
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 07/15 pp664–673
DOI: 10 .26599 /TST.2021 .9010010
Volume 26, Number 5, October 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Towards “General Purpose” Brain-Inspired Computing System

Youhui Zhang�, Peng Qu, and Weimin Zheng

Abstract: Brain-inspired computing refers to computational models, methods, and systems, that are mainly inspired

by the processing mode or structure of brain. A recent study proposed the concept of “neuromorphic completeness”

and the corresponding system hierarchy, which is helpful to determine the capability boundary of brain-inspired

computing system and to judge whether hardware and software of brain-inspired computing are compatible with

each other. As a position paper, this article analyzes the existing brain-inspired chips�design characteristics and

the current so-called “general purpose” application development frameworks for brain-inspired computing, as well

as introduces the background and the potential of this proposal. Further, some key features of this concept are

presented through the comparison with the Turing completeness and approximate computation, and the analyses of

the relationship with “general-purpose” brain-inspired computing systems (it means that computing systems can

support all computable applications). In the end, a promising technical approach to realize such computing systems

is introduced, as well as the on-going research and the work foundation. We believe that this work is conducive to

the design of extensible neuromorphic complete hardware-primitives and the corresponding chips. On this basis, it is

expected to gradually realize “general purpose” brain-inspired computing system, in order to take into account the

functionality completeness and application efficiency.

Key words: brain-inspired computing; neuromorphic computing; computational completeness; hardware/software

decoupling; system hierarchy

1 Introduction

Brain-inspired computing is a general term for
computing theory, chip architecture, system design, and
algorithms, inspired by the processing mode or structure
of biological nervous systems or brains. It is considered
as one of the most promising technological paths towards
the next generation of artificial intelligence[1–5], and
brain-inspired computing architecture is also a major
development direction of computer architecture in the
post-Moore’s Law era[6–8]. Thus, Ref. [9] has stated
that brain-inspired computing would be the next wave

� Youhui Zhang, Peng Qu, and Weimin Zheng are with
the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail:
zyh02@tsinghua.edu.cn; qup13@mails.tsinghua.edu.cn;
zwm-dcs@tsinghua.edu.cn.

�To whom correspondence should be addressed.
Manuscript received: 2021-01-18; accepted: 2021-02-04

of intelligent computing.
Brain-inspired computing is also called neuromorphic

computing. The term of neuromorphic computing first
appeared in Ref. [10] written in the 1990s by Professor
Carver Mead of computer science at California Institute
of Technology. At that time neuromorphic computing
system referred to an adaptive and large-scale parallel
computing system using very large scale integrated
circuits that simulates biological nervous system with
electronic devices. It usually used elementary physical
phenomena as computational primitives, and represented
information by the relative values of analog signals.

With the passage of time, the styles and technologies
of brain-inspired computing chips (also known as
neuromorphic chips. In this paper these two terms are
considered to be synonyms) have changed a lot[4], but
their technical routes can be traced back to Prof. Mead’s
work[10] to some extent, and the following three main



Youhui Zhang et al.: Towards “General Purpose” Brain-Inspired Computing System 665

characteristics are still roughly maintained:
� Inspired by the structure and/or processing mode of

the biological brain (or nervous system);
� Simulate the information processing function of

biological neurons and neural synapses through
micro-/nano-devices;

� Realize a new intelligent computer system with low
energy consumption and high efficiency.
Brain-inspired computing systems employ

neuromorphic chips as the core to support various
applications[11, 12], and basically use Spiking Neural
Networks (SNNs)[13] as the main computing paradigm
at present. For such chips, whether they are digital
or digital-analog-hybrid or based on some novel
nonvolatile memory devices[14, 15], a common feature
lies in that almost all of them are based on the end-to-end
co-design principle; so that each type of chip has its
specific software and hardware interfaces, toolchains,
and target applications. These characteristics bring two
issues:
� It binds applications with the specific system, and then

leads to lack of portability and low productivity. That
is, it couples software with hardware.

� The application range of brain-inspired computing
is developing rapidly, while hardware features are
summarized from existing applications. Thus it is
difficult to judge whether today’s chips can cope with
emerging applications, that is, the completeness of
computing system is uncertain.
Meanwhile, there have been some efforts to achieve

“general purpose” development frameworks for brain-
inspired computing, such as STICK[16], FUGU[17], etc.,
with the goal of providing a high-level programming
abstraction and realizing a unified development tool
independent of specific chips, i.e., they intend to
make hardware specifications/constraints “transparent”
to application development. But the problem of not being
able to determine whether the hardware is functional
enough, i.e., complete, does persist. In other words,
a brain-inspired computing system can be said to be
“general-purpose” if it can support all brain-inspired
computing applications; currently, how to judge whether
a brain-inspired computing system is “general-purpose”
is an open question.

This article analyzes the existing brain-inspired
chips’ design characteristics and disadvantages, as
well as the “general purpose” application development
framework for brain-inspired computing, and introduces
the recent work of the proposed “neuromorphic

completeness” (also known as “brain-inspired
computational completeness”) and some of the key
features. In the end, a promising technical approach
to realize computing systems of neuromorphic
completeness is introduced, as well as the work we are
doing and the research foundation.

2 Research Status

2.1 Chips

The next generation of high-performance and low power
computer systems might be inspired by the brain.
The focus of neuromorphic computing is typically on
spiking neural networks, as such systems are more
similar to biological neural networks than artificial
neural networks, which have been commonly used in
modern deep-learning applications. Moreover, most
brain-inspired systems share common design principles,
such as co-location of the memory and processing units.
Some representative studies are given as follows:

TrueNorth[18, 19] is a digital neuromorphic chip that
includes 4096 neurosynaptic cores connected via a 2D-
mesh NoC, equipped with a toolchain that includes the
programming paradigm, Corelet[20]. Through Corelet,
a complex algorithm is decomposed into simple ones,
which will be repeated till tasks can be completed by
one or more cores. In addition, TrueNorth provides
an optimized strategy to map logical NNs to physical
cores[21]. The Corelet description just matches the
organization of the hardware substrate (although the
description is agnostic to the physical location of each
core in the actual hardware[21]); thus it is bound to the
hardware platform.

Neurogrid[22] is an analog/digital hybrid system with
a customized network[23]. It uses the Neural Engineering
Framework (NEF)[24] to configure neuromorphic chips
to implement target functions. This allows the designer
to work on a higher level of abstraction and yet still
produce a detailed model using spiking neurons. Namely,
Neurogrid supports the NEF on the hardware and system
levels. The latest successor of Neurogrid, Braindrop[25],
also adopted this design philosophy.

Intel’s Loihi[26] chip consists of a many-core mesh
of 128 neuromorphic cores, as well as three x86 cores
for task scheduling and IO. It supports SNN-based
inference and learning functions. The neuromorphic core
contains a hardware pipeline customized for synaptic
computing (including support for synaptic plasticity,
which is the basis of SNN learning mechanism),



666 Tsinghua Science and Technology, October 2021, 26(5): 664–673

neural computing, and others. Loihi also provides a
development toolchain[27], including compilers and run-
time, and exposes hardware-supported brain-inspired
computing primitives to developers through interfaces
such as Python. Due to the limitation of hardware
resources, Loihi currently only supports fixed-point
computation and fixed-point weight data.

The FACETS[28] project and its successor BrainScaleS
have produced wafer-scale IC systems. It developes a
graph model to map a complex biological network to the
hardware network. This strategy requires that both have
the same underlying structure; thus it is also hardware-
specific.

SpiNNaker[29] has a toolchain that is based on
the CMPs of ARM cores[30]. Thus, its neural
computing is completed by software with some hardware
customization for efficiency. The drawback is that the
performance will be lower than dedicated hardware.

So, most existing chips are based on the end-to-end
design principle. We can summarize this phenomenon
with a passage from Ref. [25] of Braindrop: “� � �

achieving this goal required co-designing all layers of
the software-hardware stack, keeping the theoretical
framework in mind even at the lowest levels of the
hardware design”. This design principle leads to higher
execution efficiency for adapted applications, while the
downside is that hardware constraints are often exposed
to developers, which usually requires developers to
understand substantial knowledge of neural computing
or neuromorphic hardware, in other words, impairing
portability and productivity. What’s worse, because
hardware functions have been summarized based on the
requirements of existing applications, it is difficult to
determine where the functional boundary of hardware
is and whether it is complete or not facing the rapid
development of this field. Following this trend, various
brain-inspired computing chips and systems would
become research and development islands.

2.2 Software

On the other hand, in the field of basic software for brain-
inspired computing, there are also researchers who have
recognized this problem and tried to study a “general
purpose” development framework.

For example, Fugu[17] sought to achieve a
programming platform to enable the development
of neuromorphic applications without substantial
knowledge of the substrate. Rather than necessitating a
developer attain intricate knowledge of how to program

and exploit spiking neural dynamics to utilize the
potential benefits of neuromorphic computing, Fugu
is designed to provide a higher level abstraction as a
hardware-independent mechanism for linking a variety
of scalable spiking neural algorithms from a variety of
sources.

Another typical work is STICK[16]. Its goal is to
develop a new framework for brain-inspired general
purpose computation architectures. This works tries to
show that the use of neuron-like units with precise timing
representation, synaptic diversity, and others could set a
complete (Turing complete) computation framework.

These studies are still carried out at the software level,
without support for any specific brain-inspired hardware.
To a large extent, one sentence from Ref. [17] of
Fugu can illustrate the dilemma faced by such software
frameworks: “We envision that as these hardware-
specific interfaces begin to stabilize � � � ”.

But, the hardware interfaces are difficult to stabilize
until they have been determined to be complete. That
is, in the face of the rapid development of AI computing
field, it is not enough to summarize the hardware
interfaces (functions) only according to the specific
application requirements or hardware specifications.
Therefore, it is necessary to study the completeness
of brain-inspired computing to find out the functional
boundary.

3 Inspiration from General-Purpose
Computers

Turing completeness and the von Neumann architecture
are the key factors in the rapid development of
general-purpose computer technologies. Almost all high-
level programming languages are Turing complete,
and the general-purpose processors based on the von
Neumann architecture can realize Turing completeness
through some Turing complete instruction set, which
means that any Turing computable function written
in a programming language can be converted into an
equivalent instruction sequence on any Turing complete
processor (i.e., program compilation). This is why
general-purpose computers are called “general-purpose”.
Further, the computer hierarchy composed of the
software layer, the compiler layer, and the hardware layer
can ensure that the application software and the hardware
design are compatible with each other while moving
forward independently (i.e., software and hardware
decoupling), laying a systematic foundation for the



Youhui Zhang et al.: Towards “General Purpose” Brain-Inspired Computing System 667

prosperity and development of the entire field.
Inspired by this principle, the concept of

“neuromorphic completeness”[31] has been proposed: For
any given error gap � > 0 and any Turing-computable
function f .x/, a computational system is called
neuromorphic complete if it can achieve a function F.x/,
such that kF.x/�f .x/k6� for any valid input x.

Compared with Turing completeness, this definition
does not require the system to achieve a function
through a series of precise computational steps (that
is, algorithms). Further, a corresponding computer
hierarchy and some hardware primitives have been
proposed to ensure the completeness of brain-inspired
computing to make full use of the advantages brought by
this new concept. The hierarchy has three levels: a Turing
complete software model, a neuromorphic complete
hardware architecture, and a compilation layer between
the above two. A constructive transformation algorithm
is designed to convert any Turing computable function
into an equivalence on any neuromorphic complete
hardware, which brings the following advantages:

First, general-purpose computing applications can be
supported. The proposed application-oriented software
model is Turing complete and provides a basis for
programming to support various applications (not limited
to neural networks).

Second, compilation feasibility. Through the proposed
hardware primitives and constructive conversion
algorithm, the equivalent conversion of “neuromorphic
completeness” between the “Turing complete” software
and the “neuromorphic complete” hardware primitive
sequence is ensured, which realizes the decoupling of
software and hardware.

Third, a new dimension of system design and
optimization, approximate granularity, is introduced. A
reasonable inference of this definition is that a Turing
computable function can be implemented by a process
of traditional accurate computation (algorithm), by
approximations (not limit the specific technical means),
or by a hybrid of the two, which enlarges the system
design space and is conducive to improving efficiency.

4 Some Highlights of Neuromorphic
Completeness

4.1 A neuromorphic complete system is conducive
to the realization of a “general-purpose” brain-
inspired computing system

The proposed concept of completeness could enable the

decoupling of hardware and software while ensuring
compatibility. As declaimed by Ref. [32], it is a
useful step to unite the work carried out by the many
industrial and academic research groups in the field
of neuromorphic computing, as it helps researchers
to focus on specific aspects of research problems,
rather than trying to find entire end-to-end solutions. In
other words, any neuromorphic complete system can
support any brain-inspired computing application, i.e.,
it is “general-purpose” (This concept is orthogonal to
Artificial General Intelligence (AGI)).

Further, for a computing paradigm (including chips,
basic software, applications, etc.) with great and long-
term development potential, it is necessary to build an
application ecosystem: More and more research and
development personnel entering the field, rather than
experts with general knowledge (interdisciplinary), is a
prerequisite for the establishment of such an ecological
environment, otherwise there can only be limited scope
of applications, impairing the potential for progress.

4.2 Neuromorphic completeness and Turing
completeness

It is necessary to note that the concept of completeness
itself defines the functional boundary of a computing
system and does not involve the specific implementation.
Taking Turing completeness as an example: The
universal Turing machine is Turing complete, but
there are many various forms of Turing complete
systems (including recurrent neural network, lambda
calculus, some forms of cellular automata, recursively
enumerable languages, etc.), and the common point
is that all can simulate a universal Turing machine
and have the equivalent computational capability. Thus,
a neuromorphic complete system may be not on
the neural basis, from an implementation point of
view. Moreover, although this definition relaxes the
requirement on the computing process (compared with
Turing completeness), they are not opposites; any Turing
complete system is neuromorphic complete[31]. This is
also in line with the actual situation of brain-inspired
research: In fact, some well-known computing systems
(such as SpiNNaker from the University of Manchester)
directly use Turing-complete general-purpose processors
(ARM cores with custom extension) for main operations.

4.3 Computational process of a neuromorphic
complete system could be a combination of
accurate Turing computation and approximation

Traditional computer algorithms are derived from the



668 Tsinghua Science and Technology, October 2021, 26(5): 664–673

Turing machine, which is an accurate description of
the specific computing process. In this sense, Turing
computation has no errors.

On the basis of Turing completeness, the new
completeness is compatible with the ability to
approximate computing results. It should be noted
that here the concept of approximation refers to
approximation capability, not limited to numerical
approximation.

Specifically, for an objective function, its realization
form may have three ways (but not limited to, because
the completeness itself does not limit the concrete
method):

First, the entire function is directly approximated by
neural network or lookup table, etc.

Second, through reorganizing and approximating
some specific steps in the computing process of the
objective function (i.e., algorithm), the corresponding
intermediate results are approximated, combined with
the remaining accurate computation.

Finally, the function as a whole can be realized by
some numerical approximation algorithms.

The above methods are also shown in the experiments
in Ref. [31]. A direct inference is that if a certain
objective function (or part of the objective function’s
algorithm) cannot be approximated (or is not suitable
to be approximated), then it can be achieved through
precise calculations.

There are many ways to achieve approximation, and
“approximate” computation may not introduce errors.
For example, certain logic functions can be looked up
through truth tables; neural network can achieve Boolean
functions accurately[33]. Further, Tianjic chips[5] use
lookup tables to achieve certain non-linear functions,
without affecting the result of applications.

4.4 Neuromorphic completeness and approximate
computation

As mentioned above, the computational process of a
neuromorphic complete system could be a combination
of accurate computation and approximation; thus,
approximate computation is a way to realize a
neuromorphic complete system.

On the other hand, the concrete realization means can
be diverse (rather than approximate computation), such
as the above-mentioned “certain logic functions can be
looked up through truth tables” (there is no error in the
process), fitting a surface of the high dimensional vector
space through a neural network (the target function is

unknown), and training neural networks for symbolic
computation[34] (scientific computation can be divided
into numerical computation and symbolic computation,
while approximate computation is applied to the former),
and so on.

4.5 Software/hardware decoupling and software/
hardware co-design

The principle of software/hardware co-design is widely
applied in the field of domain-specific architecture.
Although this paper has emphasized the decoupling,
these two are not contradictory. Software/hardware co-
design is an important means to overcome the challenges
faced by brain-inspired computing.

In our opinion, the decoupling method based on
completeness is the design foundation, which provides
the feasibility of judging the compatibility between
hardware and software (i.e., it is useful to determine
whether brain-inspired computing systems are general
purpose). On this basis, from a performance/energy
efficiency perspective, to design dedicated hardware
elements/primitives for typical algorithms or operations
(i.e., to expose more functionalities of hardware to the
programming level for utilization) is necessary, that is, it
gives consideration to both functional completeness and
application efficiency.

Specifically, the proposed hierarchy[31] decouples
programming languages and hardware, and it also
benefits the codesign procedure. Owing to the
composability of its application-oriented software model,
we can abstract a complex operation supported by the
hardware into a hardware primitive and further wrap
it as an operator on the software level to achieve the
equivalent function, that originally requires multiple
operators for implementation, without affecting other
parts of the software. Thus, it is possible to make full
use of new types of hardware without affecting the up-
level models, which simplifies the programming.

5 How to Achieve a “Neuromorphic
Complete” System Efficiently

As mentioned earlier, the definition of completeness
itself is abstract and does not consider how the
system is implemented or whether the system itself is
neuromorphic; the implementation example[31] is just
a reference model. Thus, we should further study the
potential technical route towards neuromorphic complete
systems.



Youhui Zhang et al.: Towards “General Purpose” Brain-Inspired Computing System 669

5.1 Methdology

The premise is to quantify and compare the
neuromorphic complete system in the early design, so
as to give the target design the right direction and
specific optimization guidance. We believe that the early
comparison is very necessary, especially when dealing
with this type of system with more design space (as
neuromorphic completeness introduces a new dimension
of system design and optimization).

The feasibility of this idea lies in that between the
abstract concept of completeness and the system custom
design method, there is sufficient space to occupy the
comparison theory and method for computing systems
that incorporate specific implementation methods into
consideration.

Thus, it is proposed to establish a theory of
quantitative analysis of neuromorphic complete system.
This theory is to analyze the collection of core operators
and patterns from the widely used neuromorphic
computation paradigm and representative applications,
and then construct a flexible abstract reference model.
By analyzing the “differences” between various brain-
inspired systems (in the early stage of design) and this
abstract model, quantitative analysis and comparison
could be made to achieve the research goal. Specifically,
this work can be divided into two parts (the workflow is
presented in Fig.1):

The software part’s input is a dataflow-like graph
of the target application (or function); the output
is a number of optimal (or approximate optimal)

combinations of accurate calculation and approximation
(in various ways) to achieve the target function, which
are then input to the hardware part for evaluation and
further tuning.

Accordingly, the initialization is to construct a design
space that can reflect the multi-dimensional evaluation
metrics (such as performance, cost, precision, etc.)
of brain-inspired computing system, and map the
description of the above dataflow-like graph into this
space. FSN[31] is such a primary method.

Afterwards, the first step is to analyze the parts
that can be achieved in an approximate manner (or
manually specified) and find out the optimal (or
approximate optimal) combinations, which is followed
by replacing approximate part(s) with the corresponding
implementations of suitable method (in the following
content, we take the approximation in terms of neural
networks as the example).

Step 1: Through static analyses, find out the parts that
can be approximated, and then carry out neural network
training with different hyper-parameters to obtain the
approximation scheme. The difficulty lies in that the
design space is very huge and then it is not feasible to
traverse all possibilities. So it is necessary to accelerate
this process by rapid performance prediction and optimal
solution search, including (1) how to determine the
approximation granularity of the part, as different parts
can be disassembled further or reassembled together, (2)
how to handle the control flow, and (3) how to judge the
merits of many different schemes.

Fig. 1 Workflow to quantify and compare neuromorphic complete systems in the early design.



670 Tsinghua Science and Technology, October 2021, 26(5): 664–673

Step 2: Replace approximate parts. We should
link the cost function to specific hardware for overall
evaluation, rather than simply replacing the part with
Neural Networks (NN).

In terms of hardware, what needs to be studied is a
prototype of a reconfigurable brain-inspired computing
system for verification and co-design. It contains the
following two jobs:

(1) Based on the reconfigurable properties of FPGA,
a scalable and flexible simulation prototype is helpful.
On one hand, it can fully realize all primary elements
of brain-inspired computational core operators, and all
kinds of elements should be extensible and composable.
On the other hand, it is necessary to make full use of
on-chip resources of FPGA to realize the features of
in-situ and event-driven computation, so as to reflect
the features of brain-inspired computing paradigm more
accurately and make the behavior of the system more
representative.

(2) The automatic design tool for brain-inspired
system is needed, too. Based on the reconfigurable
properties, automation (or semi-automation with manual
intervention) is implemented according to the given
optimization direction and guidance scheme for
verification of the theoretical results.

5.2 Reserach foundation

Our research team has been designing custom chips,
basic software, and computing systems since 2015
to efficiently support the brain-inspired computing
paradigms and algorithms. We also participated in the
research and development of the series of Tianjic chip[5]

led by the Center for Brain-inspired Computing Research
of Tsinghua University. The main work is centered on the
establishment of the brain-inspired computer hierarchy
(Fig. 2), including the following aspects:

(1) Spiking neural network programming language
We proposed the general SNN description language,

E-PyNN, as well as its compiler and simulator[35]

Fig. 2 Hierarchy of neuromorphic computing system.

for parallel heterogeneous systems; the latter are
optimized for the inherent characteristics of SNN.
Compared with some state-of-the-art SNN simulators on
General-Purpose Graphics Processing Unit (GPGPU),
the proposed simulator is 1.41 to 9.33 times faster
than the state-of-the-art SNN simulator on GPGPU.
Moreover, its performance is 1 to 2 orders of magnitude
faster than other commonly-used simulators on CPU.
The work laid the foundation for the current application-
oriented software model[31].

(2) Neural network training and transformation
We proposed the “training before constraint” strategy

and the corresponding workflow of neural network
for neuromorphic chips[36]. The input is Deep Neural
Network (DNN)/SNN trained by the existing third-party
NN development framework (no hardware constraints
are involved), and the output is the equivalent neural
network that conforms to hardware constraints of the
target chip. Afterwards, we enhanced the above work
to support a broader range of NN functions[37]. These
works are the foundation for compilation based on
neuromorphic complete primitives[31].

(3) Neuromorphic chip design
We proposed and designed the brain-inspired chip

with “reduced instruction set”, FPSA[38, 39], which
can give full play to the advantages of Resistive
Random Access Memory (ReRAM). Similar with the
Reduced Instruction Set Computer (RISC) general-
purpose computer, FPSA only provides limited and
compact hardware primitives, while the software
(compiler) supports the full functions of different neural
networks through conversion or approximation methods.
This principle is in contrast to most existing chips,
existing brain-inspired chips tend to support a wide
variety of complex primitives, because the hardware
interface is defined by specific software requirements or
hardware specifications. One of the hardware platforms
(simulation) used in the experiments in Ref. [31]
is FPSA. FPSA also investigated mechanisms for
efficiently mapping the results of neural network training
and transformation onto chip.

We have also developed SNN simulators based on
FPGA[40] and software simulation tools[41] for novel non-
volatile memory devices.

6 Conclusion and Outlook

The next decade will be the golden age of
computer architecture development[42], and brain-
inspired computing is one of the most promising



Youhui Zhang et al.: Towards “General Purpose” Brain-Inspired Computing System 671

solutions. The design philosophy that this article
focuses on is to construct a flexible, adaptive, and
software/hardware decoupling system hierarchy of brain-
inspired computing based on the proposed completeness,
which is conducive to the promotion of the collaborative
development of this interdisciplinary field.

From the perspective of the development history
of general-purpose computers, the computational
completeness and software/hardware decoupling
hierarchy laid the theory and architecture foundation for
vigorous development. Our work has been inspired by
this historical process and is conducive to enabling all
kinds of personnel participating in this interdisciplinary
research to focus on their professional fields and
improve the efficiency of research and development,
i.e., promotes the progress of this field from isolated
research to collaborative and iterative development.
This would be one of the keys to the rapid development
of brain-inspired computing systems and the formation
of scale industries, which will also facilitate the
development of high-efficiency computing systems,
including supercomputing systems[43]. We are going
to open-source the implementation to try our best to
promote this process.

Acknowledgment

This work was partly supported by the National Natural
Science Foundation of China (Nos. 62072266 and
62050340) and Beijing Academy of Artificial Intelligence
(No. BAAI2019ZD0403).

References

[1] D. Hassabis, D. Kumaran, C. Summerfield, and M.
Botvinick, Neuroscience-inspired artificial intelligence,
Neuron, vol. 95, no. 2, pp. 245–258, 2017.

[2] A. H. Marblestone, G. Wayne, and K. P. Kording, Toward
an integration of deep learning and neuroscience, Front.
Comput. Neurosci., DOI: 10.3389/fncom.2016.00094.

[3] B. A. Richards, T. P. Lillicrap, P. Beaudoin, Y. Bengio, R.
Bogacz, A. Christensen, C. Clopath, R. P. Costa, A. de
Berker, S. Ganguli, et al., A deep learning framework for
neuroscience, Nat. Neurosci., vol. 22, no. 11, pp. 1761–
1770, 2019.

[4] K. Roy, A. Jaiswal, and P. Panda, Towards spike-based
machine intelligence with neuromorphic computing, Nature,
vol. 575, no. 7784, pp. 607–617, 2019.

[5] J. Pei, L. Deng, S. Song, M. G. Zhao, Y. H. Zhang, S. Wu, G.
R. Wang, Z. Zou, Z. Z. Wu, W. He, et al., Towards artificial
general intelligence with hybrid Tianjic chip architecture,
Nature, vol. 572, no. 7767, pp. 106–111, 2019.

[6] M. M. Waldrop, The chips are down for Moore’s law,
Nature, vol. 530, no. 7589, pp. 144–147, 2016.

[7] G. S. Wu, Ten fronties for big data technologies (Part B), (in
Chinese), Big Data Res., vol. 1, no. 3, pp. 113–123, 2015.

[8] G. S. Wu, Ten fronties for big data technologies (Part A), (in
Chinese), Big Data Res., vol. 1, no. 2, pp. 109–117, 2015.

[9] J. D. Kendall and S. Kumar, The building blocks of a brain-
inspired computer, Appl. Phys. Rev., vol. 7, no. 1, p. 011305,
2020.

[10] C. Mead, Neuromorphic electronic systems, Proc. IEEE,
vol. 78, no. 10, pp. 1629–1636, 1990.

[11] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell,
M. E. Dean, G. S. Rose, and J. S. Plank, A survey of
neuromorphic computing and neural networks in hardware,
arXiv preprint arXiv: 1705.06963, 2017.

[12] N. Wang, G. G. Guo, B. N. Wang, and C. Wang, Traffic
clustering algorithm of urban data brain based on a hybrid-
augmented architecture of quantum annealing and brain-
inspired cognitive computing, Tsinghua Sci. Technol., vol.
25, no. 6, pp. 813–825, 2020.

[13] W. Maass, Networks of spiking neurons: The third
generation of neural network models, Neural Netw., vol.
10, no. 9, pp. 1659–1671, 1997.

[14] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam,
K. K. Likharev, and D. B. Strukov, Training and operation of
an integrated neuromorphic network based on metal-oxide
memristors, Nature, vol. 521, no. 7550, pp. 61–64, 2015.

[15] C. Q. Yin, Y. X. Li, J. B. Wang, X. F. Wang, Y. Yang, and T.
L. Ren, Carbon nanotube transistor with short-term memory,
Tsinghua Sci. Technol., vol. 21, no. 4, pp. 442–448, 2016.

[16] X. Lagorce and R. Benosman, STICK: Spike time interval
computational kernel, a framework for general purpose
computation using neurons, precise timing, delays, and
synchrony, Neural Comput., vol. 27, no. 11, pp. 2261–2317,
2015.

[17] J. B. Aimone, W. Severa, and C. M. Vineyard,
Composing neural algorithms with Fugu, in Proc. Int. Conf.
Neuromorphic Systems, Knoxville, TN, USA, 2019, pp.
1–8.

[18] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy,
J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo,
Y. Nakamura, et al., A million spiking-neuron integrated
circuit with a scalable communication network and interface,
Science, vol. 345, no. 6197, pp. 668–673, 2014.

[19] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta,
D. Barch, A. Amir, J. Arthur, A. Cassidy, M. Flickner, P.
Merolla, et al., Cognitive computing systems: Algorithms
and applications for networks of neurosynaptic cores, in
Proc. 2013 Int. Joint Conf. on Neural Networks, Dallas, TX,
USA, 2013, pp. 1–10.

[20] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz,
S. K. Esser, A. Andreopoulos, T. M. Wong, M. Flickner, R.
Alvarez-Icaza, et al., Cognitive computing programming



672 Tsinghua Science and Technology, October 2021, 26(5): 664–673

paradigm: A corelet language for composing networks
of neurosynaptic cores, in Proc. 2013 Int. Joint Conf. on
Neural Networks, Dallas, TX, USA, 2013, pp. 1–10.

[21] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J.
Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. J.
Nam, et al., TrueNorth: Design and tool flow of a 65 mW
1 million neuron programmable neurosynaptic chip, IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 34, no.
10, pp. 1537–1557, 2015.

[22] B. V. Benjamin, P. R. Gao, E. McQuinn, S. Choudhary,
A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza,
J. V. Arthur, P. A. Merolla, and K. Boahen, Neurogrid:
A mixed-analog-digital multichip system for large-scale
neural simulations, Proc. IEEE, vol. 102, no. 5, pp. 699–
716, 2014.

[23] P. Merolla, J. Arthur, R. Alvarez, J. M. Bussat, and K.
Boahen, A multicast tree router for multichip neuromorphic
systems, IEEE Trans. Circuits Syst. I Reg. Pap., vol. 61, no.
3, pp. 820–833, 2014.

[24] C. Eliasmith and C. H. Anderson, Neural Engineering:
Computation, Representation, and Dynamics in
Neurobiological Systems. Cambridge, MA, USA:
The MIT Press, 2004.

[25] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza,
A. R. Voelker, C. Eliasmith, R. Manohar, and K. Boahen,
Braindrop: A mixed-signal neuromorphic architecture with
a dynamical systems-based programming model, Proc.
IEEE, vol. 107, no. 1, pp. 144–164, 2019.

[26] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Q. Cao,
S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, et al.,
Loihi: A neuromorphic manycore processor with on-chip
learning, IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[27] C. K. Lin, A. Wild, G. N. Chinya, Y. Q. Cao, M. Davies,
D. M. Lavery, and H. Wang, Programming spiking neural
networks on Intel’s Loihi, Computer, vol. 51, no. 3, pp.
52–61, 2018.

[28] K. Wendt, M. Ehrlich, and R. Schüffny, A graph theoretical
approach for a multistep mapping software for the facets
project, in Proc. 2nd WSEAS Int. Conf. on Computer
Engineering and Applications, Capulco, Mexico, 2008, pp.
189–194.

[29] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E.
Painkras, S. Temple, and A. D. Brown, Overview of the
SpiNNaker system architecture, IEEE Trans. Comput., vol.
62, no. 12, pp. 2454–2467, 2013.

[30] O. Rhodes, P. A. Bogdan, C. Brenninkmeijer, S. Davidson,
D. Fellows, A. Gait, D. R. Lester, M. Mikaitis, L. A. Plana,
A. G. D. Rowley, et al., sPyNNaker: A software package for
running PyNN simulations on SpiNNaker, Front. Neurosci.,
vol. 12, p. 816, 2018.

[31] Y. H. Zhang, P. Qu, Y. Ji, W. H. Zhang, G. R. Gao, G. R.
Wang, S. Song, G. Q. Li, W. G. Chen, W. M. Zheng, et al.,
A system hierarchy for brain-inspired computing, Nature,
vol. 586, no. 7829, pp. 378–384, 2020.

[32] O. Rhodes, Brain-inspired computing boosted by new
concept of completeness, Nature, vol. 586, no. 7829, 364–
366, 2020.

[33] B. Steinbach and R. Kohut, Neural networks – A model of
Boolean functions, in Proc. 5th Int. Workshop on Boolean
Problems, Freiberg, Germany, 2002.

[34] G. Lample and F. Charton, Deep learning for symbolic
mathematics, in Proc. 8th Int. Conf. on Learning
Representations, Addis Ababa, Ethiopia, 2020.

[35] P. Qu, Y. H. Zhang, X. Fei, and W. M. Zheng, High
performance simulation of spiking neural network on
GPGPUs, IEEE Trans. Parallel Distrib. Syst., vol. 31, no.
11, pp. 2510–2523, 2020.

[36] Y. Ji, Y. H. Zhang, S. C. Li, P. Chi, C. H. Jiang, P. Qu,
Y. Xie, and W. G. Chen, NEUTRAMS: Neural network
transformation and co-design under neuromorphic hardware
constraints, in Proc. 49th Ann. IEEE/ACM Int. Symp. on
Microarchitecture, Taipei, China, 2016, pp. 1–13.

[37] Y. Ji, Y. H. Zhang, W. G. Chen, and Y. Xie, Bridge the
gap between neural networks and neuromorphic hardware
with a neural network compiler, in Proc. 23rd Int. Conf.
on Architectural Support for Programming Languages and
Operating Systems, Williamsburg, VA, USA, 2018, pp. 448–
460.

[38] Y. Ji, Y. Y. Zhang, X. F. Xie, S. C. Li, P. Q. Wang, X. Hu, Y.
H. Zhang, and Y. Xie, FPSA: A full system stack solution for
reconfigurable ReRAM-based NN accelerator architecture,
in Proc. 24th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, New
York, NY, USA, 2019, pp. 733–747.

[39] Y. Ji, Z. X. Liu, and Y. H. Zhang, A reduced architecture for
ReRAM-based neural network accelerator and its software
stack, IEEE Trans. Comput., vol. 70, no, 3, pp. 316–331,
2021.

[40] J. H. Han, Z. L. Li, W. M. Zheng, and Y. H. Zhang,
Hardware implementation of spiking neural networks on
FPGA, Tsinghua Sci. Technol., vol. 25, no. 4, pp. 479–486,
2020.

[41] X. Fei, Y. H. Zhang, and W. M. Zheng, XB-SIM�: A
simulation framework for modeling and exploration of
ReRAM-based CNN acceleration design, Tsinghua Sci.
Technol., vol. 26, no. 3, pp. 322–334, 2021.

[42] J. L. Hennessy and J. L. Hennessy, A new golden age for
computer architecture: Domain-specific hardware/software
co-design, enhanced security, open instruction sets, and
agile chip development, in Proc. 2018 ACM/IEEE 45th

Ann. Int. Symp. on Computer Architecture, Los Angeles,
CA, USA, 2018, pp. 27–29.

[43] W. M. Zheng, Research trend of large-scale supercomputers
and applications from the TOP500 and Gordon Bell Prize,
Sci. China Inf. Sci., vol. 63, no. 7, p. 171001, 2020.



Youhui Zhang et al.: Towards “General Purpose” Brain-Inspired Computing System 673

Youhui Zhang received the BEng and PhD
degrees in computer science from Tsinghua
University, Beijing, China in 1998 and 2002,
respectively. He is currently a professor in
the Department of Computer Science and
Technology, Tsinghua University, Beijing,
China. His research interests include
computer architecture and neuromorphic

computing. He is a member of CCF, ACM, and IEEE.

Peng Qu received the BEng and PhD
degrees in computer science from Tsinghua
University, Beijing, China in 2013 and
2018, respectively. He is currently a
postdoctoral fellow in the Department
of Computer Science and Technology,
Tsinghua University, Beijing. His research
interests include computer architecture and

neuromorphic computing.

Weimin Zheng received the MEng degree
in computer science from Tsinghua
University, Beijing, China in 1982.
Currently he is an academician of Chinese
Academy of Engineering and a professor at
the Department of Computer Science and
Technology, Tsinghua University, Beijing,
China. His research interests include high

performance computing, network storage, and parallel compiler.


