
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 08/15 pp674–691
DOI: 10 .26599 /TST.2021 .9010012
Volume 26, Number 5, October 2021


C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Deep Reinforcement Learning Based Mobile Robot Navigation:
A Review

Kai Zhu and Tao Zhang�

Abstract: Navigation is a fundamental problem of mobile robots, for which Deep Reinforcement Learning (DRL)

has received significant attention because of its strong representation and experience learning abilities. There is a

growing trend of applying DRL to mobile robot navigation. In this paper, we review DRL methods and DRL-based

navigation frameworks. Then we systematically compare and analyze the relationship and differences between

four typical application scenarios: local obstacle avoidance, indoor navigation, multi-robot navigation, and social

navigation. Next, we describe the development of DRL-based navigation. Last, we discuss the challenges and some

possible solutions regarding DRL-based navigation.
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1 Introduction

The navigation capability is a fundamental problem of
mobile robots, which include unmanned vehicles, aerial
vehicles, and ships. The general aim of navigation is to
identify an optimal or suboptimal path from a starting
point to a target point in a Two-Dimensional (2D) or
Three-Dimensional (3D) environment while avoiding
obstacles. Delivery robots, warehouse automated guided
vehicles, and indoor service robots require robust robot
navigation systems in their dynamic environments.

In the past two decades, researchers from all over
the world have been focused on solving the navigation
problem. One popular approach is combining a series of
different algorithms. As shown in Fig. 1, the traditional
navigation framework uses Simultaneous Localization
and Mapping (SLAM) to construct a map of the
unknown environment, then uses a localization algorithm
to determine the current position of the robot and moves
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Fig. 1 Traditional robot navigation framework.

it to its destination using a path planning module[1].
SLAM algorithms can be divided into visual and

laser SLAMs. The visual SLAM algorithm extracts
artificial image features, estimates the pose of the
robot and camera based on multi-view geometry theory,
and builds an obstacle map. Classical visual SLAM
methods, such as LSD-SLAM[2] and ORB-SLAM[3],
face two main challenges: (1) designing effective image
features to express image information and (2) possible
failure of the algorithm in cases of object movement,
camera parameter change, illumination change, and
single environments that lack texture. The laser SLAM
algorithm directly constructs an obstacle map of the
environment based on the dense laser ranging results of
algorithms such as GMapping[4] and Hector SLAM[5].
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The challenges of laser SLAM include (1) the time-
consuming establishment and update of the obstacle map
and (2) the need for a dense laser sensor because the
algorithm performance strongly depends on the sensor
accuracy.

Path planning is another key module in the traditional
navigation framework. Based on different amounts of
environmental information obtained, this module can be
divided into global and local path planning. Global path
planning involves selecting a complete path based on a
known environmental map. Commonly used methods
include the A-star, ant colony optimization, and rapid-
exploration random tree[6], which rely on known static
maps and are therefore difficult to use in dynamic
environments. Local path planning methods, such as the
Artificial Potential Field (APF) and dynamic window
approach[7], are used to deal with dynamic changes
in the environment and replanning local paths. The
bottlenecks encountered by traditional path planning
algorithms include (1) the contradiction of grid-based
map representation between its accuracy and memory
requirements and (2) the intensive calculations required
for real-time replanning of the navigation path in a
dynamic environment, which limits its reactivity to some
extent.

As mentioned above, each aspect of the traditional
navigation framework represents a challenging research
topic, and their integration often leads to large
computational errors. These calculation errors gradually
accumulate along the pipeline from mapping, to
positioning, to the path planning algorithm, which leads
to poor performance of all these algorithms in practical
applications. The traditional navigation framework relies
on a high-precision global map that is very sensitive to
sensor noise, resulting in limitations in the ability to
manage an unknown or dynamic environment.

With the powerful representation capabilities of deep-
learning technology, new ideas have been introduced
for using reinforcement learning frameworks that can
directly learn navigation strategies from raw sensor
inputs. In 2013, Mnih et al.[8] were the first to propose
the concept of Deep Reinforcement Learning (DRL).
They proposed the Deep Q Network (DQN), which can
learn to play Atari 2600 games at a level beyond that of
human experts based only on image input. Since then,
researchers have proposed numerous methods that use
DRL algorithms for handling autonomous navigation
tasks. These methods describe navigation as a Markov
Decision Process (MDP), with sensor observations as

the state and a goal of maximizing the expected return
of the action. By interacting with the environment, the
DRL method finds the optimal policy of guiding the
robot to the target position. DRL-based navigation has
the advantages of being mapless and having a strong
learning ability and low dependence on sensor accuracy.
Since 2016, the trend of applying DRL to mobile robot
navigation has increased, achieving great success[9].

Researchers have published several surveys on mobile
robot navigation[10, 11], which mainly introduce path
planning and obstacle avoidance methods under the
traditional navigation framework. The contents of the
DRL technology are not comprehensive. In 2020,
Nguyen et al.[12] investigated multi-agent DRL, which
uses DRL to solve multi-agent cooperation problems.
Zeng et al.[13] published a survey on the use of DRL for
the visual navigation of artificial agents, which mainly
focused on visual navigation tasks and the division of
DRL methods into five categories for review. In contrast
to their research, because we believe that different
navigation scenarios have similar characteristics, here,
we focus more on the intrinsic enhancement that DRL
brings to a variety of navigation tasks, and the use of
state-of-the-art techniques in dealing with mobile robot
navigation problems.

In this paper, we present a comprehensive and
systematic review of DRL-based mobile robot navigation
from 2016 to 2020. The application scenarios, current
challenges, and possible solutions to the challenges of
DRL-based navigation are discussed in detail to guide
researchers for further improvement of current research
results and their deployment to real systems.

In Section 2, we present the background knowledge
of DRL. In Section 3, we present the framework and
key elements of the DRL-based navigation problem. In
Section 4, we divide the application scenarios of DRL-
based navigation into four categories, and describe in
detail the developments and approaches used in each
scenario. We present the current challenges and available
solutions in Section 5. Finally, we draw our conclusions
in Section 6. The architecture of this paper is shown in
Fig. 2.

2 Background: Deep Reinforcement
Learning

2.1 Preliminary

Reinforcement Learning (RL), inspired by animal
learning in psychology, learns optimal decision-making
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Fig. 2 Architecture of this paper.

strategies from experience. RL defines any decision
maker as an agent and everything outside the agent
as the environment. The agent aims to maximize the
accumulated reward and obtains a reward value as a
feedback signal for training through interaction with the
environment. The interaction process between the agent
and environment can be modeled as an MDP comprising
the essential elements S , A, R, and P ; S is the state of
the environment, A is the action taken by the agent, R is
the reward value obtained, and P is the state transition
probability. The agent’s policy � is the mapping from
state space to action space. When the state st 2 S , the
agent takes action at 2 A, and then transfers to the next
state stC1 according to the state transition probability P ,
while receiving reward value feedback rt 2 R from the
environment.

Although the agent receives instant reward feedback
at every time step, the goal of RL is obtaining the largest
long-term cumulative reward value rather than short-
term rewards. By introducing the discount factor 
 2

Œ0; 1/, we can express the return value as follows:
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where P a
ss0 D P.stC1 D s0jst D s; at D a/,

Ra
ss0 D E ŒrtC1jst D s; stC1 D s0; at D a�. Equations

(4) and (5) are known as Bellman equations. The
approximate solution to a Bellman equation is obtained
via dynamic programming to obtain the current value
function. The agent then continuously improves policy
� by optimizing the value function.

As dynamic programming requires complete dynamic
information and massive memory consumption, which
are not feasible, researchers have proposed and
developed two learning methods: Monte Carlo and
Temporal-Difference (TD) learning. In 1989, Watkins[14]

proposed the Q-learning algorithm, which combines
theories, including the Bellman equations and MDP,
with TD learning. Since then, RL research has made
huge breakthroughs, and RL algorithms have been used
to solve a range of practical problems.

However, in high-dimensional problems, the
traditional RL algorithm faces what is referred to as
the curse of dimensionality, whereby the amount of
computation sharply increases with the increase in the
number of inputs. Thus, finding a good policy in a large
state space is difficult using RL. The deep-learning
approach approximates any nonlinear function by
training deep neural networks and learns the inherent
laws and essential characteristics of the input data.
Its powerful representation ability enabled another
breakthrough for RL by its integration with deep neural
networks to constitute DRL.

DRL can be divided into two approaches: value-based
and policy-based methods. Value-based DRL indirectly
obtains the agent’s policy by iteratively updating the
value function. When the value function reaches an
optimal value, the agent’s optimal policy is obtained via
the optimal value function. The policy-based method
directly uses the function approximation method to
establish a policy network, selects actions through
the policy network to obtain the reward value, and
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optimizes the policy network parameters along the
gradient direction for obtaining an optimized policy that
maximizes the reward value.

2.2 Value-based DRL methods

2.2.1 Deep Q network
Mnih et al. published DQN-related work in Nature in
2015, reporting that the trained network could reach
a level equivalent to that of humans after playing 49
games[15]. DQN, which is based on Q learning, uses a
convolutional neural network (a deep neural network) to
represent the action value function, and the network is
trained based on reward feedback from the game. The
main features of DQN are as follows:

(1) The target network is set to deal with the TD
error in the time-difference algorithm separately. The
parameter �i of the current Q-network Q.s; aI �i / is
copied to ��

i of the target Q-network Q.s0; a0I ��
i / every

n time steps, which prevents instability of the target Q
network from the changes made in the current Q network
during training.

(2) The experience pool U.D/ is used to store and
manage samples .s; a; r; s0/, and an experience replay
mechanism is used to select the samples. These samples
are stored in the experience pool, from which batch
samples are randomly selected to train the Q network.
The experience replay mechanism helps to eliminate the
correlation between samples so that the samples used
in the training approximately realize independent and
identical distributions.

The parameters of the neural network are updated
by gradient descent. The loss function of the DQN is
denoted as:

L.�i /DE

"�
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2.2.2 Double DQN (DDQN)
The emergence of DQN promoted widespread use of
DRL, but DQN has a number of shortcomings, one of
which is the overestimation of the action value function.
Van Hasselt et al.[16] pointed out that when the DQN
calculates the TD error, using the same Q network to
select actions and calculate value functions leads to
overestimation of the value function. Thus, the authors
proposed the DDQN algorithm.

DDQN uses a dual network structure in the target Q
function, whereby the optimal action is selected based
on the current Q network, and the target Q network

evaluates the selected optimal action. Two sets of
parameters separate the action selection and policy
evaluation tasks, which reduces the overestimation risk.

The loss function of the DDQN is denoted as
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The experimental results in 57 Atari games show
that the normalized performance of DDQN without
adjustment is twice that of DQN, and three times that of
DQN when adjusted.

2.3 Policy-based DRL methods

2.3.1 Deep Deterministic Policy Gradient (DDPG)
Value-based DRL methods (DQN and its variants) solve
problems with a high-dimensional observation space but
can only handle discrete and low-dimensional action
spaces. However, several practical tasks, especially
physical control tasks, have continuous and high-
dimensional action spaces. To address this issue, the
action space can be discretized but will inevitably face
the curse of dimensionality, i.e., the number of actions
will increase exponentially with the increase in degree
of freedom.

Lillicrap et al.[17] proposed the DDPG, which uses a
method based on the policy gradient to directly optimize
the policy, which can be used for problems with a
continuous action space. Unlike the random strategy
represented by the probability distribution function at �

�� .st j�
�/, DDPG uses a deterministic policy function

at D �.st j�
�/. It also uses a convolutional neural

network to simulate the policy and Q functions and
learns from the experience replay and target network in
the DQN to stabilize the training and ensure high sample
utilization efficiency. K samples in the experience pool
are randomly selected, and the Q network is gently
updated by gradient ascent. The loss function of the
Q network is defined as follows:
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1

K

X
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where yi D ri C
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the expected value.

The unbiased estimate of the policy network gradient
is obtained as follows:
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The experimental results show that the DDPG is
suitable for solving more than 20 continuous control
tasks such as robotic arm control.

2.3.2 Asynchronous Advantage Actor-Critic (A3C)
The A3C algorithm proposed by Mnih et al.[18] is a
representative Actor-Critic (AC) method. The classic
policy gradient algorithm directly optimizes the agent’s
policy; it must collect a series of complete sequence data
to update the policy. In DRL, collecting sequence data is
often challenging and large variances can be introduced.
The AC structure that combines the value function with
the policy gradient method is receiving much attention.

In the AC structure, the actor selects actions using the
policy gradient method, and the critic evaluates those
actions using the value function method. During training,
the parameters of the actor and critic are alternately
updated. The advantage of the AC structure is that it
changes the sequence update in the policy gradient to
a single-step update, without the need to wait for the
sequence to end before evaluating and improving the
policy. This ability reduces both the difficulty of data
collection and the variance experienced by the policy
gradient algorithm.

Based on the AC structure, A3C makes the following
improvements:

(1) Parallel agents: The A3C algorithm creates
multiple parallel environments, thereby enabling
multiple agents with secondary structures to
simultaneously update the parameters of the main
structure in these parallel environments. Multiple actors
are used to explore the environment.

(2) N-step return: Although other algorithms
typically use a one-step return of the instant reward
calculation function obtained in the sample, the value
function of A3C’s critic is updated based on the
multi-step cumulative return. Calculation of the N -step
return improves the iterative update propagation and
convergence speed.

A3C can run on a multi-core CPU, and its
computational cost is lower than methods like DQN. The
experimental results show that, despite the problems of
hyperparameter adjustment and low sampling efficiency,
A3C has achieved success in tasks such as the continuous
control of a robotic arm and maze navigation.

2.3.3 Proximal Policy Optimization (PPO)
Traditional policy gradient methods adopt an on-policy
strategy in which the sampled minibatch can only be
used for one update epoch, and the minibatch must

be resampled to implement the next policy update.
Schulman et al.[19] proposed the PPO algorithm, which
can perform multiple epochs of minibatch updates,
thereby improving the sample utilization efficiency.

The PPO algorithm uses an alternative goal to
optimize the new policy using the old policy:

L.�/ D OE

�
�� .at jst /

��old.at jst /
OAt

�
(10)

where OAt is an estimation of the advantage function at

time t .
�� .at jst /

��old.at jst /
, rt .�/ is the probability ratio of

the new policy �� to the old policy ��old .
Equation (10) is used to improve the actions generated

by the new policy relative to those generated by the old
policy. However, a large-scale improvement by the new
policy will lead to instability of the training algorithm.
The PPO algorithm improves the objective function to
obtain the following new clipped surrogate objective:

LCLIP.�/D OE
h
min.rt .�/; clip.rt .�/; 1�"; 1C"// OAt

i
(11)

where clip.rt .�/; 1 � "; 1 C "/ denotes the restriction
of the probability ratio to the interval of Œ1 � "; 1 C "�.
The clipped surrogate objective keeps the change of
the new policy within a certain range and improves the
algorithm’s stability.

By achieving a good balance between sample
complexity, simplicity, and time effectiveness, PPO
outperforms A3C and other on-policy gradient methods.

3 DRL-Based Navigation

3.1 Framework

Mobile robots include unmanned vehicles, aerial
vehicles, and ships that move in two or three dimensions.
Their navigation involves searching for an optimal or
suboptimal path from the starting point to a target point
while avoiding obstacles. To simplify this challenge,
most researches have focused only on the navigation
problem in 2D space.

In essence, the mobile robot navigation task
constitutes Point-To-Point (P2P) movement and obstacle
avoidance: (1) The P2P task requires the position of the
goal point relative to the start point, which can be directly
obtained via GPS or ultra-wideband localization[20] ,
or indirectly through a target perspective image. (2)
Obstacles include those that are statically, dynamically,
and structurally continuous, which can be sensed by
laser range finding, ultrasonic finding, cameras, or other
sensors. In this paper, a structurally continuous obstacle
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refers to an inherent structure in the environment, such as
a corridor or wall. These obstacles constitute an indoor
or maze-like environment.

The purpose of using a DRL algorithm in an
autonomous navigation task is to find the optimal
policy for guiding the robot to its target position
through interaction with the environment. Many well-
known DRL algorithms, such as DQN, DDPG, PPO,
and their variants, have been extended to realize a
DRL-based navigation system. These methods describe
the navigation process as an MDP that uses sensor
observation as the state with the goal of maximizing
the expected revenue of the action. As mentioned
above, DRL-based navigation has the advantages of
being mapless and having a strong learning ability and
low dependence on sensor accuracy. As RL is a trial-
and-error learning technology, the physical training
process inevitably leads to collisions of the robot with
environmental obstacles, which is prohibited. Generally,
the deep neural network is trained in a simulation
environment before being deployed in a real robot for
real-time navigation decision making.

DRL-based navigation has been used to replace or
be integrated into the traditional navigation framework.
Figure 3 shows the interaction process between the
agent and environment of the DRL-based navigation
system. The DRL agent replaces the localization and
map building module as well as the local path planning
module of the traditional navigation framework, moving
toward the target point while avoiding static, dynamic,
and simple structurally continuous obstacles. However,
in an environment where structurally continuous
obstacles are too complex, the agent may fall into
a local trap. In this case, DRL requires additional

Fig. 3 DRL-based navigation system.

global information provided by the traditional navigation
technique[21]. As shown in Fig. 3, the global path
planning module generates a series of waypoints as
intermediate goal points for DRL-based navigation,
which enables the integrated navigation system to
realize long-distance navigation in a complex structural
environment.

3.2 Key elements

The DRL-based navigation system contains three
key elements that directly determine the application
scenarios and performance of the DRL algorithm: the
state space S , the action space A, and the reward
function R.

3.2.1 State space
The most often used state-space settings include the
start point, goal point, and obstacles. (1) The start
point and goal point are represented by the current and
destination coordinates of the mobile robot, respectively.
Several researchers convert global Cartesian coordinates
into local polar coordinates and use the direction and
distance relative to the robot for expressing the target
point position. (2) The obstacle state is represented by
the speed, position, and size of the moving obstacle
(agent level) or treats sensor data directly as a sensor-
level state, i.e., lidar/ultrasonic ranging data, monocular
camera image, or depth camera data.

3.2.2 Action space
In DRL-based navigation research, there are three kinds
of actions, i.e., (1) discrete moving actions: moving
forward, moving backward, turning left, turning right,
and so on; (2) continuous velocity commands: the linear
velocity and angular velocity of the mobile robot; and (3)
motor speed commands: the desired speeds of the left
and right motor. In general, discrete moving actions and
continuous velocity commands require a Proportional–
Integral–Derivative (PID) or other low-level motion
controllers to output motion control instructions and
control the mobile robot to achieve the desired motion.
Motor speed commands can realize end-to-end control
using the sensor-level state, but the associated training is
much more difficult.

3.2.3 Reward function
The reward function is used to train the RL agent to
complete a task. In the navigation task, positive or
negative rewards are only given when reaching the target
or colliding with obstacles, which means this reward
is very sparse. Sparse rewards are not conducive to
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rapid convergence by the agent. To improve training
efficiency, dense reward-shaping methods are used in
most studies: (1) goal rewards include positive rewards
given for arriving at goals and movement close to these
goals; (2) a collision penalty is a negative reward given
following a collision with an obstacle, or movement too
close to an obstacle; and (3) a time step penalty is a
negative reward given at each time step to encourage the
robot to move faster on its way to the target.

4 Application Scenario

In the past five years, several studies have been
conducted on DRL-based navigation, but the
classification of DRL-based navigation remains
confusing. For example, when using lightweight
localization solutions, such as GPS and Wifi, a DRL-
based navigation system can obtain the relative position
of a goal point without global map information, which
several researchers refer to as “mapless” navigation.
In other research, the DRL method preprocesses the
sensor’s local observation data into the form of a local
map, which is called a “map-based” method, and
global map information is not used. Moreover, some
studies refer to “visual navigation” as the use of a
first-person-view Red-Green-Blue (RGB) image as the
target, whereas other studies refer to navigation based
on visual sensors.

We found that although researchers use similar DRL
algorithms for essentially solving the same problem
(Fig. 4), different researchers have conducted specific

Fig. 4 Four application scenarios of DRL-based navigation.

research and added expert knowledge for different
application scenarios. These different approaches have
occurred because in the current state of the art, if the
DRL navigation policy space is set too large, it is difficult
to converge. Currently, to reduce the difficulty of DRL
training, agents usually learn navigation capabilities in
a specific scene, which are then generalized to similar
scenes.

In this review, we divide the application scenarios
of DRL navigation into four categories: local obstacle
avoidance, indoor navigation, multi-robot navigation,
and social navigation. A simple comparison of these
scenarios is shown in Table 1. Each scenario has
the same basic navigation tasks but features different
emphases and details. The local obstacle-avoidance
scenario emphasizes dynamic changes in the simple
structural environment, whereas indoor navigation
focuses on the complexity of the indoor structural
environment. The multi-robot navigation scenario
involves an environment with multiple high-speed
mobile robots. Social navigation focuses on moving
through pedestrian-rich environments.

4.1 Local obstacle avoidance

4.1.1 Feature
The local obstacle-avoidance scenario, which is the
most common application scenario of the DRL-based
navigation system, is the basis of the other scenarios
and can be extended to more complex navigation tasks.
In traditional navigation frameworks, reactive methods
are typically used to solve this type of problem, such
as the APF or velocity-based methods. One of the
biggest problems of reactive methods is the need for
a good sensor system that can generate accurate position
coordinates for any local obstacle. DRL methods
implicitly process sensor data through neural networks,
which overcome the shortcomings of traditional obstacle-
avoidance methods.

4.1.2 Development
In 2016, Duguleana and Mogan[22] studied autonomous
navigation in environments containing static and
dynamic obstacles; they combined the neural network

Table 1 Simple comparison of different DRL-based navigation scenarios.

Navigation scenario Static
obstacle

Dynamic
obstacle

Structure continuous
obstacle

Obstacle
scale

Obstacle
velocity Cooperation Randomness

Local obstacle avoidance Y Y N Low Low � �

Indoor navigation Y N Y Low � � �

Multi-robot navigation Y Y N High High Y Low
Social navigation Y Y N High High N High



Kai Zhu et al.: Deep Reinforcement Learning Based Mobile Robot Navigation: A Review 681

Pose-Net and a 30-20-3 multi-layer perceptron with
the famous RL method Q learning. By dividing the
surrounding obstacle environment into eight angular
regions, they reduced the number of states. Pose-Net
can output three discrete actions, i.e., moving forward,
turning left, and turning right. This early research
realized effective obstacle avoidance in simple physical
environments.

Subsequently, DRL solutions, such as DQN, were
rapidly developed, receiving widespread attention. In
numerous works, mature DRL methods have been
applied to local obstacle-avoidance scenarios. Feng et
al.[23] used DDQN to train the agent in a simulation
environment to avoid collisions with a wall without using
a target point. Most actual local obstacle-avoidance tasks
must be simultaneously performed with P2P tasks. For
example, Kato et al.[24] developed a navigation system
that combines DDQN with a topological-map-based
global planning method. The topology map node stores
the topology map, plans the global path, and selects
the next waypoint. The local navigation node uses the
control commands learned through the DDQN to move
between waypoints. The authors further improved the
system using a real-time kinematic global navigation
satellite system that provides waypoints[25]; this system
does not perform global path planning and was verified
in an outdoor obstacle environment. Wang et al.[26]

proposed the Fast Rent Deterministic Policy Gradient
(Fast-RDPG) algorithm, which improved the DDPG
performance on Unmanned Aerial Vehicles (UAVs).
By assuming that a virtual UAV only flies at a fixed
altitude and speed, they simplified the flying task to
two dimensions. The input of the Fast-RDPG includes
five-dimensional ranging data, the distance and angle
of the target point provided by the GPS signal, and the
direction angle of the UAV. The control profile only
includes turning left or right. The authors then extended
their work to the 3D environment[27]. In the study of
Ma et al.[28], a single camera was used to avoid flight
obstacles in 3D space. The authors used an improved
saliency detection method based on a Convolutional
Neural Network (CNN) to extract monocular visual cues;
an AC RL module receives states from the obstacle
detection module to adjust the position and altitude of
the UAV.

In addition, Woo and Kim[29] and Wu et al.[30]

combined international regulations for the prevention
of collisions at sea[31] to study the collision avoidance
problem of the unmanned surface vehicle based on the

feature extraction ability of the CNN and learning ability
of DRL.

4.1.3 Sim-to-real
Like most scientific research, the purpose of DRL-based
navigation research is its application to real systems.
In the RL training process, high-speed collisions, even
during training, can damage the robot. Kahn et
al.[32] focused on this problem and proposed a learning
algorithm based on an uncertainty model that uses a
neural network to estimate the probability of collision.
The algorithm naturally chooses to proceed cautiously
in unfamiliar environments and increases the robot’s
velocity in environments where it has high confidence.

However, training in a physical environment is very
time-consuming and dangerous. Researchers usually
train agents in a simulation environment and then
transfer this learning to the physical environment. Sparse
laser ranging data can reduce the large difference
between simulation and reality[33]. Tai et al.[34] trained
an asynchronous DDPG algorithm in a simulation
environment, took only the 10-dimensional sparse range
findings and the target position as input, and output
continuous linear and angular velocities. They were
able to directly transfer the network to a real incomplete
differential robot platform without any fine-tuning.
Yokoyama and Morioka[35] proposed a system that uses
the pre-trained Struct2depth model to estimate depth data
from a monocular camera image. They then converted
the depth data into 2D distance data and trained the
DDQN agent in a 2D-lidar simulation environment.
The proposed system realized navigation in the local
environment using only a monocular camera.

For expanding the state-space distribution of the pool
of samples and enabling the agent to adapt to more
new situations, Zhang et al.[36] adopted the approach of
randomly changing the starting and target points in each
epoch. They set up four different maze environments for
training. Lei et al.[37] introduced a radius constraint on the
initialization by randomly setting the start point in a circle
with the target point as the center and a radius of Lr . The
initial value of Lr is small, and as the neural network
is updated, the value of Lr gradually increases, thereby
increasing the success probability and ensuring a positive
incentive in the sample space. However, expanding
the sample space causes the DRL algorithm training to
become very time-consuming. Several researchers have
combined methods, such as expert demonstrations[38],
artificial potential fields[39], and non-expert helpers[40],
to improve training efficiency, which have been tested in
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local obstacle-avoidance scenarios.
4.1.4 Sensor robustness
In most studies, DRL-based navigation applications must
be deployed using the same sensors as those used in
the training environment. When faced with different
hardware conditions, the system may fail. Aznar et
al.[41] designed a navigation policy specifically for fault
tolerance, whereby the proposed system can continue
to work normally under sensor failure conditions and
shows several advantages in its robustness, scalability,
and practicality. Choi et al.[42] studied the limited Field
Of View (FOV) problem. They transformed depth data
obtained by a D435 depth camera with a FOV of 90ı

into distance data and proposed a Long Short-Term
Memory (LSTM) agent with a Local-Map Critic (LSTM-
LMC) that has memory ability. The proposed method
improves the robustness of DRL agents in the real world
by introducing a dynamics randomization technique,
including scan noise, velocity randomization, and time-
scale randomization. In addition, the sensors on the robot
can be replaced, or the parameters can be changed (e.g.,
the resolution and range of the lidar can be changed).
Using another approach to solve the sensor robustness
problem, Leiva and Ruiz-del-Solar[43] incorporated the
corresponding angle of the range measurement as part
of the observation, which allows the learning of features
that are independent of the geometric distribution of
the readings. The authors used variably sized 2D point
clouds as the agent’s 2D observations, thereby improving
robustness and extensibility to the real world.

4.2 Indoor navigation

4.2.1 Feature
Here, the indoor navigation scenario refers to a house
with multiple rooms or a 3D maze-like environment
with numerous walls and corridors. Although the
local obstacle-avoidance scenarios in the previous
section may also be indoors, their structures are
often relatively simple. In this section, we focus on
indoor navigation scenarios with a complex structural
environment. Research on indoor navigation originated
from a 3D maze navigation game, which was established
at the DeepMind Lab[44]. Because they can be very
large and provide very complex structures, 3D maze
environments are usually considered to be test platforms
for DRL algorithms. Navigational abilities can emerge
as a byproduct of an agent learning a policy that
maximizes reward in a 3D maze environment. Moreover,
because image sensors more easily perceive the features

of a 3D environment, the indoor navigation task is
highly related to the visual navigation task. Classic visual
navigation tasks typically use an RGB image with a first-
person view as the target[45], rather than relying on the
goal-point coordinates provided by other localization
systems, which is very different from a local obstacle-
avoidance task.

4.2.2 Development
Early DRL work focused on learning target-specific
models. In 2016, Oh et al.[46] proposed a new set of
RL tasks in the Minecraft 3D block world. Their DRL
method can process complex scene images and generate
correct actions. However, the target must be fixed, which
is not applicable to actual navigation because targets may
change in different environments. Similarly, Brunner et
al.[47] used DRL to learn to read a global map and find the
shortest path out of a random maze, but this study was
also designed for specific tasks, so retraining is required
after changing targets.

The models described above deal with single tasks on
an individual basis. Training occurs in the same scenario
to learn a spatial structure, with the target implicitly
embedded in the model parameters. This kind of training
set is inflexible when the mission objectives change. In
2017, Zhu et al.[45] proposed a target-driven concept,
which takes the task goal (i.e., the goal of navigation) as
the model input. They projected the current image and
the first-person-view image into the same embedding
space using a deep siamese AC network based on a pre-
trained ResNet. Models trained in different scenarios
can generalize across targets and scenarios.

Zhu et al.[45] also proposed the AI2-THOR framework,
an interactive 3D room environment for visual artificial
intelligence. Two other well-known 3D environment
simulation frameworks include the DeepMind Lab and
House3D frameworks. In the DeepMind Lab, an agent is
able to move and collect objects in maze environments.
House3D[48], a rich, scalable, and efficient indoor
environment based on the SUNCG[49] dataset, contains
many changes in color, texture, objects, and scenario
layout. These excellent simulation frameworks have
made great contributions to the training and verification
of state-of-the-art DRL algorithms.

In 2017, Mirowski et al.[44] adjusted the network
structure of A3C and proposed the Nav A3C algorithm,
in which two LSTM layers are added between the
CNN and the output layer. This algorithm was trained
and verified on the 3D maze environment of the
DeepMind Lab platform. The authors set random
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goals and used sparse “fruit” rewards to encourage
exploration. Two auxiliary tasks, including depth
prediction and loop-closure prediction, were proposed
to solve the sparse reward problem. However, NAV
A3C was found to have an unstable policy, poor
data efficiency, and poor robustness in a complex
environment. Zeng and Wang[50] used the monotonic
policy improvement advantage of PPO and proposed
the appoNav (asynchronous PPO) algorithm to solve the
visual navigation problem. Kulhánek et al.[51] developed
auxiliary tasks including pixel control, reward prediction,
a depth map, segmentation, and target segmentation.
They conducted experiments on the DeepMind Lab,
AI2-THOR, and House3D frameworks and verified
the performance improvement of the visual navigation
algorithm.

In previous research[45], the DRL algorithm was found
to be generalizable to new scenarios, but at the expense
of a decrease in performance and the need to fine-tune
the network. To improve the generalization ability of the
visual navigation algorithm, Devo et al.[52] proposed the
importance weighted actor–learner architecture, a new
framework comprising object localization and navigation
networks. The object localization network takes the
target image and current frame as input, and outputs
a six-dimensional vector that represents the position of
the target in the current frame. The vector and the current
frame are then input into the navigation network, and an
action decision is generated. The agent only uses sparse
rewards, which can be transferred to real environments
and real objects without fine-tuning. However, the
authors noted that the navigation performance fluctuated,
and with some combinations of light and textures, the
agent could not achieve satisfactory results. Thus, further
research is required.

In addition to using a first-view image to express the
target location, Devo et al.[53] studied the navigation
task that follows natural language instruction input. Hsu
et al.[54] divided the complex indoor environment into
different local areas, and generated navigation actions
based on the scene image and target location. The latest
research interests also include hierarchical RL[55] and
the graph structure neural network[56]. Indoor navigation
is becoming increasingly practical.

4.3 Multi-robot navigation

4.3.1 Feature
Multi-robot navigation is an extension of the local
obstacle-avoidance task performed by a single robot.

Scenarios with multiple high-speed mobile robots, such
as a warehouse, feature stronger dynamics that bring
new challenges to DRL-based navigation. Traditional
solutions for multi-robot navigation can be divided
into centralized and distributed solutions. Centralized
methods typically provide a central server, which
requires communication between robots, collects all
relevant information, and then determines the actions
of each robot using an optimization algorithm. In
the classical distributed method[57], each robot makes
independent decisions, but must obtain the accurate
motion data of other robots, such as speed, acceleration,
and path. The DRL method provides a new solution for
distributed obstacle avoidance and the cooperation of
multiple robots under non-communication conditions.

4.3.2 Development
In 2016, Chen et al.[58] first proposed multi-robot
Collision Avoidance with Deep RL (CADRL) in the
decentralized non-communicating condition, in which
the expensive online calculations of traditional methods
were converted into the offline training processes
of value networks. The optimal reciprocal collision
avoidance method was used to generate the training
set. Then, given an agent’s joint configuration (position
vector, velocity vector, and robot radius) with its
neighbors, the value network encoded the estimated time
to reach the target. The authors refined the policy using
RL and simulated multiple situations.

However, the agent’s joint configuration cannot be
obtained directly, and the calculation is time-consuming.
To simplify the decision-making process, raw sensor
data can be directly used as input. Ding et al.[59]

studied the hierarchical RL method using lidar data as
input. A high-level evaluation module is responsible
for perceiving the overall environmental risks, and a
low-level control module is responsible for making
action decisions. Long et al.[60] have also done a
lot of work on the multi-robot collision avoidance
problem. They chose 512-dimensional lidar data with
the 180ı FOV, target position, and current robot velocity
as the state space, and continuous translational and
rotational velocities as the action space. To improve the
training efficiency, they made the artificially designed
reward function dense. This artificially designed dense
reward function and multi-scenario multi-stage training
framework were used to improve the training efficiency
of the parallel PPO algorithm, but the authors found that
the RL policy still could not produce consistently perfect
behavior. Therefore, they combined the classic PID
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controller with the DRL policy and proposed a hybrid-
RL framework[61, 62], classified the scenarios faced by a
robot into three categories, and designed separate control
sub-policies for each category.

In addition to avoiding collisions during navigation,
multi-robots must often perform cooperative tasks such
as maintaining formation. Chen et al.[63] studied the
problem of multi-robot formation. In their parallel
DDPG method, multiple agents share experience
memory data and navigation strategies. Reward-shaping
techniques are used to adjust the reward function of
single-robot navigation tasks into a multi-robot version,
and curriculum learning techniques are used to train
robots to complete a series of increasingly difficult tasks.
Lin et al.[64] proposed a distributed navigation method
based on PPO, which takes the geometric center of the
mass of the robot group as the target, and achieves the
goal point while avoiding collisions and maintaining
connectivity. The authors verified this algorithm in a real
system. Recently, Sartoretti et al.[65] combined RL and
imitation learning to achieve distributed path planning
for thousands of robots in a large-scale environment.
Ma et al.[66] successfully applied DRL to a multi-robot
hunting problem.

4.4 Social navigation

4.4.1 Feature
Social navigation refers to the movement of a
mobile robot in pedestrian-rich environments such as
airports and shopping malls. This scenario focuses
on obstacle-avoidance capabilities in the complex
environments of human society. Social and multi-
robot navigation are similar, because we can treat
pedestrians as non-cooperative mobile robots. Most
local obstacle avoidance and distributed multi-robot
navigation methods can be extended to social navigation
scenarios, but the density of dynamic obstacles is much
higher in crowded environments. In addition, because
of the randomness of human behavior, navigation that
meets social standards remains difficult to quantify,
which widens the difference between simulated and
actual environments. Ensuring safe crowd navigation
requires further research.

4.4.2 Development
In 2017, Chen et al.[67] extended their previous work
CADRL to social navigation scenarios, and proposed the
socially aware CADRL algorithm. Various sensors, such
as lidar, a depth camera, and a camera in differential

drive vehicles, are used to detect pedestrians[68]. The
speed, velocity, and size (radius) of a pedestrian are
estimated by clustering point-cloud data. The authors
considered complex normative motion patterns to
possibly be the result of simple local interactions, and
they proposed a way to induce behavior that respects the
norms of human society. To induce a particular norm,
they introduced a small bias to the RL training process in
favor of one set of behaviors over others. They conducted
an experiment in a real environment with plenty of
pedestrians. After further research, they found that their
assumptions regarding social norms deviated from reality
as the number of agents in the environment increased.
Previous research had required fixed-size observations.
In 2018, the GA3C-CADRL[69] algorithm combined
with LSTM was proposed to avoid collisions between
various types of dynamic agents without assuming that
they follow any specific behavioral rules. In terms of the
reward function, Ciou et al.[70] used reward updates from
human feedback to learn appropriate social navigation.
Sun et al.[71] calculated the collision probability between
the subject and a dynamic obstacle, whereby the higher
the collision probability is, the greater the penalty is
received by the agent.

Unlike agent-level states such as coordinates and
velocity, Sasaki et al.[72] used a local map to represent
the status of dynamic crowds. The advantage of this
approach is that it can simultaneously identify multiple
moving targets and track all targets based on lidar
data. Each map is generated from the current step to
several previous steps. They designed a unique geometric
transformation method, wherein the map contains target
location information. They evaluated the A3C algorithm
using pedestrian data collected in the real world, but at
the time of publication of this review, they had not yet
deployed it in a real system.

Recently, Sathyamoorthy et al.[73] studied the freezing
robot problem that arises when a robot navigates
through dense scenarios and crowds, using a DRL-
based hybrid approach to handle crowds of varying
densities. Chen et al.[74] focused on the problem of DRL
performance degradation when the number of people
increases and combined it with a state-of-the-art graph
convolutional network technique for training the agent
to pay attention to the most critical person in the crowd.
Their research efforts will facilitate the development
of social navigation. Simple comparison of relevant
references is shown in Table 2.
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Table 2 Simple comparison of relevant references.
Application

scenario Reference Algorithm Perception
type

Action
space

Reward
setting Simulation Real

system Year

Local
obstacle

avoidance

[32] Uncertainty-aware RL C Con, 2 � Y Y 2017
[24] DDQN A Dis, 3 Dense Y Y 2017
[34] ADDPG (Asynchronous DDPG) A Con, 2 Dense Y Y 2017
[26] Fast-RDPG (Fast Recurrent DPG) B Con, 1 Dense Y N 2017
[36] SF-RL (Successor Feature RL) D Dis, 4 Dense Y Y 2017
[37] DDQN A Dis, 8 Dense Y Y 2018
[28] Salient region detection + AC C Con, 2 – Y N 2018
[38] IL (Imitation Learning) + CPO A Con, 2 Dense Y Y 2018
[39] DDPG A Con, 2 Dense Y Y 2018
[42] SAC (Soft AC) D Con, 2 Dense Y Y 2019
[25] DDQN A Dis, 3 Dense Y Y 2019
[27] Fast-RDPG (Fast Recurrent DPG) B Con, 1 Dense Y N 2019
[43] DDPG A Con, 2 Dense Y N 2020
[33] ICM A3C (Intrinstic Curiosity) A/C Dis, � Dense Y Y 2020
[40] Improved A3C A Con, 2 Sparse Y N 2020
[35] DDQN C Dis, 3 Dense Y Y 2020

Indoor
navigation

[44] Nav A3C (A3C + LSTM) C Dis, 8 Sparse Y N 2017
[45] AI2-THOR (Deep siamese AC network) C Dis, 4 Dense Y Y 2017
[54] LSTM + DRL C Dis, 3 Dense Y Y 2018
[51] A2CAT-VN C Dis, 8 Dense Y N 2019
[52] IMPALA C Dis, 3 Sparse Y Y 2020
[55] HISNav framework D – – Y Y 2020
[50] AppoNav (LSTM+PPO) C Dis, 8 Sparse Y N 2020

Multi-robot
navigation

[58] CADRL (Coll. Avoidance with Deep RL) E Con, 2 Dense Y N 2016
[60] Parallel PPO A Con, 2 Dense Y N 2018
[61] Hybrid-RL (Parallel PPO) A Con, 2 Dense Y Y 2018
[63] PDDPG (Parallel DDPG ) A Con, 2 Dense Y N 2019
[64] PPO A Con, 2 Dense Y Y 2019
[65] PRIMAL (IL + A3C + LSTM) E Dis, 5 Dense Y Y 2019

Social
navigation

[67] SA-CADRL E Con, 2 Dense Y Y 2017
[69] GA3C-CADRL E Dis, 11 Dense Y Y 2018
[72] A3C – Dis, – Dense Y Y 2019
[71] PPO + LSTM + collision prediction E Con, 2 Dense Y N 2019
[73] Frozone + DRL E Con, 2 Dense Y Y 2020

Note: Perception type: “A” denotes the laser range finder, “B” denotes ultrasonic sonar or other range finders, “C” denotes the
monocular camera, “D” denotes the depth camera, and “E” denotes agent-level data provided by the system. Action space: “Con”
denotes continuous action, “Dis” denotes discrete action, and the number denotes dimension.

5 Current Challenge and Solution

5.1 Partial observation

5.1.1 Challenge
In robotics, RL is typically applied to motion control
tasks such as manipulator control, because the state space
is considered to be fully observable. However, because
of the limited FOV and the uncertainty regarding the
state of other subjects, the mobile robot navigation task
is partially observable. This causes two problems: (1)
the agent cannot uniquely distinguish its state based on

individual current observations and (2) the agent can
only learn suboptimal strategies.

The MDP assumes that the state is completely
observable, and it cannot capture the complex structure
of an environment. Many researchers model using
the Partially Observable Markov Decision Process
(POMDP), an extension of MDP that can obtain
more information from historical trajectories. Formally,
a POMDP consists of six tuples .S; A; R; P; ˝; O/,
where ˝ is the observation space .ot 2 ˝/ and O

is the observation probability distribution given the
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system state .ot � O.st //. At each time step t , the agent
observes ot , executes an action at according to the policy
�.at jot /, receives a reward rt , and transfers into a new
state stC1 according to the distribution P.stC1jst ; at /.
5.1.2 Solution
Two main methods are used to solve the partial
observation problem.

(1) Expansion of network input
Considering that the agent cannot uniquely distinguish

its state based on current observations, the simplest
solution is to add several previous observation frames
as network inputs to improve its ability to distinguish
among states[36, 51, 72, 75, 76]. In addition, previous
rewards and actions also contain state information, so
some studies have input previous rewards and actions
to the network[33, 44, 63, 77]. Another input expansion
technique is the two-stream Q network proposed by
Wang et al.[78], which adds the difference between two
frames of laser scanning data.

(2) Addition of memory ability
Compared with the manual selection of the

previous observation frame as input, having the agent
automatically memorize and process the previous
observation is more attractive[79]. The Recurrent Neural
Network (RNN), a classic network structure in deep-
learning research, uses sequence data as input and has
memory capabilities. Previous observations have an
impact on the current output of the RNN. Some scholars
have integrated an RNN into the DRL framework
and proposed RDPG to solve the POMDP. Wang et
al.[26, 27] successfully applied this approach to DRL-
based navigation tasks.

However, RNNs have a long-term dependencies
problem, and the LSTM network was proposed by
deep-learning researchers to improve this problem.
Numerous DRL-based navigation studies have dealt with
POMDP by adding several LSTM layers to the network
structure[44, 50, 54, 65, 71]. As a variant of LSTM, the Gated
Recurrent Unit (GRU) is easier to train. Zeng et al.[80]

built a GRU-based memory neural network and proved
that it could improve performance in complex navigation
tasks.

5.2 Sparse reward

5.2.1 Challenge
As noted above, the mobile robot navigation task
comprises P2P and obstacle avoidance. The agent
receives a positive reward when it reaches the target point
and a negative reward when it collides with an obstacle.

The reward is generated only at the end of each epoch,
which means it is very sparse. As we know, effective RL
depends on collecting useful reward signals, so agents
must identify a series of corrective actions to achieve
the goal of generating a sparse reward. The probability
of finding a sparse reward signal by a random search is
very small. When the surrounding environment becomes
more complex and dynamic, the sample space rapidly
expands. Sparse reward can aggravate data inefficacy
and result in poor training convergence and long training
times.

5.2.2 Solution
The well-known experience replay mechanism,
exploration, and utilization techniques in RL research
can be directly applied to DRL-based navigation. In
addition, three techniques can be used to solve the
sparse reward problem.

(1) Reward shaping
An intuitive approach is to design dense rewards

manually to make the problem easier to learn. By
introducing expert knowledge, the agent can earn a
reward at each step in which it executes an action and
interacts with the environment. Most methods, especially
those that can be verified in real systems, adopt reward-
shaping techniques.

Generally, based on the target distance, moving
closer to a target will generate a small positive
reward[24, 34, 58, 60], and moving closer to an obstacle will
generate a small negative reward[69]. A small penalty is
also imposed at each time step to encourage the robot
to reach the target faster[26, 36, 37, 45, 54]. Direction-related
rewards can also encourage agents to move toward a
target. Sampedro et al.[39] adopted an APF formulation
to design their reward function. Other researchers
have also designed special reward functions to promote
learning[31, 42, 67, 72, 81].

However, manually designed reward functions have
two disadvantages: (1) they are closely related to the
task scene, and over-fitting a certain scene leads to
its non-universality, and (2) an inappropriate reward
sometimes leads to the wrong guidance for learning.
To solve these problems, Chiang et al.[75] proposed the
AutoRL algorithm, which automates the search for both
the shaped reward and the neural network architecture.
Zhang et al.[82] introduced a general reward function
based on a matching network. In addition, expert
demonstration can provide an auxiliary experience for
DRL, which can be used to address the sparse reward
problem[38, 83].



Kai Zhu et al.: Deep Reinforcement Learning Based Mobile Robot Navigation: A Review 687

(2) Auxiliary task
In the case of a sparse reward, when it is difficult to

complete the original task, we can set auxiliary tasks to
accelerate learning. In essence, auxiliary tasks provide
extra dense pseudo-rewards for RL[84]. Auxiliary tasks
are supervised, so the associated auxiliary loss can be
used to adjust the network parameters. The original and
auxiliary tasks share part of the network structure, which
helps to build up the model representation.

The auxiliary task technique is often used in indoor
visual navigation research. Mirowski et al.[44] added two
auxiliary tasks to the Nav A3C framework, including
depth and loop-closure predictions. They also applied
the auxiliary heading prediction task[85] to an urban
navigation problem, that is, to predict the angle between
the current direction and due north. Hsu et al.[54]

trained their local region model with an auxiliary task
that can speed up the convergence. Kulhánek et al.[51]

further developed the auxiliary task technique for visual
navigation by extending the batched A2C algorithm with
pixel-control, reward prediction, depth-map prediction,
and image segmentation tasks.

(3) Curriculum learning
Curriculum learning refers to the design of appropriate

curricula for progressive learners from simple to
complex, for example, moving a target from nearby to
far away in navigation. The probability of completing
a simple task and receiving a reward is higher than the
probability of completing the original task, which helps
to speed up the neural network training. The complexity
of the course is gradually increased.

This technique has been applied in DRL-based
navigation task. Chen et al.[76] introduced a two-stage
training process for curriculum learning. In the first stage,
they trained the policy in a random scenario with eight
robots; and in the second stage, they trained the policy
in both random and circular scenarios with 16 robots.
Similar to curriculum learning[63], multi-stage learning
with policy evolution can also improve the DRL training
efficiency under the sparse reward condition[40, 86].

5.3 Poor generalization

5.3.1 Challenge
Poor generalization is another challenge in DRL-based
navigation. Because training in a physical environment
is very time-consuming and dangerous, researchers
typically train the agent in a simulation environment
and then transfer it to the entity environment. There are
two types of generalization:

(1) The agent is transferred from one simulation
environment to another. The DRL algorithm essentially
trains a reactive strategy to select the action with the
maximum cumulative return in its training environment.
The data distributions in different environments are very
different, so it is not easy to transfer the navigation model
trained in one environment to another environment.

(2) The agent is transferred from a simulation
environment to a real environment. Generally, the real
environment is more complex and dynamic. The reality
gap between the virtual and real worlds is the core
challenge of deploying a trained model directly into a
real robot.

5.3.2 Solution
We can address the generalization problem by either
expanding the sample space or reducing the state space.

(1) Expansion of the sample space
Adding randomness to the simulation environment

to expand the sample space is a technique commonly
used to solve the generalization problem. Random
sensor noise, a random target position, random obstacles,
and other changes help expand the data distribution of
various scenarios and reduce the difficulty of transfer
between simulation environments.

To cause the agent to adapt to the new situation,
Lei et al.[37] randomly set the target position in an
unoccupied area to expand the state-space distribution of
the experience pool. Zhang et al.[36] had the agent start
from a random position and used four different maze
environments for training. Long et al.[60] presented a
multi-scenario training framework to learn an optimal
policy, which is simultaneously trained using a large
number of robots in rich, complex environments. The
research of Zhu et al.[45] showed that a model trained
in 16 scenes could be applied to new scenes without
extra training. The model can then be transferred from a
simulation environment to a real one with only a small
amount of fine-tuning.

(2) Reduction of the state space
Expanding the sample space is time-consuming and

requires subsequent fine-tuning in practical applications.
Reducing the state-space dimensions can achieve similar
generalization ability at less computational cost. Using
the image as a part of the state space has the advantage
of abundant information, but there are often details such
as illumination, texture, and color changes, which may
not be helpful or may even be harmful to the learning
navigation ability. Using sparse laser ranging as input
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focuses the DRL model on the mapping relationship
between the distances among the learning obstacles and
the motion instructions.

Most DRL-based navigation research that can be
transferred to a real environment has used range finders
as the sensor. Tai et al.[34] used only the 10-dimensional
sparse laser range findings and related target information
as the state space. Their model can be extended to a
real mobile robot platform without any fine-tuning. Shi
et al.[33] also reported that sparse laser range findings
could reduce the reality gap. The system proposed by
Yokoyama and Morioka[35] converts the depth images
that are estimated from a monocular camera to 2D range
data, rather than directly inputting the image.

In addition to reducing the state input size, Devo et
al.[52] designed a two-network architecture comprising
an object localization network and a navigation network
to solve the generalization problem. This architecture
reduces the state-space dimension of the navigation
network by preprocessing images through the object
localization network.

6 Conclusion

Navigation is a core ability of the mobile robot.
Although the DRL policy cannot generate perfect
behavior all the time and the DRL-based navigation
performance fluctuates, DRL continues to show the
most promise for achieving breakthroughs in navigation
capability.

This paper provided a comprehensive and systematic
review of DRL-based mobile robot navigation research.
The application scenarios, current challenges, and
possible solutions were discussed. We anticipate that this
paper will help researchers further improve the current
research results and apply them to real systems to realize
human-level navigation intelligence.
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