committee (TPC)
chair for IEEE INFOCOM 2012, and TPC chair for IEEE
International Conference on Communications (ICC 2008), Signal
Processing for Communications Symposium, and as a member
of executive committee and/or technical program committee
of over 100 conferences. He was elected as a distinguished
lecturer by IEEE Vehicular Technology Society in 2016. He
has served as the chair for the Award Committee, and the chair
of Mobile and wireless multimedia Interest Group (MobIG),
Technical Committee on Multimedia Communications, and
IEEE Communications Society. He was an elected member of
Multimedia Signal Processing Technical Committee, IEEE Signal
Processing Society from 2009 to 2012. He is the fellow of IEEE.

Qiuyuan Huang received the PhD degree
from University of Florida in 2017. She
is a senior researcher in the deep learning
group at Microsoft Research, Redmond,
WA, USA. Her current research interests
are focused on the deep learning and
natural language processing areas; topics
include neural-symbolic for reasoning, self-

supervised learning, and multi-modal intelligence.

